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Abstract: The reconstruction of gene regulatory networks (GRNs) from gene expression data is a challenging problem. GRNs provide
insight into the complex regulatory relationships between genes and can help improve our understanding of biological processes.
However, current methods for inferring GRNs have limitations in accurately modeling these relationships. In this work, we propose
GRNRI: a variational auto-encoder model that learns to infer GRNs from single-cell RNA sequencing (scRNA-seq) data in an
unsupervised way. Our model is a modified version of Neural Relational Inference (NRI), a powerful framework for learning relational
structure from data. We developed a version of NRI that explicitly models the regulatory relationships between genes using a variational
auto-encoder. Results show that GRNRI achieves comparable or better performance on most benchmark datasets compared with
state-of-the-art methods. Our work introduces a powerful tool for advancing our understanding of gene regulation and its role in
biological processes.
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1. Introduction
Inferring a Gene Regulatory Network (GRN) has be-

come a very active area of research due to its importance
in understanding the relationships between genes and the
products they help introduce. This knowledge can help
us understand the phenotype of many diseases. With the
advancements in measurement technologies, a wealth of
datasets has become available. As a result, computational
methods can help us process these datasets and extract
information that can help us infer GRNs and develop
solutions accordingly.

Previously, gene expression levels in a sample were
measured using Bulk RNA sequencing technology. This
technology provides the average of gene expression levels
of a bulk of cells together. However, today since its intro-
duction in 2009 [1], Single cell RNA sequencing (scRNA-
seq) has become widely used. This technology allows us to
examine the gene expression level of each cell individually
in the sample. However, experimental noise is a significant
challenge in scRNA-seq data that is not found in bulk
sequencing data and it might introduce biases to the data [2],
[3].

ScRNA-seq data can take the form of a matrix with each
value representing the gene expression level of a specific
cell.

As genes represent the key to all biological processes,
figuring out the interaction between them is an attracting
scRNA-seq study. GRNs represent the regulatory relation-
ships between Transcription Factors (TFs) and their target
genes [3]. Each node of the GRN represents a TF or a gene,
and each edge connecting a TF and a target gene represents
a regulation. Given the scRNA-seq dataset, the task we are
solving is to find out all possible regulations among genes to
reconstruct the GRN. Several methods [4], [5], [6], [7], [8],
[9], [10], [11] attempted to solve this task, but most of them
suffered from the drawback of low accuracy. Some of the
methods used to study Gene Regulatory Networks rely on
measurements that often necessitate intricate experimental
designs. These measurements may also introduce additional
noise into the data since they come from different exper-
iments. Furthermore, many of these methods, particularly
those that are based solely on scRNA-seq data, utilize
statistical algorithms that focus on co-expression networks.
However, these algorithms have their limitations.

In this paper, we propose GRNRI to solve the GRN
inference task. GRNRI is an unsupervised model structured
as a variational auto-encoder that uses Graph Neural Net-
works (GNNs) in both its encoder and decoder functions
relying on scRNA-seq data only without requiring any
additional measurements. Examining the structure of the
GRNRI model allows us to understand how various genes
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interact to influence the expression levels of individual
genes.

GRNRI is an unsupervised model that is based on the
Neural Relational Inference (NRI) model [12]. NRI model
is a powerful framework that tries to learn the relational
structure from observed data and it is a variational auto-
encoder that is based on graph neural network.

The main contributions of this paper are:

• Proposing GRNRI, a new unsupervised model for
inferring GRNs based on the NRI model.

• Leveraging the usage of scRNA-seq data as opposed
to using RNA-seq data for GRN inference.

• Implementing and evaluating the proposed model on
several popular benchmark datasets showing that it
is able to achieve comparable or better performance
with respect to state-of-the-art methods.

The rest of the paper is organized as follows: In
Section 2, we briefly introduce Graph Neural Networks
(GNNs), Gene Regulatory Networks (GRNs), and Single
Cell RNA sequencing (scRNA-seq). Our proposed method,
the GRNRI model, is explained in detail in Section 3,
while our implementation and our experimental setup are
presented in Section 4. Section 5 reports and discusses the
obtained results. Finally. Section 6 concludes the paper reit-
erating over its main contributions and proposing potential
extensions of this work.

2. Background
Data that has a graph structure can be processed by a

neural network called a GNN. GRNs are a type of biological
network that describes the interactions between genes and
their regulators. ScRNA-seq is a technique that can be
used to measure gene expression in individual cells. The
following brief background will describe how these three
fields have been used together to study gene regulation
at the single-cell level using GNNs to model GRNs from
scRNA-seq data.

A. Graph Neural Network
Since our proposed solution heavily relies on using

GNNs [13], [14], [15], it is important to have a reasonable
understanding of their operation. In this section we give
a brief introduction to GNNs. GNNs operate directly on
graph-structured data by passing local messages. They have
been very effective to solve multiple tasks, such as classifi-
cation of graphs [16], [17], [18], [19], [20], [21], classifi-
cation of nodes in graphs [22], [23], modelling interacting
systems [24], [25], and relational reasoning tasks [26].

In Gilmer et al. [15] approach, GNNs framework that
follows a neighborhood aggregation scheme were proposed.
Each node in the graph is represented by a vector that is
computed by using aggregation and transformation func-
tions on the neighboring nodes. As we are targeting to learn

Figure 1. In a Graph Neural Network (GNN), there are two op-
erations for moving between node and edge representations: node-
to-edge (v → e) and edge-to-node (e → v). The v → e operation
concatenates the embeddings of nodes connected by an edge, while
the e → v operation aggregates the embeddings of all incoming
edges. Each operation is followed by a small neural network. This
figure is reproduced from [12].

a representation of the gene expression data, GNNs were
a good choice because it is a powerful framework that is
able to work effectively on learning a representation for
graph structured data. The approach is based on a “message
passing neural network” framework using the Graph Nets
architecture schematics. This approach was used by Kipf et
al. [12] as well.

More formally, in a graph represented by G = (V, E),
where V represents the set of nodes and E represents the
set of edges connecting the nodes, the message passing
operation in a GNN is defined by the following equations
and shown in Fig. 1:

v→ e : hl
(i, j) = f l

e([hl
i, h

l
j, x(i, j)]) (1)

e→ v : hl+1
j = f l

v([Σi∈N j h
l
(i, j), x j]) (2)

In the Equation 1 and Equation 2, xi is the initial
features of node vi, x(i, j) is the initial features of edge
e(i, j) connecting node vi to node v j. In layer l, hl

i is the
embedding of node vi and hl

(i, j) is the embedding of edge
e(i, j). N j denotes the set of indices of neighbour nodes
connected by an incoming edge. The function fe is a neural
network that is specific for the edge while fv is specific
for the node. [·, ·] represents concatenation of vectors.
While Equation (1) allows for mapping from edge to node
representation, Equation (2) allows for mapping from node
to edge representation through multiple rounds of message
passing.

Here, we use a general GNN formulation similar to the
work done in [25], [15]. However, the GNN formulation
used by Scarselli et al. [13] was not general enough because
the node embedding hl

(i, j) is affected by the embedding
of the sending node hl

i and the edge type only while the
embedding of the receiving node has no effect on it.
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Figure 2. Gene 1 produces protein 1 which affects gene 2 and gene
3 expression. Gene 2 and gene 3 produce protein 2 and protein 3,
respectively, which affect gene 4 expression.

B. Gene Regulatory Network
The DNA in our cells is the same, but the cells have

different shapes and functions. For example, the genes that
are active in brain cells are not the same as the ones that
are active in skin cells or hair cells. A gene is a part of
the DNA that has the instructions to make a protein. Some
proteins help to build and run our body, while others control
the activity of other genes. The way that genes and proteins
affect each other is like a network of switches that decides
how much mRNA and proteins are made in the cell, which
affects the cell’s function. This network is called a gene
regulatory network.

A simple example of a GRN is shown in Fig. 2. Gene
1 produces a protein that turns on Gene 2 and Gene 3.
Then, Gene 2 and Gene 3 produce Protein 2 and Protein 3
respectively. Protein 2 and Protein 3 turn on Gene 4. So,
Gene 4 is now expressed and produces Protein 4. Fig. 3
shows how this process is represented by a GRN. One of
the latest developments in this field is a machine-learning
model called Geneformer, which has learned from a huge
gene-expression data set of about 30 million single-cell
profiles from many human tissues [27]. Geneformer can
make guesses about gene-network biology when there is
not enough gene-expression data, and can find out which
genes are important for the network and which ones could
be targets for treatments [27].

Figure 3. As GRN show the interaction between genes, directed
edges between genes represent the dependency between them. Gene
2 and gene 3 depend on gene 1, and gene 4 depend on gene 2 and
gene 3.

C. Single Cell RNA Sequencing
The transcriptome of cells is the set of all RNA

molecules that are produced by the cells, and it reflects
their gene expression and function. Researchers have used
two different methods to study the transcriptome of cells:
ScRNA-seq and bulk RNA sequencing. ScRNA-seq is a
technique that allows researchers to examine the transcrip-
tome of each cell individually, by isolating the cells and
measuring the gene expression levels of each cell. As shown
in Fig. 4, this process can reveal the diversity and hetero-
geneity of cells in a sample, and it has been very useful in
studying cell behavior in various biological processes, such
as development, differentiation, and disease [28], [29]. In
contrast, bulk RNA sequencing is a technique that examines
the average gene expression levels of all cells together, by
pooling the RNA from many cells and sequencing it as a
whole. This method can provide a global overview of the
transcriptome of a sample, but it cannot capture the variation
and complexity of individual cells [30]. Therefore, ScRNA-
seq and bulk RNA sequencing have different advantages and
limitations, and they can complement each other in provid-
ing a comprehensive understanding of the transcriptome of
cells.

3. Proposed GRNRI Model
The NRI model is a type of variational autoencoder

that uses graph neural networks to learn the relations and
dynamics of a system based on observed dynamics [12]. It
passes messages over a latent graph to jointly learn the rela-
tions and the dynamics. The task of the encoder in the model
is to predict the interactions based on the observations while
the task of the decoder is to learn the dynamics based
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Figure 4. In this example, bulk cell analysis shows very low expression level in gene 1, very high gene expression level in gene 2, and medium
gene expression level in gene 3. However, single-cell analysis reveals that each cell has its unique profile which can provide us with a lot of insight.

on the predicted graph. Both encoder and decoder parts
are trained together in NRI model. GRNRI is a simplified
version of NRI designed for addressing the problem of
inferring a GRN that represents gene interactions in single
cells by embedding gene expression data in a completely
unsupervised way.

The input to our GRNRI model consists of gene expres-
sion levels of N genes for a single cell in the sample. In
Fig. 4, each row in the matrix describing gene expression
profile for each cell could be a sample for the input to our
model before preprocessing. We denote the gene expression
level of gene vi by xi. We denote the set of gene expression
levels of all V genes for a single cell by X = x1, ..., xv.
Unlike NRI, our input is not consisting of timesteps.

Our target is to predict the GRN that represents the
interactions between all genes. We represent the unknown
GRN by graph z, and a single interaction between genes vi
and v j is represented by edge zi j.

In our model, edges are directed and have two types
representing the existence of an interaction between two
genes. The first edge type is the type we use when there
is no such interaction, while the second edge type is the
one we use when an interaction exists. Our model gives the
flexibility of adding more edge types.

GRNRI model is formally represented as a variational
autoencoder. The goal is to maximize the ELBO:

L = Eqϕ(z|x)[logpθ(x|z)] − KL[qϕ(z|x)||pθ(z)] (3)

In Equation 3, the encoder models the factorized distri-
bution qϕ(z|x) of zi j where zi j is the edge between genes vi
and v j. All K edge types for zi j are represented in a one-hot

representation. The decoder models the distribution pθ(x|z)
with a GNN given the latent gene regulatory network graph
structure z. The prior pθ(z) = Πi, j pθ(zi j) is a factorized
uniform distribution that represents edge types.

GRNRI model is schematically shown in Fig. 5. The
encoder, sampling, decoder, and training components of our
model are described in detail in the following subsections.

A. Encoder
The task of the encoder is to infer the interactions zi j

between genes given expression data. If we don’t know
any information about the structure of the graph regu-
latory network, we shall use a fully connected GNN at
first and its structure will be formed accordingly after
learning. We formally model the encoder as qϕ(zi j|x) =
so f tmax( fenc, ϕ(x)i j,1:V ), where fenc, ϕ(x) is a fully con-
nected graph neural network. We exclude self-loops because
we don’t have relationships between genes and themselves.
Given gene expression levels for each cell, multiple message
passing operations are computed by the encoder to get
information from neighbourhood nodes as follows:

h1
j = femb(x j) (4)

v→ e : h1
(i, j) = f 1

e ([h1
i , h

1
j ]) (5)

e→ v : h2
j = f 1

v (Σi, jh1
(i, j)) (6)

v→ e : h2
(i, j) = f 2

e ([h2
i , h

2
j ]) (7)

The posterior qϕ(zi j|x) shown in ELBO equation rep-
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Figure 5. In GRNRI model, the encoder task is to predict a probability distribution qϕ(z|x) over latent interactions based on gene expression data
while the decoder task is to convert the hidden representation back into gene expression values. Both parts of GRNRI use GNNs with multiple
rounds of node-to-edge (v→ e) and edge-to-node (e→ v) message passing as their inner structure. This figure is adapted from [12].

resents the posterior of each edge and we model it by a
so f tmax(h2

(i, j)) function. The letter ϕ shown in the posterior
represents all the parameters of all the networks shown in
Eqs.( 4- 7). In Eqs. 4 and 5, the embedding of the edge
between genes vi and v j that is represented by h1

(i, j) depends
only on gene expression data xi and x j ignoring any infor-
mation from farther nodes. So, we used multiple message
passing operations framework to get more information from
neighbours of nodes that is represented in Eqs. 6 and 7.
All used functions f(...) are 64 fully-connected Multi-Layer
Perceptrons (MLPs).

An edge type posterior qϕ(zi j|x) represents the proba-
bility of edge zi j existence between genes vi and v j. If the
probability is high, it means that there is a relation between
both genes and gene vi is a transcription factor that affects
the transcription of gene v j. Otherwise, it means that there
is no relation between both genes vi and v j.. Accordingly,
we can form and evaluate the GRN that represents the
interactions between all G genes.

B. Sampling
A recent approach to overcome the challenge of using

the reparameterization trick to backpropagate through sam-
pling for discrete latent variables is to form a continuous
approximation from the discrete values we have in the
distribution and take samples accordingly. We use the
reparameterization trick to get biased gradients from the
approximation [31]. Each edge zi j is sampled as follows:

zi j = so f tmax((h2
(i, j) + v)/τ) (8)

We use a Gumbel (0, 1) distribution to draw independent
and identically distributed real values samples forming
vector v. The smoothness of the samples can be controlled
by the softmax temperature τ. We can get a very smooth
samples by setting a high value for τ and a one-hot samples
by setting τ approaches to 0.

C. Decoder
The task of the decoder is to transform the hidden

representation back to the gene expression values. After

using K neural networks for K edge types, we formally
model the decoder as following:

v→ e : h̃(i, j) = Σkzi j,k f̃ k
e ([xi, x j]) (9)

e→ v : µ j = f̃v(Σi, jh̃(i, j)) (10)

p(x̀ j|z) = N(µ j, σ
2I) (11)

where zi j is a vector and zi j,k is the k-th element in the
vector. When zi j,k is a discrete one-hot sample, the messages
h̃(i, j) are f̃ k

e ([xi, x j]) for the selected edge type k, and we
get a weighted sum for the continuous relaxation. We put
a fixed value for the variance σ2.

D. Training
After outlining all the components of GRNRI, the

training process is as follows: For a training example x
(gene expression levels of scRNA-seq data), the encoder
is run to compute qϕ(zi j|x). Then, a vector zi j is sampled
from the reparameterizable approximation of qϕ(zi j|x).The
decoder is then run to compute µ. The reconstruction error
Eqϕ(z|x)[logpϕ(x|z)] is the first term in the ELBO equation is
calculated as follows:

−Σ j||x j − µ j||
2/(2σ2) + const (12)

while the KL divergence KL[qϕ(z|x)||pθ(z)] is the second
term and is calculated as the sum of entropies, with the
addition of a constant if necessary:

Σi, jH(qϕ(zi j|x)) + const (13)

And finally, we can optimize our model and compute
the gradients by backpropagating.
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E. Used Hardware
The specification of the hardware used for the project

are the following: an 11th Generation Octacore Intel Core i9
with 16 MB Cache, 64GB DDR4, and an NVIDIA GeForce
RTX3090 GPU with 24GB GDDR6X.

4. Implementation and Experimental Setup
The proposed model was implemented using Python and

its source code made publicly available in the following
repository:

https://github.com/FatemaMahmoud/GRNRI

On the other hand, the following datasets were ana-
lyzed during this study and are publicly available: mESC
dataset [32], mDC dataset [33], mHSC-E [34], mHSC-
GM [34], mHSC-L [34] for mouse datasets and hHEP
dataset [35], hESC dataset [36] for human datasets.

To assess the performance of GRNRI, we used the
BEELINE framework [37], which collected four types of
ground-truth networks and seven scRNA-seq datasets from
sources including mESC [32], mDC [33], mHSC-E [34],
mHSC-GM [34], mHSC-L [34], hHEP [35] and hESC [36]
datasets. We followed the same preprocessing strategy for
raw gene expression data as in the BEELINE frame-
work [37]. For each dataset, we considered only highly
variable TFs and the top 500 most-varying genes, following
the BEELINE framework. For each dataset, number of
transcription factor, number of genes, and density of the
edges for each ground truth network are represented in
table I. We did not compute results for the 1000 most-
varying genes due to computational limitations.

The following subsections describe the datasets in de-
tails and the used evaluation metric:

A. Datasets
1) mESC single cell RNA-seq dataset is from mouse

embryonic stem cells (mESCs) at different stages
of development. It contains information about the
cell cycle phases, chromatin accessibility, and tran-
scription factors of mESCs. The dataset can be
used to study the molecular mechanisms of cell fate
determination, differentiation, and reprogramming in
mESCs.

2) mDC single cell RNA-seq dataset is from mouse
dendritic cells (mDCs) under various conditions. It
contains information about the cell types, stimulation
conditions, and time points of mDCs. The dataset
can be used to study the molecular mechanisms
of immune response, inflammation, and infection in
mDCs.

3) mHS-E single cell RNA-seq dataset is from mouse
hematopoietic stem and progenitor cells (mHSPCs)
enriched for erythroid progenitors. It contains infor-
mation about the cell types, developmental stages,
and transcriptional regulators of mHSPCs. The

dataset can be used to study the molecular mech-
anisms of erythropoiesis, the process of red blood
cell production, in mice.

4) mHSC-GM single cell RNA-seq dataset is from
mouse hematopoietic stem and progenitor cells (mH-
SPCs) enriched for granulocyte-monocyte progeni-
tors. It contains information about the cell types,
developmental stages, and transcriptional regula-
tors of mHSPCs. The dataset can be used to
study the molecular mechanisms of granulopoiesis
and monopoiesis, the processes of granulocyte and
monocyte production, in mice.

5) mHSC-L single cell RNA-seq dataset is from mouse
hematopoietic stem and progenitor cells (mHSPCs)
enriched for lymphoid progenitors. It contains infor-
mation about the cell types, developmental stages,
and transcriptional regulators of mHSPCs. The
dataset can be used to study the molecular mech-
anisms of lymphopoiesis, the process of lymphocyte
production, in mice.

6) hHEP single cell RNA-seq dataset is from human
hepatic progenitor cells (hHEPs) and their differen-
tiated derivatives. The dataset contains information
about the cell types, developmental stages, and tran-
scriptional regulators of hHEPs. The dataset can be
used to study the molecular mechanisms of liver
development, regeneration, and disease in humans.

7) hESC single cell RNA-seq dataset is from human
embryonic stem cells (hESCs) at different stages of
differentiation. It contains information about the cell
types, developmental stages, and transcriptional reg-
ulators of hESCs and their derivatives. The dataset
can be used to study the molecular mechanisms
of pluripotency, lineage specification, and cell fate
determination in hESCs.

B. Evaluation Metric
We evaluated the performance using the Early preci-

sion ratio (EPR) which is a metric used by BEELINE
to evaluate the performance of gene regulatory network
inference algorithms from single-cell transcriptomic data.
EPR measures how many of the top-ranked edges predicted
by an algorithm are true positives, compared to a random
predictor. EPR is calculated by dividing the early precision
score, which is the fraction of true positives in the top-k
edges, by the expected precision of a random predictor,
which is the edge density of the ground truth network.
An EPR value of one means that an algorithm has the
same early precision as a random predictor, while an EPR
value greater than one means that an algorithm has a higher
early precision than a random predictor. EPR is useful for
assessing the accuracy of algorithms in recovering the most
important interactions in a network.

5. Obtained Results
We evaluated GRNRI against seven baseline algorithms:

DeepSEM [4], GENIE3 [5], PIDC [6], SCODE [7], SIN-
CERITIES [8], GRNBoost2 [9], ppcor [11]. According to
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Figure 6. Performance was evaluated using EPR on seven datasets with four different ground-truth networks using the 500 most-varying genes and
all varying TFs. For each dataset, the color scale ranges from 0 to 1 based on the minimum and maximum EPR values. Black squares indicate
performance worse than random predictors. The first three columns represent number of transcription factors, number of genes, and density of
the edges, respectively, in the ground truth network after following the preprocessing done by BEELINE framework. The rest of the columns are
the names of the evaluating algortihms. The first seven rows represent the results calculated while using STRING as ground truth network, the
following seven rows use Non-specific ChIP-Seq as ground truth network, the following seven rows use Cell-type specific ChIP-Seq and the last
row uses Iog/gof network. The figure shows a full comparison between GRNRI and state-of-the-art algorithms.
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TABLE I. The table shows for each dataset the number of transcription factors, number of genes, and density of the edges for each ground truth
network.

TABLE II. According to BEELINE assessment and the setting used in table I, the results of state-of-the-art algorithms are shown in the table.

the BEELINE evaluation [37], these algorithms have been
shown to achieve state-of-the-art performance on bench-
mark datasets.

The performance of the seven algorithms was assessed
by BEELINE, and their results are displayed in table 2.
Table 3 shows the results of GRNRI only. Fig. 6 presents
a complete comparison of GRNRI and the other seven
algorithms.

GRNRI achieves the best prediction performance on
68.18% (15/22) of the benchmarks. Compared to the max-

imum results achieved by state-of-the-art algorithms, the
maximum improvement that could be achieved by GRNRI
is 4.24 and the average improvement is 1.04. The worst
result achieved by GRNRI compared to other algorithms
is 1.64 when evaluating mDC dataset using STRING or
Non-specific ChIP-Seq as ground truth networks. All results
achieved by GRNRI using Cell-type specific ChIP-Seq or
Iog/gof as ground truth networks were better than all the
results achieved by other algorithms.

Due to computation limitations, the maximum used
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TABLE III. According to BEELINE assessment and the setting used in table I, the results achieved by GRNRI are shown in the table.

batch size was 20, and the number of hidden layers used in
MLPs was 64. We expect our proposed model to perform
better if these parameters are allowed to increase.

6. Conclusion and FutureWork
We proposed GRNRI, a new method for inferring GRNs

from scRNA-seq data in an unsupervised way. GRNRI
is based on a variational auto-encoder model, which is a
type of generative model that can learn the latent struc-
ture of complex data [38]. GRNRI uses the variational
auto-encoder to encode the scRNA-seq data into a low-
dimensional latent space, and then infers the GRN from the
latent variables. To evaluate the performance of GRNRI,
we followed the BEELINE framework [37], which is a
comprehensive evaluation framework for GRN inference
algorithms for single-cell gene expression data. The BEE-
LINE framework collected four different types of ground-
truth networks and seven scRNA-seq datasets for eval-
uation [37]. We compared our results to state-of-the-art
methods in the BEELINE framework, and we found that
GRNRI achieves comparable or superior performance using
EPR as a metric for evaluation. Moreover, GRNRI can
be extended to solve other potential tasks as well such
as visualizing and simulating scRNA-seq data. Following
the work in [5], we can use the variational auto-encoder
model to generate realistic synthetic scRNA-seq data from
the learned latent space. The model being modified in [12]
was already able to solve the simulation task.
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