
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Graph Processing Systems: A Comprehensive Review with
Emphasis on Graph Mutations

Soukaina Firmli1 and Dalila Chiadmi1

1Mohammed V University in Rabat , Ecole Mohammadia d’Ingénieurs , SIP Research Team , Morocco,

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract: The growing need for managing extensive dynamic datasets has propelled graph processing and streaming to the forefront
of the data processing community. Coping with the sheer volume, intricacy, and continual evolution of data poses a challenge to
graph data processing systems, necessitating the development of innovative techniques for effective handling and analysis. This paper
underscores two pivotal aspects within Graph Processing Systems (GPS) that significantly impact overall system performance: 1) the
graph representation, encompassing the data structures storing vertices and edges, and 2) graph mutation protocols, outlining approaches
for assimilating and storing new graph updates, such as additions of edges and vertices. Given the irregularity of graph workloads and
the large scale of real-world graphs, face numerous challenges, requiring adept solutions to ensure both efficient storage and update
protocols. This dual imperative enables rapid analytics and streaming capabilities. Our paper aims to furnish a comprehensive overview
of diverse methodologies employed by researchers to surmount performance challenges inherent in the design GPS and streaming. Our
review highlights challenges linked to graph representation and update protocols, offering insight into researchers’ efforts to tackle these
issues. Conclusively, we identify research gaps in the domains of graph representation and mutation, emphasizing areas that remain
unexplored and unresolved.

Keywords: Graph Processing; Streaming; Data Structures; Mutation; Performance

1. INTRODUCTION
Big data refers to extensive and complex datasets col-

lected and analyzed by organizations to gain insights and
make informed decisions. This data originates from diverse
sources, including social media, e-commerce transactions,
and sensor data. Graphs, in particular, stand out as a
prominent data model in the current era of big data and
data deluge [1], with the analysis of large-scale graphs
becoming increasingly significant. Examples include exam-
ining the architecture of the Internet [2], exploring social
or neurological networks [3], and recording the activity of
proteins [4]. Efficiently processing these big data graphs
poses challenges. Firstly, these networks are highly com-
plex, featuring thousands of nodes and millions or even bil-
lions of edges [5]. Secondly, the relevant graphs inherently
change over time as new social relationships form, novel
linkages are established, or protein interactions evolve. To
address these challenges, graph processing and streaming
systems are developed for processing and analyzing massive
dynamic graphs and networks [6]. These systems aim to
scale horizontally by dispersing graph data and computa-
tion among a cluster of devices or to scale vertically by
utilizing parallelism in multi-core machines. However, the
software design and implementation of these systems need
optimization for different workloads, as design choices may

create challenges by hindering the computational capabili-
ties of servers. Two vital software design elements of these
systems, crucial for overall performance, are: 1) the graph
data structure, storing vertices and edges, and 2) graph
mutation protocols, the approaches for ingesting and storing
new graph updates, such as new edges and vertices. Ideally,
a graph processing system should offer excellent analytics
performance, fast mutations (i.e., vertex or edge insertions
and deletions), and low memory consumption with or with-
out mutations. However, the large scale of graph data and
complex algorithms pose computational and management
challenges, requiring high-performance computing models
as referenced by Tulasi et al. [7]. Furthermore, the rapid
and continuous generation of new streams in real-world
graphs may delay analytics and cause a substantial increase
in memory consumption in graph streaming systems. These
challenges have prompted researchers to explore ways to en-
hance classic graph data structures and update protocols to
enable low-latency graph analytics and high update through-
put. Techniques include in-place update techniques [8],
[9], batching techniques [10], [11], and changeset-based
updates with delta maps [12] and multi-versioning [13] to
improve the update-friendliness of Compressed Sparse Row
(CSR). In this paper, we present a review focusing on the
performance challenges encountered by researchers when

E-mail address: soukaina.firmli@gmail.com, chiadmi@emi.ac.ma http:// journals.uob.edu.bh

IJCDS 1570982727

1

http://dx.doi.org/10.12785/ijcds/XXXXXX
http://journals.uob.edu.bh


190 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

designing graph processing and streaming solutions for
large-scale dynamic graphs. We examine how researchers
attempt to represent graphs in memory and design up-
date protocols for efficient graph analytics, queries, and
streaming, closely evaluating the performance implications
of different techniques for storing and updating graphs in
memory. Additionally, we identify gaps in research on graph
representation and mutation that have yet to be addressed.

In this paper, we present a review that focuses on the
performance challenges that researchers face when design-
ing graph processing and streaming solutions for large scale
dynamic graphs. Essentially, we review how they attempt
to represent graphs in memory and design update protocols
for efficient graph analytics, queries and streaming, by
taking a close look at the performance implications of
different techniques for storing and updating graphs in
memory. Moreover, we identify gaps in research of graph
representation and mutation that haven’t been addressed.

The paper is organized as the following. First we present
the background in Section 2 of our study. Second, we
discuss our research methodology and research questions
in Section 3 before presenting our review and analysis in
sections 4 and 5. Finally, we discuss our findings in section
6, present the related work in section 7 and then conclude
in 8.

2. BACKGROUND
A graph is defined as a mathematical representation

comprising vertices (nodes) and edges, which represent
entities and the relationships between them, respectively.
The volume, velocity, and variety of big data [14], that
come from storing and processing large graph data, pose
unique challenges in the field of computer science and data
processing.

First, many real-world situations can be understood via
the lens of scale-free networks. These graphs have a power-
law distribution of degrees and a low density [15]. Within
a single graph, vertex degrees can vary widely due to the
power-law distribution [16], with many vertices having very
few or even zero degrees. The Internet and other social
networks are two common examples of such graphs. When
designing systems, however, it might be difficult to account
for the skew (degree variation) of these graphs. In reality,
it’s possible that additional memory and processing power
(RAM, CPU) will be needed to process vertices with higher
degrees [17].

In addition to the skew of real world graph data sets that
graph processing systems need to ingest and store, the large
size of graph data and access patterns of graph algorithms
are important factors that highly impact the performance
of these systems in the context of graph processing and
streaming [13]. Essentially, the memory-intensive nature
of graph algorithms and their access patterns is one of
the primary causes of the latency in graph computations.
For instance, the PageRank algorithm [13] requires a large

amount of input/output (I/O) operations to main memory
and random accesses when iterating over vertices and edges
in the graph, causing a lot of cache misses that occur when
the CPU tries to access data that is not already stored in
the cache [18], causing more slowdown.

Second, the velocity characteristic of big data makes
processing data more challenging where large amounts of
graph data are generated rapidly and need to be added to
graphs as new relationships in real-time. This is handled by
stream processing systems, closely associated with real-time
processing, involving processing data as it is created [15].
For example, in a social network, graph streaming can be
used to detect new connections between people in real-time.
Mutations in graph streaming refer to the process to add,
modify, or delete vertices and edges, allowing to maintain
the graph as it changes over time.

Finally, to address these challenges of storing, analyzing
and streaming big graph data, graph technology, including
graph processing systems and graph databases like Neo4j
[19], emerges as a suitable approach due to its scalability,
real-time processing capabilities, and ability to handle com-
plex relationships. These GPS store graph data (i.e., graph
topology and properties) in containers using data structures,
such as adjacency lists, edge lists, or matrices [20]. They
also provide algorithms for running analytic workloads and
queries as well as updating graphs. These systems use com-
binations of high performance data structures and update
protocols to achieve their target performance. They take
advantage of the hardware resources such as parallelism and
Distributed machines to address the scalability challenge of
processing and streaming large graphs efficiently. Moreover,
they use techniques to optimize classical data structures and
graph updates by improving their cache performance, using
techniques such as compression[21], partitioning[22], and
memory allocators[23].

In summary, big data’s volume, velocity, and variety
pose challenges for traditional data processing methods
including the storage, mutation and processing of graph data
sets. In this context, we discuss and analyze in this paper
the growing interest in research to achieve high performance
by finding new ways to incorporate these techniques in the
graph processing systems and streaming.

3. METHODOLOGY
There is a growing body of literature in the context of

processing and streaming big dynamic graphs. In our paper,
we aim to give a global overview on the different techniques
used by researchers to improve the performance of graph
processing systems and streaming. In an attempt to give
this overview, we narrow the scope of this review to cover
literature published over the past 16 years. We define a set of
strings derived from keywords related to our research. The
initial keywords are: Graph, Analytics, Processing, Storage,
Streaming and Mutation. We then use combinations to
form strings to search for relevant papers on IEEE Xplore,
ACM Digital Library and Google Scholar. We compile our

http:// journals.uob.edu.bh

2

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 191

database of around 97 prominent publications, We exclude
some papers as they are out of our scope (e.g., incremental
computation and graph database systems [19]). With the
collected papers, we note the following techniques that are
used generally in the literature, which include:

• The optimization of graph data structures for the
storage of dynamic graphs

• The design of parallel algorithms to execute graph
analytics and queries efficiently on dynamic graphs

• The design of high-level graph languages to express
and execute graph queries

• The implementation of algorithms for Distributed
processing of graphs

• The design of efficient graph mutation protocols for
fast graph updates

We focus on the graph representation in memory and the
algorithms for graph updates. As a result of this method-
ology, we break down these two elements and specify the
research questions of our interest as the following:

1) Q1. What are the most used graph data structures
used to represent graphs and how do researchers
employ them to support large graphs and frequent
updates while providing high performance and low
memory consumption?

2) Q2. What are the methods for improving the cache
performance of graph structures and algorithms?

3) Q3. How do researchers minimize the memory foot-
print of the massive dynamic graphs to fit in mem-
ory?

4) Q4. What are the main protocols for supporting
graph updates and how do they impact the perfor-
mance of graph analytics and memory?

5) Q5. What are the techniques used by researchers to
improve the performance of graph mutations?

We extracted data relevant to the research questions and
we performed a synthesis as shown in Table I.

4. TECHNIQUES FOR EFFICIENT GRAPH REPRE-
SENTATION
In this section, we give an overview of how to store

graph data elements efficiently by reviewing and analyzing
different techniques in the literature. These techniques allow
to tackle the challenges related to optimizing classical graph
data structures for high analytic and update performance as
well as minimising the memory footprint. We organize this
section as the following. First, we discuss the performance
of classical data structures, to identify their limitations.
Then we analyze the different techniques available for
researchers to optimize them, namely: optimizing the mem-
ory layout of the data structures (Sec. 4-B), compression
(Sec. 4-C), using memory allocator software (Sec.4-D) and

partitioning (Sec. 4-E). We discuss how they fine-tune the
systems for graph processing and streaming using these
classical techniques to achieve high performance. Finally,
we present a summary in Table III.

A. Representative Graph Containers
The following is a list of some widely used graph rep-

resentations. We provide descriptions of the data structures
and we discuss the costs of performing graph mutations on
each structure.

Adjacency Matrix
It holds a square matrix M with dimensions VxV,

where V stands for the graph’s vertex count. To signify
a directed edge from a source vertex vs to a destination
vertex vd, the cell M[vs][vd] must be assigned a non-zero
value. While this method simplifies edge manipulation, it’s
inefficient for sparse graphs due to high memory usage
and suboptimal analytics performance. Moreover, adding or
removing vertices requires completely recreating the matrix.

Adjacency Lists
This structure stores vertex information within a node

list, with each element pointing to a list of its neighbors.
It consumes less memory compared to an adjacency matrix
because it only stores existing edges. The typical approach
involves using linked lists for these connections, yet there
are more efficient alternatives designed for better caching.
For instance, variants like Blocked Adjacency Lists use
simpler arrays for representing adjacencies [8] or utilize
linked lists with fixed-size edge-containing buckets[24].

This schema stores vertices in a node list where each
element points to a list of neighbors. This is less memory
consuming than adjacency matrix since only the existing
edges are stored. The common format uses linked lists for
adjacencies, but there exist other more cache-friendly vari-
ants such as Blocked Adjacency Lists, where adjacencies
are represented by simple arrays [8] or with linked lists of
buckets containing a fixed size of edges [24].

CSR (Compressed Sparse Row)
This representation, widely used for sparse graphs,

condenses adjacencies into primarily two arrays: an edge
array holding indices of destination vertices from the node
array. The latter contains offsets to identify the beginning
and end of the neighbors’ list. To find the degree of node
i, we compute Node Array[i+1] minus Node Array[i].
However, while this format is efficient in many cases, it still
faces limitations, particularly in contexts where frequent up-
dates occur. Several variations of CSR (Compressed Sparse
Row) have been suggested—such as CSR++ [17][25][26]
—aiming to enhance support for quicker structural updates.
Further details on this topic are discussed in subsequent
sections.

B. Memory layout
A good memory layout for a graph representation refers

to the optimal way to arrange the graph data in memory
to enhance its performance [18]. This means that the data
structure layout in memory should allow to take advantage

http:// journals.uob.edu.bh

3

http://journals.uob.edu.bh


192 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

TABLE I. Analysis dimensions and their corresponding sections in this paper.

Dimension Description RQ RQ Section

Graph Representation The data structures to store the graphs RQ1 Sec. 4
Memory Consumption The memory footprint of the graph RQ2, RQ3, RQ5 Sec. 4, 5

represented in physical memory
Graph Mutation The implementation of graph mutations: RQ4 Sec. 5

in-place, delta maps, snaphsots
Performance Optimization The process of modifying a system RQ2, RQ3, RQ5 Sec. 4, 5

to improve its functionality,
thus making it more efficient in

read and update workloads
Parallelism & Hardware Resources The underlying architecture of systems such RQ2, RQ3, RQ5 Sec. 4, 5

as multi-core, CPU Cache and Distributed Systems

TABLE II. Space and time complexityy for different topological operations on classic graph data structures. We annotate N: Number of vertices in
a graph, M: Number of edges, Deg(V): Degree of a vertex V, and C: The cost of cache misses due to the access to non-contiguous memory.

Operation Adjacency Matrix Adjacency List CSR Edge List

Iteration over neighbors O(n) O(deg (v)) + C O(deg(v)) O(m)
Vertex Insertion O(n²) O(1) O(n) -
Edge Insertion O(1) O(1) O(m) O(1)
Edge Deletion O(1) O(deg (v)) O(m) O(m)

Systems [27] [24][28][29][8][17] [25][17][26][30][31][32] [29][26]

of hardware optimizations such as caching and prefetching.
Moreover, knowing the access patterns of graph algorithms
and storing graph entities in a specific layout can guarantee
both spatial and temporal locality for graph data structures
and algorithms [13], [25], [17], [30], hence better perfor-
mance.

By taking these factors into consideration when se-
lecting and implementing data structures, researchers in
the graph community propose new variants of data struc-
tures that allow for better cache performance, and that
by changing memory layouts of classical data structures
[33]. Essentially, to remediate to the poor cache locality,
when storing edges, many researchers [24], [34], [35] use
bucketing technique where buckets are used to group edges
from the same source vertex together, or using linked lists to
group edges from different source vertices together. These
buckets shouldn’t be too huge, as it would slow down
update performance, or too small, as that would cause cache
misses. Therefore, making the memory layout of the AL,
more cache-friendly while still maintaining good update
performance at no memory cost.

Furthermore, since CSR is known for its high cache per-
formance and slow update performance, many researchers
[36] [27][13] [9] opt for it as a main data structure for

graph analytics and queries, then use an extra data structure
to store the updates. For instance, to support fast updates,
LLAMA stores multiple versions of the graph in CSR
structures. Essentially, it implements two variants of CSR,
namely space-optimized (SO) and performance-optimized
(PO) structures. The performance optimized keeps a com-
plete list of edges of the same vertex in each version of
the graph. This variant of CSR is very close to the actual
immutable CSR for static graphs and gives almost the same
performance even when the graph is being updated multiple
times and even for executing algorithms that require many
random accesses to memory. However, since the edge list
is copied for every updated vertex in the new version, the
memory consumption grows steeply which is not ideal for
real-world commodity hardware [17].

On the other hand, the space-optimized variant stores
fragments of the edge lists for every vertex, meaning it
stores only the new edges in the version. The performance
of this variant is slower in principle since the edge lists are
not stored contiguously, and the system needs to reconstruct
the full adjacency of a vertex, which incurs many cache
misses. However, in some cases such as PageRank where
vertices are accesses in order, the space-optimized CSR
design performs better.

http:// journals.uob.edu.bh

4

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 193

C. Compression
Compression allows to reduce the amount of memory

needed to store data while maintaining its essential prop-
erties and functionality[21]. Compression can be useful in
situations where storage space is limited or expensive, but it
is more efficient in graph representation since it allows for
better cache performance, since more data can be loaded in
the cache and accessed at once by the CPU.

Recently, there have been quite an interest in using com-
pression for graph representations [34], [37]. For instance,
Aspen [34] stores graph data in compressed purely func-
tional trees, a form of persistent data structure for storing
large graphs. By compressing trees, Aspen solves the issue
of storing massive graphs (up to 200B edges) in machines
with just 1TB of RAM by using compression. Given that
Aspen stores edges as integers, it uses difference encoding
to reduce the size of the edge arrays. However, while this
method can significantly reduce memory consumption, it
still increases the price of encoding and decoding processes,
and a penalty may be incurred when executing queries or
updating the graph.

To remediate this cost, SSTGraph [37], a parallel frame-
work designed for the storage and analysis of dynamic
graphs, is based on the tinyset parallel dynamic set data
structure, which implements set membership using sorted
packed memory arrays. This allows for logarithmic time
access and updates, as well as optimal linear time scanning.
Compared to systems that use data compression, tinyset
achieves comparable space efficiency without the compu-
tational and serialization overhead. Unfortunately, to run
graph algorithms in SSTGraph on a given data set, one
should make sure the graph is symmetric, or pre-process
the data set to make the data set reflect a symmetric graph,
which in practice is cumbersome. Moreover, the interface is
tightly dependent on the Ligra APIs [31] and lacks of some
basic graph primitives such as methods for getting the out
degree of vertices in a directed graph.

D. Memory Allocators
A memory allocator is a software component that man-

ages the allocation and deallocation of memory in a com-
puter program [23]. The primary responsibility of allocators
is to handle requests from the program for memory, and to
keep track of which parts of memory are currently being
used and which parts are free and available for allocation.
Many GPS use memory allocators to achieve a good perfor-
mance in terms of read, updates and memory consumption.
For instance, memory allocators such as Jemalloc [38] and
TCMalloc [39], are widely used for their parallel support of
memory allocation which helps with providing high update
throughput. Moreover, these allocators use highly efficient
algorithms to limit memory fragmentation [40], which leads
to better cache locality and lower memory footprint.

Another approach used by some systems [24], [35], [17]
is developing built-in memory managers that facilitate the

speedy allocation of memory needed for applying muta-
tions. For instance, in order to efficiently perform memory
reclamation [41] and manage space, Hornet’s [35] internal
memory management uses a B+ tree for insertions and
deletions to keep track of the available blocks of edges.
When data is duplicated, the system uses a load-balancing
mechanism to locate the freed memory for later usage.
This restriction applies to both Hornet and STINGER,
whose great performance is due to their memory allocation
algorithms.

Another approach used by systems takes advantage of
the persistent storage of machines to allocate large graphs.
For instance, Metall [42], a permanent memory allocator
that uses the copy-on-write technique for graph workloads,
stores and manipulate enormously huge graphs at the ex-
ascale (billions of billions of operations per second), by
employing smart allocation algorithms like those found in
SuperMalloc [43]. Essentially, Metall employs the use of
mmap system calls to create memory-mapped files. With
mmap, one may essentially access the files as if they were
RAM, since it redirects the data to a virtual memory region.
Therefore, in order to offer lightweight multi-versioning,
Metall makes use of copy-on-write by taking snapshots of
the graph after ingesting a batch of updates and employing
a file copy method in the filesystems called reflink, which
permits copy-on-write of data. Even while reflink helps save
memory when making new snapshots, not all filesystems
have built-in support for it. If it isn’t available, Metall will
instead resort to making full copies, which dramatically
increases the memory footprint.

E. Partitioning
Graph data partitioning is the process of dividing a

large graph into smaller subgraphs [22], called partitions, in
order to enable parallel processing of the graph on multiple
machines or processors. Graph partitioning is important for
large-scale graph processing, as it allows us to distribute
the computation and storage of the graph across multiple
machines or processors, and to perform computations on
each partition independently and in parallel.

Graph data partitioning is typically performed by di-
viding the vertices of the graph into partitions, such that
the edges of the graph are distributed evenly among the
partitions, while minimizing the number of edges that cross
between partitions[32]. This is done in order to minimize
the amount of communication required between the ma-
chines or processors during computation, as communica-
tion can be a bottleneck for large-scale graph processing.
There are several algorithms and techniques for graph data
partitioning, such as recursive spectral bisection, multi-
level k-way partitioning, and label propagation [44]. The
choice of partitioning algorithm depends on the specific
characteristics of the graph and the system architecture
being used.

Some GPS systems [45], [46] use partitioning for op-
timizing their performance by introducing several novel

http:// journals.uob.edu.bh

5

http://journals.uob.edu.bh


194 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

techniques to scale graph processing on a distributed cluster,
including partitioning for sequential storage access, random
distribution of data across the cluster, and work stealing
for load balancing. These techniques enable GPS to handle
graphs with trillions of edges, representing up to 16 TB of
input data. However, the research on graph mutations using
partitioning in a distributed system is still premature, and
very small number of articles address the challenges that
come with it.

5. UPDATE PROTOCOLS FOR EFFICIENT GRAPH
STREAMING
In addition to the representation of graphs in memory for

graph queries and analytics, a wide range of GPS [24], [13],
[50], [34] support graph mutation by allowing modifications
to the graph’s topology by adding or removing edges and
vertices. Essentially, to achieve that, GPS implement dif-
ferent update protocols, which are different approaches for
the ingestion and the storage of new incoming graph data.
Specifically, update ingestions refer to the processing of the
stream of update operations, either in bulk or concurrently
with analytics before storing the updates in the final graph.
On the other hand, update storage refers to the protocol
of storing the updates either by directly appending them
to the graph storage (a.k.a., in-place updates), or using
additional data structures to store the new updates (a.k.a.,
delta stores). To put this in the context of our study, the
main challenge for GPS is to design these graph update pro-
tocols, to efficiently process large volumes of data updates
while yet providing optimal analytical performance and low
memory footprint. As a result, in attempt to answer our
research question, we review the different techniques in the
literature for implementing graph updates, and discuss their
performance implications. This ultimately allows us to find
out more about this performance trade-off challenges for
GPS and the research gaps.Finally, we present a summary
in Table IV.

A. Update Protocols
In the following section, we review the different ap-

proaches for ingesting updates in graph processing and
streaming.

a) Update Ingestion
Single update queries refer to the insertion or removal

of single edge or vertex at a time, while batch updates
refer to the grouping of the updates in a batch before
applying them all at once. Essentially, the pre-processing
on update batches before applying them (e.g., reordering,
sorting, and partitioning ), allows to reveal their inherent
parallelism. For instance, the sorting allows grouping all
the edge updates of a specific vertex together, separating
deletions from insertions, which allows to run edge updates
in parallel for separate vertices which improves the rate of
update ingestions [11] [9] [51].

There exists two modes for ingesting updates depending
on how the graph analytics and queries are executed: in
bulk or concurrently. Essentially, in the bulk mode, updates

and graph algorithms are executed sequentially “in phases”.
On the other hand, in the concurrent mode, updates and
graph analytics are processed simultaneously. The approach
used by systems [35][51][8] , to implement updates using
the bulk mode, is a sequential approach where updates are
held back until queries are completed, allowing updates
to modify the graph while keeping data consistency [52],
which ensures that the returned results accurately represent
the current state of the data.

On the other hand, in the concurrent mode, systems may
process updates and queries simultaneously. In this case,
maintaining query consistency can be challenging.

b) Update Storage
When applying the mutations, changes can be applied

in-place (i.e., incorporated into the main structure) or stored
in additional data structures called deltas [53]. In the follow-
ing we review how graph processing and streaming systems
implement update storage using these two approaches. In-
place Updates: In-place update is a technique where systems
augment the traditional graph data structures, by permitting
in-place storage of updates without the costly rebuilding of
the whole graph data structure.

B. Single vs Batch Updates
Essentially, single updates are challenging to support

for two main reasons. First, in most cases [51], [17] ,
and especially in deletion workloads, the system needs to
perform a search over the neighbors of a vertex upon every
edge insertion, which is not possible to do in parallel. This
make system’s performance very slow. Second, depending
on the availability of memory, systems need to allocates new
blocks to store the new edges [17], [30]. Consequently, the
frequent checks for memory availability and reallocations
cause a large overhead, making the single updates very slow.

To remediate the slow single update performance, sys-
tems [17], [26], [34], [50], opt for batch updates where the
batch of edge updates is pre-processed. Moreover, another
technique used in batch updates is partitioning, which refers
to splitting the updates into partitions that can be handled
in parallel by multiple threads simultaneously [12]. This
allows for better load balancing between parallel threads
especially for skewed graphs. Unfortunately, the techniques
mentioned above still incur large latency overhead as mea-
sured by GPS in literature [30], [26], [17], and most systems
do not offer both single updates and batch updates, which
is necessary for some real-world scenarios where updates
are not frequent.

C. Bulk vs Concurrent Updates
Systems [17][25][51] in the bulk mode, mostly focus

on supporting high update rates since updates don’t have
to be delayed by the queries. For instance, STINGER
[24] achieves an update rate of over 1.8 million updates
per second on single multi-core machines, by executing
updates in batches and running them in parallel without
being concerned about concurrent reads. Despite the high
update throughput, systems that employ the bulk mode

http:// journals.uob.edu.bh

6

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 195

TABLE III. Summary of the characterization of systems included in this study based their techniques for efficient graph storage.

Dimension Impact on Perf. Systems

Memory Layout Cache-friendly data structures [47][48]
Data Compression Small memory footprint and better cache locality [34][45]

Partitioning Distributed processing and load balancing [32][49][46]
Memory Allocators Parallel allocation, low memory fragmentation, high cache performance [17] [42][26][24][35]

have limited usage, since in real-world scenarios, graph
users are constantly updating and running analytic queries
concurrently. In the case where update/read happen in
phases, this can introduce delays and decrease the system’s
overall performance.

On the other hand, in the concurrent mode, systems
may process updates and queries simultaneously. In this
case, maintaining query consistency can be challenging.
Essentially, updates modify the data, while queries retrieve
information from the data [13]. However, if updates and
queries are allowed to execute concurrently without any
synchronization or control mechanisms, queries may ob-
serve partial or inconsistent states of the data, leading to
incorrect or outdated results. Therefore, maintaining data
integrity while permitting high update throughput is a
major challenge for systems designed to support concurrent
updates and queries [54] [13][30][34].

In the following, we review different approaches used
in practice, to allow concurrent updates and queries and
observe that a lot of systems [13][29][30][50][34][42] im-
plement protocols to maintain data coherence and consis-
tency between multiple readers and writers through different
isolation levels [52], which is similar to traditional database
systems.

1) Hybrid Store
One way to achieve concurrent analytic workloads and

update workloads, is by creating a hybrid graph repre-
sentation that uses separate data structures: one for the
incoming updates and another another structure optimized
for reads and can be accessed concurrently. This way,
updates and read workloads would operate in parallel on
different structures. In this category, we cite a notable
system LLAMA [13], which creates a new delta, a.k.a.,
snapshot, every time the user runs a batch of updates. This
technique enables readers to have parallel access to the
previously created snapshots and run analytics and queries
in the read-optimized store without interfering with the
newer update queries performed in a separate structure
called the write-optimized store. However as shown in
recent work [30], [17], the continuous creation of new
snapshots leads to a steep increase in memory. Another
example is GraphOne [29], which implements a hybrid
store for snapshots using adjacency lists (AL) store and
an edge list (EL). the AL keeps track of a linked list of
vertex degrees at various points in time using timestamps.

However, the performance of GraphOne suffers by the
indirection layer and the multiple levels of data in adjacency
list as [30] points out, making it not reliable for read-
intensive workloads.

2) Concurrency Control
Another notable way used in literature is to use concur-

rency control models to achieve concurrent reads and writes
in graph processing and streaming. For instance, a popular
model is the Multiversion Concurrency Control (MVCC)
[55] used by transactional systems such as Teseo[30] to
achieve Snapshot Isolation. This model prevents data cor-
ruption by updating graph data in-place, hence preserving
the contiguous memory placement of data, and by utilizing
a transaction-based validation method. Essentially, these
systems use timestamps and a reversed chain of images to
store the original copies of data, showing the items as they
were before any changes were made (from newest to oldest).
These pictures are temporarily kept in the transaction’s undo
buffers whilst they are being rolled back, and then they are
garbage collected as soon as the transaction is no longer
valid (i.e. version pruning). The primary benefit of this
method is that it enables scan performance similar to that
of single-version systems while also providing fine-grain
transaction scheduling. However, garbage collection, which
must be conducted without interrupting the queries, adds
an additional expense. Actually, both the performance and
the resources needed to execute the version pruning may
be slowed down due to the update granularity and update
frequency.

D. In-place Updates
This means that, most systems [17][9][30] implement in-

place updates by designing data structures that are suitable
for graph updates, where the new entities (vertices or
edges) can be directly stored in the data structures without
requiring to reallocate the main data structure, or to store
them in extra data structures. The main idea is to leave some
space in the data structure for the new incoming entities,
and in case there is not enough space, the data structure
should allocate extra space suitable for that new entity.

First, this can be done using growable dynamic arrays
[8], [17], [11], where edge insertions are performed by
directly storing the new edges in dynamic growable edge
arrays and reallocating twice the initial array size if there is
no memory space for the new edge. For instance, NetworKit
[8] performs edge insertions by directly storing the new

http:// journals.uob.edu.bh

7

http://journals.uob.edu.bh


196 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

edges in dynamic growable edge arrays and reallocating
twice the initial array size if there is no memory space
for the new edge. The same method is employed by the
Madduri et. al. [11], with the exception that the size of
the new edge array is defined in terms of a customizable
factor rather than a fixed 2. Subsequently, when employing
dynamic arrays, the amortized cost for updates is O(1) for
insertions and O(deg V) for deletions. However, the memory
footprint can be quite substantial as the reallocations leave
unused space, when there are no updates. Second, Packed
Memory Arrays (PMAs) are another classic technique in
data structures that allows in-place updates by maintains
dynamic sets of sorted elements. It is based on storing
an array of sizes larger than the number of elements N
and leaving gaps between the elements to allow for new
insertions with a moderate cost of O(lg²(N)). However,
PMA relies on extra computation using an implicit balanced
tree to keeps track of gaps within regions of the array.
For instance, [30], [25] develop a variant of CSR based on
PMAs called PCSR, that provides efficient single-threaded
mutations by leaving space at the end of each adjacency
list. Moreover, when the number of gaps is too small or too
large, systems are required to perform a re-balancing of the
tree to rearrange the gaps in the array. This may slowdown
the update performance and delay the analytic workloads.

Finally, regarding the deletions of graph entities, there
are two main approaches: physical deletions and logical
deletions. In the latter, systems [17] enhance vertex and
edge data with flags that can be set in the event that
they are removed, which allows for logical deletions of
entities. The disadvantage of this method is that it requires
changing the graph algorithms to account for deleted entities
during traversals, which can make them slower, due to extra
branches in the algorithm [26].

On the other hand, when entities are deleted physically
from memory, the corresponding slots in the data structure
are left unfilled, which results in a higher storage cost than
logical deletion. Systems [29][26][30] employ compaction,
which means reconstructing the graph without assigning
space for the removed entities, to decrease unnecessary
space after numerous physical deletions. This operation is
very costly as it requires a whole rebuild of the graph,
however it helps reduce memory fragmentation, therefore
better read performance.

E. Delta Updates
As previously mentioned, data structures such as CSR

are optimized for scans and need to be rebuilt to support
even singular updates, which require O(n+m) space and
time. One way to extend CSR to support fast updates is
by employing deltas, by allocating a separate structure to
store only the new changes in delta maps or vertex/edge
logs. For instance, edge lists [29] are particularly well suited
for storing updates as deltas, as we can append new edges
in O(1) time and space. They also help to maintain the
temporality/history of updates, since the edges are stored in

the other they arrive. In practice, to support deltas, systems
[26][29] tend to design separate structures: one for the
original graph, usually referred to as the read optimized
store (usually CSR based) and another structure (usually
edge lists) for the new updates called write-optimized store
which practically refers to a delta. Subsequently, by using
deltas, systems [29][13][30] can run analytical workloads on
different static versions (snapshots) of the changing graph
over time, while applying updates. However, the downside
of storing updates in delta maps or edge lists is two-
fold. First, maintaining separate structures for each batch
of update increases the system’s memory requirements, as
a frequent stream of graph updates results in many deltas.
Second, analytics performance is degraded because they
need to read from both the original structure and the deltas
and reconcile them. For example, LLAMA creates a new
delta (i.e., snapshot) once the write-optimized store has
been “flushed” into the read-optimized store. This might be
practical for multi-versioning, but creating new deltas too
frequently often results in out of memory errors as shown
in [17] which can be fatal for real time systems.

Finally, to remediate this problem, these system per-
form compaction on the frequently created data structure
into one main structure. For this purpose, several authors
[29][34][30] have attempted to design their version of
compaction. Throughout our research, we came across a
multitude of references to the same operation, such as
“archiving,” “merging,” and “building.” To illustrate this
compaction, we cite GraphOne which stores newly-added
edges in a circular log and uses adjacency lists as main read
optimized store, which provide a coarse-grained snapshot
method. First, GraphOne establishes an edge log cutoff for
the ”transfer” of the edges from the buffer to the base
structure in order to preserve the separate store for the
update operations and achieve good analytic performance.
Essentially, when the number of newly created edges in the
log grows too large, the system archives the older entries
by copying them to a more permanent location, which
is the adjacency list. Second, in some cases, some data
may be kept in both stores for a predetermined amount of
time to maximize efficiency, this is known as data overlap.
However, when there is a lot of duplication, it may use
more RAM than usual. In fact, it is shown in [30] that
GraphOne’s iterator architecture is to blame for its subpar
performance in read workloads. Point look-ups are not
possible because of the high space and time costs associated
with analytic performance, which are incurred whenever the
system iterates over vertices or edges and copies neighbors
into an intermediate buffer.

In summary, compaction is computationally demanding.
Compaction can become very expensive, often zeroing the
mutability performance benefits of these structures. For
users that wish to operate on the most up-to-date version
of the graph data, we believe that designing a system
for in-place graph mutations is an alternative to achieving
better analytics and update performance with lower memory

http:// journals.uob.edu.bh

8

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 197

TABLE IV. Summary of the characterization of systems included in this study based their techniques for efficient graph updates.

Technique Category Advantages Systems Systems

Single Upd. Ingestion Fine-granularity of updates Requires more CPU and memory [17][24][25]
Batch Upd. Ingestion Fast update, load balancing Requires extra pre-processing [17][26][34][30][29]

Upd. in Bulk Ingestion Fast update throughput, fast analytics No concurrency [17][25][24][35][11]
Concurrent Upd. Ingestion Parallel updates and reads High memory footprint, slow updates [26][34][30][29]

In-place Upd. Storage Low memory footprint, fast analytics Slow updates [17][25]
Delta Upd. Storage Multi-versioning, less resources Slow analytics, high memory footprint [56][57][50][30][29]

slow updates

requirements.

6. DISCUSSION & SUMMARY
In our attempt to answer our research questions, we

have discussed the techniques for graph processing and
streaming, by giving an overview of representative graph
data structures then the protocols and algorithms for graph
updates. Table V presents a classification of the most
popular graph systems reviewed in our paper, based on the
dimensions discussed previously. In this section, we sum-
marize key insights about the research on high efficiency
graph representation and update protocols.

First, from Table V, we conclude that a lot of systems
rely significantly on CSR, because it is cache-friendly and
uses less memory. However, they use optimizations such
as hardware/distributed systems [49][32] as well as extra
data structures to store the updates. We also have discussed
a trend in using multiple representations for the same
graphs in memory, though GPS still offer very limited
configurability for their data structures.

Second, we point out the large number of shared-
memory systems, indicating the continued need for en-
hancements in that area to achieve the same level of
performance as distributed systems while making better use
of available hardware. In the same context, we note that
there is very limited research work on the graph streaming
in Distributed systems, especially the lack of protocols for
update ingestion and storage designed specifically for Dis-
tributed infrastructures. This also implies that even though
the studied systems guarantee performance for a certain
hardware configuration, they do not ensure whether or not
their data structures are portable to different infrastructures.
Thus, there is a need for “portability” of solutions which
have high-performance design of a graph representation and
update protocol, and that can be easily implemented in
single machines as well as in distributed environments.

Moreover, we have shown that the choice of the op-
timization techniques, in either graph representation or
updates depend on the specific characteristics of the graphs,
the types of workloads, and the constraints of the applica-
tion environment. However, there is still ongoing research to

achieve high performance, and as discussed and highlighted
in Table V, most systems tend to improve on an aspect of
performance, either read performance, updates throughput
or memory consumption, and to find the barely attempt to
provide the best trade-off between all three of these aspects.
For instance, the majority of the systems that we reviewed
struggle to support several versions of the graph because of
high memory cost, and graph compaction is necessary to
reduce the amount of space needed for changes, however
this operation requires expensive computation and slows
down the performance of the system. Finally, there is a
high emphasis on protocols for updating the topology of
graphs, but it is rare when other graph data such as graph
properties, reverse edges or labels, are implemented and
thoroughly evaluated for performance.

7. RELATED WORK
The prevalence of graph processing and streaming in

various domains have prompted researchers to conduct
reviews to understand how graphs are used in practice [15]
[20]. Joaquim et. al. [58] review graph systems and classi-
fies them based on their infrastructure. The review expands
on specific abstractions such as programming models for
distributed systems, and some of them are built on top of
distributed dataflow frameworks such as MapReduce and
Pregel.

Furthermore, Wheatman et al. [25] review existing graph
representations such as CSR and adjacency lists. They
provide a theoretical study of the time complexity of graph
access operations as well as update operations on such data
structures. However, they do not review how systems in
literature aim to optimize the performance of these graph
data structures.

Finally, [15] present a general survey of graph process-
ing systems and streaming, where they define the landscape
and taxonomy of the graph technology. Their work provides
descriptions and analysis of different approaches for repre-
senting graphs in a streaming context. However they do
not clearly analyze the performance trade-offs of different
approaches for graph storage and mutation.

http:// journals.uob.edu.bh

9

http://journals.uob.edu.bh


198 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

8. CONCLUSION
Streaming and dynamic graph processing is an important

research field. It is used to maintain numerous dynamic
graph datasets, simultaneously ensuring high-performance
graph updates, queries, and analytics workloads. Many
graph processing and streaming systems have been devel-
oped and use different data representations for fast paral-
lel ingestion of updates and a plethora of graph queries
and workloads. In this paper, we present insights on the
growing interest in literature in the optimization of clas-
sical graph data structures for high analytic and update
performance while minimizing the memory footprint. We
give an overview of techniques available for researchers and
developers, namely optimizing the memory layout of data
structures, compression, using memory allocator software,
and partitioning, and discuss how they’re used to enhance
graph processing and streaming. Moreover, we present
the update protocols and the performance implications of
different designs. Finally, we conclude that there is still vast
ongoing research for optimal GPS that gives the best trade-
off between the three important aspects of performance,
namely the read, update and memory consumption.

References
[1] “Gartner top 10 data and analytics trends for

2019,” https://www.gartner.com/smarterwithgartner/
gartner-top-10-data-analytics-trends/.

[2] P. Boldi and S. Vigna, “The webgraph framework i: Compression
techniques,” in Proceedings of the 13th International Conference
on World Wide Web, ser. WWW ’04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 595–602.

[3] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoe-
fler, “A modular benchmarking infrastructure for high-performance
and reproducible deep learning,” 2019.

[4] L. Di Paola, M. De Ruvo, P. Paci, D. Santoni, and A. Giuliani,
“Protein contact networks: an emerging paradigm in chemistry,”
Chemical reviews, vol. 113, no. 3, pp. 1598–1613, 2013.

[5] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukr-
ishnan, “One trillion edges: Graph processing at facebook-scale,”
Proc. VLDB Endow., vol. 8, no. 12, p. 1804–1815, aug 2015.
[Online]. Available: https://doi.org/10.14778/2824032.2824077

[6] M. E. Coimbra, A. P. Francisco, and L. Veiga, “An analysis of the
graph processing landscape,” journal of Big Data, vol. 8, no. 1, pp.
1–41, 2021.

[7] B. Tulasi, R. S. Wagh, and S. Balaji, “High performance computing
and big data analytics a [euro]” paradigms and challenges,” Inter-
national Journal of Computer Applications, vol. 116, no. 2, 2015.

[8] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: a tool
suite for large-scale complex network analysis,” Network Science,
vol. 4, no. 4, p. 508–530, 2016.

[9] B. Wheatman and H. Xu, “Packed compressed sparse row: a
dynamic graph representation,” in HPEC, 2018.

[10] R. Cheng, E. Chen, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,

F. Yang, L. Zhou, and F. Zhao, “Kineograph: taking the pulse of a
fast-changing and connected world,” in EuroSys, 2012.

[11] K. Madduri and D. A. Bader, “Compact graph representations
and parallel connectivity algorithms for massive dynamic network
analysis,” in IPDPS, 2009.

[12] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: large-scale
graph computation on just a PC,” in OSDI, 2012.

[13] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “LLAMA:
efficient graph analytics using large multiversioned arrays,” in ICDE,
2015.

[14] P. V and J. Jayakumar, “Challenges and opportunities with big data,”
International Journal of Engineering Research And, vol. V6, 2017.

[15] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler,
“Practice of streaming and dynamic graphs: Concepts, models,
systems, and parallelism,” arXiv, pp. 1912–12 740, 2020.

[16] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[17] S. Firmli, V. Trigonakis, J.-P. Lozi, I. Psaroudakis, A. Weld, D. Chi-
admi, S. Hong, and H. Chafi, “Csr++: A fast, scalable, update-
friendly graph data structure,” in 24th International Conference on
Principles of Distributed Systems (OPODIS’20), 2020.

[18] U. Drepper, “What every programmer should know about memory,”
Red Hat, Inc, vol. 11, no. 2007, p. 2007, 2007.

[19] “Neo4j,” http://www.neo4j.org.

[20] S. Firmli and D. Chiadmi, “A review of engines for graph storage
and mutations,” Innovation in Information Systems and Technologies
to Support Learning Research: Proceedings of EMENA-ISTL 2019
3, pp. 214–223, 2020.

[21] J. A. Storer, Data compression: methods and theory. Computer
Science Press, Inc., 1987.

[22] K. Lee and L. Liu, “Efficient data partitioning model for hetero-
geneous graphs in the cloud,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, 2013, pp. 1–12.

[23] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applica-
tions,” ACM Sigplan Notices, vol. 35, no. 11, pp. 117–128, 2000.

[24] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in 2012 IEEE
Conference on High Performance Extreme Computing. IEEE, 2012,
pp. 1–5.

[25] B. Wheatman and H. Xu, A Parallel Packed Memory Array
to Store Dynamic Graphs, pp. 31–45. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976472.3

[26] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in 2015
IEEE 31st International Conference on Data Engineering. IEEE,
2015, pp. 363–374.

[27] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and

http:// journals.uob.edu.bh

10

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
https://doi.org/10.14778/2824032.2824077
http://www.neo4j.org
https://epubs.siam.org/doi/abs/10.1137/1.9781611976472.3
http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 199

TABLE V. Summary of reviewed systems. Infra.: the supported architecture either Single Machine (SM) or Distributed (Dist); DS: data structures
(CSR, Adjacency List, Tree); SU: support for single updates; Batch: support for batch updates; MV: support for multiversioning; Compact: support
for compaction; Up. store: the update storage, either In-place (IP) or Delta (D); Scans: performance in read workloads; Mem: memory consumption;
Up. Perf.: performance in mutation.

Systems Infra. DS SU Batch MV Compact. Up. Store Scans Mem Up. Perf.

BGL SM AL + - - + IP - - +

PGX.SM SM CSR - + + - D + + -
Ligra SM CSR - - - - X + + -

GraphLab Dist CSR - - - - X - + -
PGX.D Dist CSR - + + - D + + -

STINGER SM/Dist AL + + - - IP - - +

Hornet GPU AL + + - - IP - + +

Compact SM AL - + - + IP - - +

PCSR SM CSR + - - + IP + - +

LLAMA SM CSR - - + + D + - -
Metall SM AL - + + + D - + +

GraphOne SM AL + EL + + + + D - + +

Aspen SM Tree - + + + IP - + +

Teseo SM Tree + + + + IP + - +

J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[28] “Boost adjacency list documentation,” https://www.boost.org/doc/
libs/1 67 0//libs/graph/doc/adjacency list.html.

[29] P. Kumar and H. H. Huang, “GraphOne: a data store for real-time
analytics on evolving graphs,” ACM Trans. Storage, vol. 15, no. 4,
2020. [Online]. Available: https://doi.org/10.1145/3364180

[30] D. De Leo and P. Boncz, “Teseo and the analysis of structural
dynamic graphs,” Proc. VLDB Endow., vol. 14, no. 6, p.
1053–1066, 2021. [Online]. Available: https://doi.org/10.14778/
3447689.3447708

[31] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel pro-
gramming, 2013, pp. 135–146.

[32] S. Hong, S. Depner, T. Manhardt, J. van der Lugt, M. Verstraaten,
and H. Chafi, “PGX.D: a fast distributed graph processing engine,”
in SC, 2015.

[33] M. A. Bender and H. Hu, “An adaptive packed-memory array,”
ACM Trans. Database Syst., vol. 32, no. 4, p. 26–es, nov 2007.
[Online]. Available: https://doi.org/10.1145/1292609.1292616

[34] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph
streaming using compressed purely-functional trees,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 918–934.

[35] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hornet: an
efficient data structure for dynamic sparse graphs and matrices on

GPUs,” in HPEC, 2018.

[36] N. P. Roth, V. Trigonakis, S. Hong, H. Chafi, A. Potter, B. Motik,
and I. Horrocks, “PGX.D/Async: a scalable distributed graph pattern
matching engine,” in GRADES, 2017.

[37] B. Wheatman and R. Burns, “Streaming sparse graphs using efficient
dynamic sets,” in 2021 IEEE International Conference on Big Data
(Big Data). IEEE, 2021, pp. 284–294.

[38] J. Evans, “A scalable concurrent malloc (3) implementation for
freebsd,” in Proc. of the bsdcan conference, ottawa, canada, 2006.

[39] A. H. Hunter, C. Kennelly, D. Gove, P. Ranganathan, P. J. Turner,
and T. J. Moseley, “Beyond malloc efficiency to fleet efficiency: a
hugepage-aware memory allocator,” in OSDI, 2021.

[40] M. S. Johnstone and P. R. Wilson, “The memory fragmentation
problem: Solved?” ACM Sigplan Notices, vol. 34, no. 3, pp. 26–36,
1998.

[41] D. Alistarh, W. Leiserson, A. Matveev, and N. Shavit, “Threadscan:
Automatic and scalable memory reclamation,” ACM Transactions
on Parallel Computing (TOPC), vol. 4, no. 4, pp. 1–18, 2018.

[42] K. Iwabuchi, K. Youssef, K. Velusamy, M. Gokhale, and R. Pearce,
“Metall: A persistent memory allocator for data-centric analytics,”
Parallel Computing, vol. 111, p. 102905, 2022.

[43] B. C. Kuszmaul, “Supermalloc: A super fast multithreaded malloc
for 64-bit machines,” in Proceedings of the 2015 International
Symposium on Memory Management, 2015, pp. 41–55.

[44] S. Phansalkar and S. Ahirrao, “Survey of data partitioning algo-
rithms for big data stores,” in 2016 Fourth International Conference

http:// journals.uob.edu.bh

11

https://www.boost.org/doc/libs/1_67_0//libs/graph/doc/adjacency_list.html
https://www.boost.org/doc/libs/1_67_0//libs/graph/doc/adjacency_list.html
https://doi.org/10.1145/3364180
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.1145/1292609.1292616
http://journals.uob.edu.bh


200 Firmli, et al.: Graph Processing Systems: A Comprehensive Review with Emphasis on Graph Mutations

on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2016,
pp. 163–168.

[45] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
Scale-out graph processing from secondary storage,” in Proceedings
of the 25th Symposium on Operating Systems Principles, 2015, pp.
410–424.

[46] A. Kyrola, G. Blelloch, and C. Guestrin, “{GraphChi}:{Large-Scale}
graph computation on just a {PC},” in 10th USENIX symposium on
operating systems design and implementation (OSDI 12), 2012, pp.
31–46.

[47] “Oracle Parallel Graph AnalytiX (PGX),” https://www.oracle.com/
middleware/technologies/parallel-graph-analytix.html.

[48] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “PGQL: a
property graph query language,” in GRADES, 2016.

[49] A. P. Iyer, Q. Pu, K. Patel, J. E. Gonzalez, and I. Stoica, “TEGRA:
Efficient Ad-Hoc analytics on evolving graphs,” in 18th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 337–355.

[50] M. Haubenschild, M. Then, S. Hong, and H. Chafi, “Asgraph:
a mutable multi-versioned graph container with high analytical
performance,” in Proceedings of the Fourth International Workshop
on Graph Data Management Experiences and Systems, 2016, pp.
1–6.

[51] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in 2012 IEEE
Conference on High Performance Extreme Computing. IEEE, 2012,
pp. 1–5.

[52] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level
definitions,” in Proceedings of 16th International Conference on
Data Engineering (Cat. No. 00CB37073). IEEE, 2000, pp. 67–
78.

[53] S. Firmli and D. Chiadmi, “A review of engines for graph storage
and mutations,” in EMENA-ISTL, 2020.

[54] M. Haubenschild, M. Then, S. Hong, and H. Chafi, “ASGraph:
a mutable multi-versioned graph container with high analytical
performance,” in GRADES, 2016.

[55] J. Böttcher, V. Leis, T. Neumann, and A. Kemper, “Scalable garbage
collection for in-memory mvcc systems,” Proceedings of the VLDB
Endowment, vol. 13, no. 2, pp. 128–141, 2019.

[56] “LLAMA code,” https://github.com/goatdb/llama.

[57] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and J. Banerjee,
“PGX.ISO: parallel and efficient in-memory engine for subgraph
isomorphism,” in GRADES, 2014.

[58] P. Joaquim, “Hourglass-incremental graph processing on heteroge-
neous infrastructures.”

Soukaina Firmli is a PhD student at Uni-
versity Mohammed V in the SIP Research
Team, under the joint supervision of Pro-
fessor Dalila Chiadmi and Vasileios Trigo-
nakis. She worked as a Research Assistant
in Oracle Labs within The PGX team and
her research interest include Data Structures,
Graph Databases and Parallel Processing.
Previously to her PhD studies, she obtained
a Diplome D’Ingenieur from Mohammadia

School of Engineers, equivalent to a master’s degree. Soukaina
enjoys reading, volleyball and music in her free time.

Dalila Chiadmi is a Full professor at Mo-
hammadia School of Engineers -EMI-, Mo-
hammed V University in Rabat, Morocco.
She got her PhD degree in computer sci-
ence from EMI in 1999. Her main research
interests focus on the field of data (Open,
linked and Big Data, Big graphs, etc.). She
is currently leading the SIP Team Research
at EMI and she was appointed leader of
the Moroccan Chapter of the Arab Women

in Computing Anita Borg Institute Systers’ community in 2012.
She has co-authored a book and over 75 refereed book chapters,
conference and journal publications. She has served in many
conferences as chair, member of the program committee, or
reviewer.

http:// journals.uob.edu.bh

12

https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://github.com/goatdb/llama
http://journals.uob.edu.bh

	INTRODUCTION
	BACKGROUND
	METHODOLOGY
	TECHNIQUES FOR EFFICIENT GRAPH REPRESENTATION
	Representative Graph Containers
	Memory layout
	Compression
	Memory Allocators
	Partitioning

	UPDATE PROTOCOLS FOR EFFICIENT GRAPH STREAMING
	Update Protocols 
	Single vs Batch Updates
	Bulk vs Concurrent Updates
	Hybrid Store
	Concurrency Control

	In-place Updates
	Delta Updates

	DISCUSSION & SUMMARY
	RELATED WORK
	CONCLUSION
	References
	Biographies
	Soukaina Firmli
	Dalila Chiadmi


