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Abstract: The study of indoor localization has been extensively studied, either in terms of wireless technologies or localization
techniques. The accuracy is then challenged when the monitored object is actively moving. Previously, we studied a continuous
and low-power fingerprint-based indoor localization system using IEEE 802.15.4 (FILS15.4), which has been integrated into a smart
environmental IoT platform. Although fingerprint-based localization offers a great advantage in its simplicity, it relies on real-time signal
strength measurements and databases. Thus, it suffers challenges in accuracy when the object is continuously moving. In this study,
we focus on developing dynamic positioning, where users continuously move from one room to another. Due to human movements,
the fluctuation of the link quality indicator (LQI) can affect the detection accuracy. To avoid false detection, we propose a movement
validation method by checking the variance of the LQI and accelerometer to differentiate the cause of fluctuations and increase the
detection accuracy. For experiments, we run the test-bed of FILS15.4 on a two-floor layout. Five to six receivers were allocated to detect
multiple users. The results show that the system yields 96.2% accuracy using six receivers simultaneously. Thus, it gives sufficient
detection accuracy even for dynamic conditions.
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1. INTRODUCTION
Location-based services in indoor settings have become

increasingly popular in recent years. The global position-
ing system (GPS), despite being widely used for outdoor
positioning and navigation, is unable to accurately detect
the user’s floor or room information, leaving it unusable in
indoor environments [1][2]. As a result, several strategies
utilizing various wireless technologies have been investi-
gated. The mentioned technologies encompass the IEEE
802.11 standard (commonly known as Wi-Fi), Bluetooth
Low Energy (BLE), Zigbee, ultra-wideband (UWB), as
well as other combinations of these technologies [3][4].
Several positioning techniques have also been considered,
including the time difference of arrival (TDoA), angle of
arrival (AoA), lateration, and pattern matching such as
fingerprinting [5].

Due to the widespread availability of Wi-Fi access
points in buildings, Wi-Fi fingerprinting attracted the most
interest [6] among the other wireless communication stan-
dards. Unfortunately, the device’s battery lifetime, which is
also relatively big and hefty, is burdened by constant Wi-Fi
scanning to determine the user’s location. Also, the signal
reception sensitivity between different kinds and brands of

the device can influence Wi-Fi fingerprinting’s accuracy [7].

Fingerprinting itself becomes popular due to its straight-
forward implementation by mapping out the received signal
strength and its corresponding location to create a radio
map reference [8]. The target area is usually categorized
into a certain resolution (i.e. coordinate or grid). Each one
of them should have a different radio pattern from several
receivers allocated in the target area. The IEEE 802.15.4
standards for wireless personal area networks, on the other
hand, provide a compact, lightweight, and reasonably priced
transmitter and have a long life when powered by a coin
battery. Currently, we have been working on a Fingerprint-
based Indoor Localization System using the IEEE802.15.4
protocol named FILS15.4 for convenience [9]. Devices from
Mono Wireless are adopted in FILS15.4 and work under the
IEEE802.15.4 known as the wireless personal area network
(WPAN) protocol [10]. Due to its low-power and narrow-
band characteristics, WPAN has a limitation where the
propagation dynamics can be easily influenced by human
movements or other environmental changes [11].

Previously, we observed that the LQI reception varies
greatly from room to room. Consequently, rather than using
location coordinates, limiting the detection resolution to
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one room is preferable in FILS15.4. Subsequently, the
addition of assigned receivers and fingerprints for each
room enhanced the precision of detection in two distinct
configurations. However, allocating receivers for each floor
separately will raise the development costs in multi-story
buildings. Hence, the proper receivers distribution for a
two-floor environment as a basis for establishing multi-floor
buildings has not been researched, especially in actual cases
when the monitored users roam around the field.

In the previous work in [12], we combined two adjacent
floors as one target field. Multiple receivers were utilized
together to detect rooms on both floors to maintain high
detection accuracy and avoid high development costs in
multi-floors implementation. However, the transmitters were
limited to stationary conditions by placing each in a room.

In this paper, we extend the study to a dynamic case
where we increase the number of users who are moving
around in the field while carrying transmitters. Human
motions like standing, sitting, or walking can cause the LQI
fluctuation to rise, which could lower the detection accuracy.
The accelerometer embedded in the transmitter can be used
to detect the user’s movement. Unlike the typical method in
detecting the direction of movement as presented in [13],
we propose a much simpler method by using the variance
of the accelerometer and LQI to distinguish the fluctuation
induced by movement and other environmental sources in
order to prevent false detection.

A series of comprehensive experiments were carried out,
including several users on various days at the 2nd and 3rd

floors as a two-floor environment. We compare and evaluate
different receivers’ arrangement both in stationary (off-
body) and dynamic (on-body) situations. The results show
that with six receivers allocated on a two-floor environment,
the system achieved over 96.2% of average accuracy for
multiple users in dynamic situations.

The following parts of this paper are structured as
follows: Section 3 presents the system implementation.
Section 4 presents the observation of the FILS15.4 device
on the human body. Section 5 explains the use of LQI
and accelerometer variance to filter the fluctuation causes
to maintain high detection accuracy. Section 6 presents
the evaluation result on a two-floors environment. Section
7 provides the final remarks and outlines future research
directions in this publication.

2. RELATED WORKS
Researchers have shown significant interest in conduct-

ing studies on precise indoor positioning systems (IPS).
Over the past decade, researchers have investigated different
combinations of wireless technology and a positioning al-
gorithm to achieve dependable Indoor Positioning Systems
(IPS).

The IEEE 802.15.4 protocol establishes the network for
low-rate wireless communication. The range of communi-

cation is intermediate between that of IEEE 802.11 and
Bluetooth. The device is compact and cost-effective, with
low power consumption, enabling long-term usage with a
coin battery. The ZigBee protocol is utilized to implement
this technology, which has garnered attention due to its
characteristics of low power consumption, short range, and
limited data transmission capabilities.

The paper by Luoh et al. (2013) introduced a ZigBee-
based system for indoor localization [14]. The system
utilized a radial basis function network (RBFN) to establish
the location using the fingerprinting method.

In the study conducted by Urad et al. [15], the re-
searchers utilized the closest neighbor and Bayesian meth-
ods, which demonstrated an accuracy of 0.81m or less. In
this perspective, the IEEE 802.15.4 protocol is well-suited
for indoor localization systems.

Pino et al. in [16] presented a self-positioning system for
Indoor Positioning Systems (IPS) using an IEEE 802.15.4
network, offering a solution where GPS or IEEE 802.11-
based networks are impractical. It achieves a position esti-
mation accuracy of 0.6 meters in a real-world scenario.

Mamun et al. in [17] introduced an automated method
for constructing radio maps for RSS fingerprinting local-
ization. The method utilizes a self-navigating automobile
to efficiently gather RSS and location data, based on IEEE
802.15.4. Through experimentation in office environments,
this technique enhances precision and uniformity in the gen-
eration of radio maps, hence diminishing human mistakes
and saving time.

Booranawong et al. in [18] proposed an enhancement
of accuracy of multi-lateration localization by mitigating
the impact of RSSI signal fluctuations. They implemented
a novel approach that integrates boundary consideration,
zone selection, and position compensation. Through ex-
perimentation conducted in both a controlled laboratory
setting and a real-world corridor environment, the utilization
of a ZigBee network demonstrates a substantial decrease
in localization mistakes. This improvement surpasses the
performance of conventional approaches by more than 57%.

Recently, Wahab et al. in [19] evaluated the signal
strength of IEEE 802.15.4 in indoor positioning, with a
specific focus on the impact of access point positioning and
environmental variables. The study evaluates and contrasts
theoretical and empirical path loss models, demonstrating
an error rate of less than 5.5%.

Based on the prior works concerning the feasibility
of the IEEE 802.15.4, it is note that this wireless tech-
nology is a low-power alternative for indoor localization.
The different technique and localization algorithm can be
implemented in this standard with precise accuracy.
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Figure 1. System overview

3. THE FILS15.4
This section provides an overview of FILS15.4, encom-

passing its architectural design, localization method, and
operational procedure.

A. System Architecture
FILS15.4 adopts sets of transmitters and receivers from

Mono Wireless. The transmitter is a 2.5× 2.5× 1cm ac-
celerometer which regularly sends packets to the receiver
under the IEEE 802.15.4 network. The receiver is connected
to the Raspberry Pi via a USB port and establishes a con-
nection to the server over an internet connection using the
existing Wi-Fi network. The system gets packets containing
accelerometer measurements and the corresponding LQI.

LQI itself indicates the data packet quality received by
receivers which is similar to the received signal strength
(RSS) [20]. In the adopted devices, it is represented by a
number from 0 to 255 [21]. However, based on our exten-
sive experiments, the LQI in complex indoor environments
are bound to 150-160 at a 1-meter line-of-sight between the
transmitter and the receiver.

The message-queuing telemetry transport (MQTT) pro-
tocol is commonly used for device-to-device communi-
cation in internet of things (IoT) implementations[22].
Furthermore, it has been applied in an IoT-driven indoor
locating system as described in the publication by Mekki
et al [23].

The server is deployed using the SEMAR IoT server
platform [24]. The server retrieves the required data from
each received packet, transfers it to the MongoDB database,
calculates the average of LQI within a fixed time interval,
and aggregates the results from all the receivers for use in
the subsequent localization process. The system’s architec-
ture is depicted in Figure 1.

B. Localization Procedure
Typically, fingerprinting localization needs two phases.

First, in the offline phase, the system gathers LQI mea-
surements by placing transmitters at every target location.

Figure 2. Detection process overview

During a certain period of time, the allocated receivers
in the area collect the LQI data and the server records it
to generate a fingerprint radio map. Second, in the online
phase, the current position of each transmitter is determined
by calculating the Euclidean distance between the current
LQI and each fingerprint in the database using Eq( 1). The
fingerprint label whose values give the minimum distance
is selected as the detected room.

Figure 2 illustrates the whole process of storing the
fingerprint radio map and detecting the current location of
the user in the SEMAR server. An authorized user can access
that information using a web application. The recorded LQI
can also be downloaded to be processed by the parameter
optimization method to determine the number and values of
the fingerprint database [25].

d(i,k) =

√
n

∑
j=1

(ri
j −Rk

j)
2 (1)

Where d(i,k) represents the distance between the i-th
measured data and the fingerprint for room k. Then ri

j
represents the i-th measured average LQI at receiver j. Rk

j
represents the LQI fingerprint for room k at receiver j.
While i is the index for the measured data and j is the
index for the receiver, which varies from 3 to 6 in this
study. Finally, k is the index for the fingerprint, representing
different rooms.

C. System Operation Procedure
The working method of the system that is applied in

FILS15.4 is discussed.

1) Setup Phase
The initial setup of the system includes setting up several

receiving nodes, consisting of Mono Sticks connected to
Raspberry Pi devices, to be properly allocated within the
target area. Then, the program in the Raspberry Pi to con-
tinuously receive data from any Twelite 2525 transmitters
automatically runs when it is powered. The transmitter is
set to send a packet every 0.5second. In the IoT server, the
program for receiving data and running the localization is
activated.
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2) Offline Phase
The offline phase aims to collect a radio map of LQI

within the target area by allocating the Twelite 2525 trans-
mitter at the center of every target room in the field. The
receivers collect the LQI data within the required period
and send it to the IoT server where the average LQI is
calculated every 30second. The server combines values
from all assigned receivers and labels them according to the
transmitters’ position. After a certain duration, the collected
data is downloaded and processed using the parameter
optimization method to generate the appropriate value and
number of fingerprints for each room.

3) Online Phase
The online phase aims to detect the current location of

the transmitter or user in the target field after a radio map
has been recorded. In principle, the system compares the
newly received fingerprint with the pre-built radio map to
find the closest match using the Euclidean distance.

Thus, the process involves placing the Twelite 2525
transmitter in an arbitrary room in the field. It continuously
sends packets and is received by all receivers in the field and
the LQI information is collected in every allocated receiver
and collected by the system.

Since the IEEE 802.15.4 works well in a low range, a
strong LQI likely indicates that the transmitter is located
in the same room as the receiver. When the rk

i >= 95,
select the location candidates whose fingerprints satisfy
the condition of Rk

j > 95. Then, the Euclidean distance of
the current rk

i is calculated against the selected fingerprint
candidates to simplify the calculation process.

Otherwise, if rk
i < 95, the current LQI combination

is calculated against every fingerprint in the radio map.
Select the fingerprint’s label which gives the least Euclidean
distance as the detected room. This algorithm reduces the
complexity of the room selection among patterns recorded
in the fingerprint database rather than calculating against all
fingerprints in every detection process.

D. Indoor LQI Measurement
LQI itself indicates the data packet quality received by

receivers which is similar to the received signal strength
(RSS) [20]. In the adopted devices, it is represented by a
number from 0 to 255 [21]. However, based on our exten-
sive experiments, the LQI in complex indoor environments,
an office room with furniture and human moving around,
are bound to 150-160 at a 1-meter line-of-sight between the
transmitter and the receiver.

Within our FILS15.4 research, we investigated the
degradation of wireless signals in an indoor environment by
utilizing IEEE 802.15.4. The selected experimental location
is an 8× 16 meter corridor with minimal obstacles, yet it
was surrounded by concrete walls and had two entrance
doors. These elements have a recognized influence on the
intensity and quality of wireless signals.

Figure 3. LQI measurement over distance

Signal quality was assessed by employing the LQI
against distance as shown in Figure 3. Between 0− 200
cm, there was a significant decline in LQI, indicating the
expected decrease in signal intensity as distance increases
inside an interior setting.

At distances beyond 200 cm, the LQI experienced
variations caused by ambient reflections, such as those
originating from walls and doors. The findings indicated
that the signal reception had a maximum effective range
of 840 cm. Beyond this range, the LQI decreased to a
minimum of 5, suggesting a decrease in signal reliability.

4. FILS15.4 DEVICES ON THE HUMAN BODY
In this section, we explain the different responses of

FILS15.4 with and without attachment to a human body
within the same target field.

A. Target Field
Figure 4 illustrates the floor layout that was used to

evaluate the accuracy of detection of the FILS15.4 system
in dynamic situations on two floors of the #2 Engineering
Building at Okayama University. The target field consists
of twelve rooms, each of which is covered by five or six
receivers.

However, because of its narrow bandwidth and low
data rate, the 802.15.4 suffers from greater signal fluc-
tuation [26], [27], [28]. Then, in [9], we discovered that
the received LQI is considerably higher and more stable
when a transmitter is situated in the same room as the
receiver. Conversely, when there is a considerable distance
between the transmitter and receiver, the reception of LQI
is significantly reduced and sometimes results in signal loss.

Unfortunately, the movement of the transmitter inside
the field significantly affects the signal’s propagation pat-
terns. When a transmitter is connected to a human body
(on-body), it has the ability to cause heightened fluctuations
in LQI. In contrast, previous research solely focused on
assessing the efficacy of FILS15.4 in a controlled environ-
ment where transmitters remained stationary within a room,
devoid of any movement or attachment to users.
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Figure 4. Two-floor target field

B. Receiving LQI from Off-body Transmitters
A comparison of the received LQI from transmitters in

D207 and D308 is shown in Figure 5. Positioned at the
center of the room, both were unattached and in a state
of either stationary or off-body. It should be noted that a
total of six receivers were assigned in a two-story setting.
Receiver #2 was installed in Room D207, however Room
D308 did not have any receivers.

Since D207 has receiver #2 in it, noted by lq2, it
received the highest LQI between 110 − 120 when the
transmitter was there. Conversely, in D308 where a receiver
was not installed, the receiver #1 situated in D208, as
indicated by lq1, received the greatest LQI in the range
of 98−102. Within 10 minutes of observation, the signals
in both rooms were relatively stable. Fluctuations only
appeared in weak receptions (LQI < 40) caused by the far
transmitter-receiver distance.

Such kind of experiment was presented in the earlier
works [9], [12] with different numbers of receivers and
types of layouts. The transmitters did not carry by any users
and were placed stationary all the time.

C. Receiving LQI from On-body Transmitters
Then, in figure 6 we added a comparison to the re-

ceived LQI from transmitters in D207 and D308, but under
conditions when the sensors were attached to the humans
or users (on-body) located in each room. The users were
allowed to sit, stand, and walk while staying inside the
room. However, in this short detection epoch, the users did

not move between rooms.

It is apparent that the presence of users carrying the
transmitters leads to an increase in the fluctuation of the
LQI. The signals in both rooms had increased fluctuations
due to the movements of the users throughout their occu-
pancy in each space. The on-body transmitter in D207 has
the highest LQI in the range of 100− 125 in lq2. Mean-
while, the highest LQI from D308 was between 70− 100
in lq1. Table I shows the LQI variance comparison between
off-body and on-body transmitters in both rooms. However,
when the transmitter and receiver were far apart and the
LQI is much smaller, fluctuation is likely to happen. Thus,
those variances can be neglected as in D207 at receiver #6
or D308 at receiver #2.

5. LOCALIZATION IN DYNAMIC CIRCUM-
STANCES
This section exhibits the application of the FILS15.4

protocol in dynamic scenarios where users carry the trans-
mitters. The movement encompasses all activities conducted
within a room, such as sitting, standing, or engaging in any
little motions, as well as strolling between different rooms.

A. Devices of FILS15.4 on Dynamic User
The transmitter obtained from Mono Wireless is

equipped with a three-axis accelerometer sensor capable of
detecting movement, shock, vibration, tilt, and other related
phenomena. The accelerometer values are also included in
the broadcast packet. Prior implementations were solely
focused on averaging the LQI values within a detection
interval without utilizing the accelerometer values.

In fact, the accelerometer alone cannot be used to detect
the exact direction of movement. Thus, when the users are
making any kind of movement, it is crucial to determine
whether they are actually moving to another room. Figure
7 and Table II demonstrate the sequential movement of a
user from one room to another. Initially, the user remains
in a specific room and subsequently undergoes physical
locomotion to reach a different room.

The observation was made of 11 detection epochs or
330 seconds. At first, between 1−5 epoch 1−5, the user
was located at D207, as shown by the highest LQI received
by lq2. Between the 7− 11 epoch, the user has moved to
RC2, as lq3 became the highest LQI. The user also passed
Corridor2 and caused an extreme change in lq2 and lq3.
Due to the 30second detection interval, the detection result
is likely incorrect.

The details of LQI and accelerometer variance when a
user is transitioning between rooms are outlined in Table
II. The idea behind showing only two of the greatest LQI
values is the assumption that the stronger values are more
important in determining the user’s location. In epoch #6,
the LQI variance peaked as the user transitioned from D207
to RC2. Accelerometer variance was 639 during this time.
By epoch #7, the user had moved to a different room.
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Figure 5. LQI comparison in off-body case

Figure 6. LQI comparison in on-body case

However, accelerometer variance does not always reflect
user movement. Interestingly, the biggest variance occurred
after the user settled in RC2. User movements that are
abrupt may be the main cause of variance.

According to the data shown in table II, the threshold
values for the LQI and accelerometer variance are estab-
lished as 200 and 500, respectively. It should be noted
that the transmitter emits a data packet at regular intervals
of 500ms, containing information such as the LQI and
accelerometer readings. The system calculates the average
LQI value from each packet every 30 seconds. LQI variance
is calculated from two detection epochs’ average LQI. In
the interim, the variance of the accelerometer is computed
during a single detection interval, which spans a duration

of 30 seconds, for each packet that is received.

B. Detection of Moving Transmitter and Signal Loss
When a transmitter is connected to an user, every

time the user moves, the LQI reception changes more. As
previously indicated in Section 4-C, it is worth noting that
the user’s motions within a given room have an impact on all
LQI receptions, even the one with the highest value. In the
event that the user relocates to a new room, it is anticipated
that this action will result in a change in the highest received
LQI within a single interval, thereby leading to an increased
variation and the potential for false detection.

In section 3-C3, FILS15.4 calculates the average of the
current LQI within 30 second interval and determines the
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TABLE I. LQI variance in rooms with and without receivers in off-body and on-body cases

room receiver case lq1 lq2 lq3 lq4 lq5 lq6
D207 yes off-body 2.66 11.52 2.90 5.83 3.27 5.31
D207 yes on-body 81.87 127.30 29.08 48.24 25.04 101.15
D308 no off-body 1.50 34.76 0.00 0.21 194.91 50.82
D308 no on-body 55.70 95.43 0.00 35.99 76.68 32.87

TABLE II. Comparison of accelerometer variations from a moving user with LQI data.

detection
epoch

detected
room

#1 highest LQI #2 highest LQI max. variance
Rx value Rx value LQI accelerometer

1 D207 R2 122 R4 92 8 1
2 D207 R2 123 R4 90 7 1
3 D207 R2 123 R4 89 9 1
4 D207 R2 122 R4 90 7 633
5 D207 R2 121 R4 92 184 62
6 D207 R2 98 R2 98 255 639
7 RC2 R3 124 R2 98 177 3892
8 RC2 R3 125 R2 98 22 1
9 RC2 R3 124 R2 99 8 1

10 RC2 R3 124 R2 99 144 515
11 RC2 R3 124 R2 100 110 574

Figure 7. Average LQI changes from a moving user.

detected location from the room whose fingerprint has the
closest distance of Eq. 1. In [9], the IEEE 802.15.4 devices
were discussed to have fluctuation drawbacks especially
when the distance between the transmitter and a particular
receiver is quite far. At such time, packet loss is likely to
occur and cause no LQI reception. Here, we use ri

j = 5 as a
constant when there is no packet is received at one receiver.

Consequently, FILS15.4 faces greater challenges in ac-
curately localizing the user’s movements. False detection is
likely to occur when a person remains in the same room
but is detected in a different room and vice versa. This
particular predicament arises as a result of the sudden shift
in the dynamics of the LQI.

The determination of the direction of movement of the
subject only based on accelerometer readings is not feasible.
However, the significance of the movements can be assessed
by examining the variance of the values along the three axes
(x, y, z). The desired factor can be attained by calculating
the magnitude of the accelerometer values, as denoted in
Eq. 2.

acceleroi
j =

√
|xi

j|2 + |yi
j|2 + |zi

j|2 (2)

where xi
j, yi

j, and zi
j represent the measured x, y, and z

accelerometer values at receiver j, respectively.

Then, the variance of both LQI and acceleroi
j between

the two epochs is used to validate whether the user stays
in the same room or moves to another room. To check the
user’s movement during the detection epoch, we apply a
value checker algorithm as explained in algorithm 1.

When the user is moving in any direction, the ac-
celerometer value should change over the course of a single
detection interval. However, it is crucial to determine if
the user is still in the same room or moved to a different
room by comparing the present LQI with the previous one.
The software should store the prior LQI value in order to
facilitate comparison with the current LQI value.

Therefore, we define varacc as the variation of
accelero ji in one detection epoch with a threshold of 500.
The variance of the Link Quality Indicator (LQI), denoted
as varri

j
, is determined by calculating the variance between

ri
j and ri−1

j . This calculation is used to identify any changes
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in the LQI values between two distinct detection epochs. A
threshold value of 200 is employed in this analysis. Once
the value of varri

j
exceeds 200, the system subsequently

verifies the value of varacc.

Algorithm 1 Value checker

1: for i in the range of 30secs. do
2: Calculate ri

j by averaging i− th LQI at receiver j.
3: Check ri−1

j , previously detected LQI at receiver j
4: if ri−1

j exists then
5: Calculate varri

j
as the variance of ri−1

j and ri
j

6: Calculate varacc as the acc. var. in Eq. 2.
7: if varri

j
> 200 then

8: if varacc < 500 & ri
j = 5 then

9: Packet loss may occur
10: The user does not move.
11: Grab previous detection result.
12: elsevaracc > 500
13: User is moving to a different room.
14: Detect current location with Euclid. dist.
15: end if
16: end if
17: Detect current location with Euclid. dist.
18: end if
19: end for

If the varacc is smaller than 500 and the current ri
j is

equal to 5, it indicates that the user did not make any
significant movement and packet loss may occur due to
other factors (e.g. transmission failure) and although the
user. In such condition, the system will not calculate the
Euclidean distance and take the previously detected room
as the output.

However, when the varri
j

and the varacc are both above
the threshold, and the current LQI is not equal to 5, it
suggests that the user is traveling to another room. Hence,
the system will compute the present location utilizing the
Euclidean distance. As the time it takes to travel between
rooms varies proportionally to their distance, the system is
unable to determine the current location. Despite potential
inaccuracies in the detection outcome, the system will
indicate the user’s transition to a different room.

6. ASSESSMENT OF FILS15.4 IN PRACTICAL
SCENARIOS
This section presents an evaluation of FILS15.4 during

dynamic conditions where users are carrying transmitters.
During the experiment, users are allowed to move between
rooms within the two-floor target area at the #2 Engineering
Building of Okayama University.

A. Experiment Setup
The detection accuracy of FILS15.4 under dynamic

situations is evaluated using three cases where the number
of receivers is varied, namely:

1. The received LQI from three receivers are used sep-
arately as the fingerprint on the same floor (receiver
#1-3 for lower floor, and #4-6 for upper).

2. The received LQI from five receivers are used as the
fingerprint on two-floor (receiver #1-5).

3. The received LQI from six receivers are used as the
fingerprint on two-floor (receiver #1-6).

In cases 1 and 3, the total number of receivers are same.
However, the fingerprint sets in case 1 consist of LQI from
receivers located only on the same floor. Meanwhile, in
cases 2 and 3, the fingerprint sets consist of LQI from
receivers on both floors, the 2nd and the 3rd floor.

In the scenario, six users carry the transmitters and stay
in the main rooms, namely D206, D207, D208, D306, D307,
and D308. Those rooms are actually used for students and
faculty members.

Each transmitter is attached to the user’s shoulder and
they are allowed to move naturally such as sit, stand, or
move around within one room or to another room. The
experiment is conducted over a duration of four hours and
is subsequently replicated for a period of five consecutive
days. A comparison is made between the detection accuracy
of the three cases.

It is noted that the fingerprint database was generated
under the stationary or off-body as in [12]. Thus, there is no
need to generate a new fingerprint database specifically for
dynamic cases (on-body). The fluctuation problem caused
by the user’s movement is expected to be overcome by the
algorithm 1 which is explained in Figure 8.

B. Evaluation on Users Position
In a typical situation, during office hours, people would

mostly spend their time working in a certain room. Thus,
we assign six subjects to carry the transmitters and stay
in six main rooms. Nevertheless, users may require breaks
for personal necessities such as using the restroom, having a
meal, preparing beverages at the refresh corner, or engaging
in discussions in an alternate main room.

Table III shows the users’ positions during the ex-
periments. Most of the time, the users stayed in each
assigned room and occasionally moved to other rooms
such as Refresh Corner (RC), Toilet, or other main rooms
through the Corridor. Based on the recorded duration of
the experiment, the user required a time range of 3 to 12
seconds to move from one room to another room on the
same level, while it takes 18 to 35 seconds to a different
floor. These variation are based on the distance between the
rooms.
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Figure 8. Dynamic user evaluation scenario.

Since the experiment was conducted over five days,
table III shows a sample of room occupation in one out of
five days of the experiment. Normally, users are less likely
to stay in the corridor and the movement duration between
rooms is mostly less than one detection epoch (30seconds).
Thus, we intentionally add an additional 15 minutes for the
users to stay in both corridors for the experiment.

C. Evaluation on Detection Accuracy in Dynamic Situa-
tions
The evaluation of the detection accuracy of FILS15.4

was conducted with users wearing the transmitters on their
shoulders. A total of six transmitters were utilized to collect
data from six individuals. The quantity of receivers in the
field adheres to the three scenarios elucidated in Section
6-A. Building upon the research conducted in [12], we con-
duct a comparative analysis of receiver usage in both single-
floor and two-floor environments, specifically focusing on
dynamic scenarios.

Table IV presents a comparison of the detection accu-
racy in three distinct scenarios based on the user locations
given in Table III. We also analyze the detection accuracy
with and without the value checker algorithm in Section
5-B. The algorithm is used to validate whether the user is
moving to another room or not based on the variance of
LQI and accelerometer.

First, the best detection accuracy in dynamic situations
is shown when six receivers were simultaneously used in a
two-floor environment (case 3). This result matched to our
previous evaluation in [12] although it was under stationary
off-body scenario.

Second, the system shows significant reliability by
showing better detection accuracy when the variance of LQI
and accelerometer are used to validate the user’s movement.
Without the Value Checker algorithm, any abrupt move-
ments by users will cause LQI fluctuation and lead to false
detections showed by 81.7% as the best detection accuracy
by using six receivers simultaneously on two floors. The
worst performance is shown when each floor uses three
receivers separately with only 66.5% of average accuracy.

Meanwhile, when the value checker algorithm is used,
the best performance shows significant improvements in

every case. For case 3, the system yields its best at 96.0%
of average accuracy. The detection accuracy was notably
improved, even in rooms lacking receivers, specifically
D206, D308, RC3, Corridor 3, and the Toilets on both
floors.

7. CONCLUSION
This study undertook comprehensive experiments to

evaluate the detection accuracy of FILS15.4 in dynamic on-
body settings. The transmitting sensor is affixed to several
users while they are engaged in natural forms of movement,
such as standing, sitting, or walking. The movements result
in an increase in variations of the LQI within the detection
epoch. The sudden fluctuations in LQI values undermined
the accuracy of the detection. Hence, it is vital to distinguish
the underlying reason for the change in LQI, particularly
when the user is transitioning between different rooms.

Since the adopted device in FILS15.4 has an accelerom-
eter which detects any movement in x, y, z directions, it can
be combined with the existing fingerprint-based localization
algorithm. The variance of accelerometer values indicating
the user’s movement is combined with the variance of
LQI to distinguish a condition when the user is moving
to a different room or staying. The use of movement
validation in the system for dynamic scenario resulted in
a significant improvement in detection accuracy across all
three scenarios when compared to the straightforward LQI-
based fingerprint method. The system demonstrates optimal
performance when six receivers are employed concurrently
in a two-floor setting, resulting in an average detection
accuracy of 96.2%. In contrast, traditional fingerprinting
methods only achieve an accuracy of 81.7%.

In future works, we will extend the utilization of ac-
celerometer for detecting seizure or fall. These development
will be practical for monitoring elderly or people with
disability who live or left unsupervised at home.
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M. R. Yuce, “Radio map building with ieee 802.15.4 for indoor
localization applications,” in 2019 IEEE International Conference
on Industrial Technology (ICIT), 2019, pp. 181–186.

[18] A. Booranawong, K. Sengchuai, D. Buranapanichkit, N. Jindapetch,
and H. Saito, “Rssi-based indoor localization using multi-lateration
with zone selection and virtual position-based compensation meth-
ods,” IEEE Access, vol. 9, pp. 46 223–46 239, 2021.

[19] M. S. Daniel Bin Wahab, A. Kiring, L. Barukang, H. T. Yew, Y. Y.
Farm, and S. K. Chung, “Ieee 802.15.4 signal strength evaluation in
an indoor environment for positioning applications,” in 2023 IEEE
International Conference on Artificial Intelligence in Engineering
and Technology (IICAIET), 2023, pp. 325–330.

[20] S. Farahani, “Chapter 3 - zigbee and ieee 802.15.4 protocol layers,”
in ZigBee Wireless Networks and Transceivers, S. Farahani, Ed.
Burlington: Newnes, 2008, pp. 33–135. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/B9780750683937000030

[21] Mono-Wireless, “Estimation of electric field strength [dbm] from lqi
value,” https://mono-wireless.com/jp/tech/Programming/Tips LQI.
html, accessed January, 2020.

[22] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi,
“Internet of things: Survey and open issues of mqtt protocol,” in
2017 International Conference on Engineering MIS (ICEMIS),
2017, pp. 1–6.

[23] K. Mekki, E. Bajic, and F. Meyer, “Indoor positioning system for iot
device based on ble technology and mqtt protocol,” in 2019 IEEE
5th World Forum on Internet of Things (WF-IoT). IEEE, 2019, pp.
787–792.

[24] Y. Y. F. Panduman, N. Funabiki, P. Puspitaningayu, M. Kuribayashi,
S. Sukaridhoto, and W.-C. Kao, “Design and implementation of
semar iot server platform with applications,” Sensors, vol. 22, no. 17,
p. 6436, 2022.

[25] Y. Huo, P. Puspitaningayu, N. Funabiki, K. Hamazaki, M. Kurib-
ayashi, and K. Kojima, “A proposal of the fingerprint optimization
method for the fingerprint-based indoor localization system with
ieee 802.15.4 devices,” Information, vol. 13, no. 5, p. 211, 2022.

[26] A. Bensky, Short-Range Wireless Communication: Fundamentals
of RF System Design and Application, 3rd ed. Newnes, 2019.

[27] S. Hara, D. Zhao, K. Yanagihara, J. Taketsugu, K.-i. Fukui,
S. Fukunaga, and K. Kitayama, “Propagation characteristics of IEEE
802.15.4 radio signal and their application for location estimation,”
in Proceedings of the IEEE Vehicular Technology Conference, 2005,
pp. 97–101.

[28] J. S. C. Turner, M. F. Ramli, L. M. Kamarudin, A. Zakaria, A. Y. M.
Shaka, D. L. Ndzi, C. M. Nor, N. Hassan, and S. M. Mamduh,
“The study of human movement effect on signal strength for indoor
WSN deployment,” in Proceedings of the International Conference
on Wireless and Signal Processing (ICWiSe), Dec. 2013, pp. 30–35.

Pradini Puspitaningayu received the B.E.
from Brawijaya University, Indonesia in
2010 and M.E. from Institut Teknologi
Sepuluh Nopember, Indonesia in 2014 in
electrical engineering. She then received
D.E. in Information and Communication
Systems from Okayama University, Japan
in 2022. From 2010 to 2012, she was with
Samsung Electronics, Ltd., Indonesia. Since
2014, she has been an Assistant Professor

with the Department of Electrical Engineering, State University
of Surabaya, Indonesia. Her research interests include wireless
communication systems, wireless personal area networks, and the
Internet of Things. She received the Okayama University Society
Awards in 2022 and the ICVEE Best Paper Award in 2021.
She is a senior member of IEEE, Consumer Technology and
Communication Society.

https://mono-wireless.com/jp/products/twelite-cue/index.html
https://www.sciencedirect.com/science/article/pii/B9780750683937000030
https://www.sciencedirect.com/science/article/pii/B9780750683937000030
https://mono-wireless.com/jp/tech/Programming/Tips_LQI.html
https://mono-wireless.com/jp/tech/Programming/Tips_LQI.html


900 Pradini Puspitaningayu, et al.: A Dynamic Indoor Localization with Movement Validation

Nobuo Funabiki received the B.S. and
Ph.D. degrees in mathematical engineering
and information physics from the Univer-
sity of Tokyo, Japan, in 1984 and 1993,
respectively. He received the M.S. degree
in electrical engineering from Case Western
Reserve University, USA, in 1991. From
1984 to 1994, he was with Sumitomo Metal
Industries, Ltd., Japan. In 1994, he joined the
Department of Information and Computer

Sciences at Osaka University, Japan, as an assistant professor, and
became an associate professor in 1995. He stayed at the University
of Illinois, Urbana-Champaign, in 1998, and University of Califor-
nia, Santa Barbara, in 2000-2001, as a visiting researcher. In 2001,
he moved to the Department of Communication and Network
Engineering at Okayama University as a professor. In 2024, he is
appointed as adjunct professor at the State University of Surabaya.
His research interests include computer networks, optimization
algorithms, educational technology, and Web technology. He is
a vice chair of IEEE Consumer Technology Society.

Yuanzhi Huo received B.S. from
Zhengzhou University of China in 2017
and M.S. degree in computer technology
department from the Inner Mongolia
University of Technology, China in 2020.
He received D.E. in Information and
Communication Systems from Okayama
University, Japan in 2023. His research
interests include computational fluid
dynamics and optimization algorithms.

Yohanes Yohanie Fridelin Panduman re-
ceived a B.E. degree in computer engineer-
ing from the State Electronic Polytechnic
of Surabaya, Indonesia, in 2018. Then, he
finished M.Eng. Master Program in Electri-
cal Engineering, State Electronic Polytech-
nic of Surabaya. He is currently a Ph.D.
student in Department of Information and
Communication Systems, Okayama Univer-
sity, Okayama, Japan. His current research

interests include the Internet of Things, Big Data, web services,
cloud computing, and machine learning.


	INTRODUCTION
	RELATED WORKS
	THE FILS15.4
	System Architecture
	Localization Procedure
	System Operation Procedure
	Setup Phase
	Offline Phase
	Online Phase

	Indoor LQI Measurement

	FILS15.4 DEVICES ON THE HUMAN BODY
	Target Field
	Receiving LQI from Off-body Transmitters
	Receiving LQI from On-body Transmitters

	LOCALIZATION IN DYNAMIC CIRCUMSTANCES
	Devices of FILS15.4 on Dynamic User
	Detection of Moving Transmitter and Signal Loss

	ASSESSMENT OF FILS15.4 IN PRACTICAL SCENARIOS
	Experiment Setup
	Evaluation on Users Position
	Evaluation on Detection Accuracy in Dynamic Situations

	CONCLUSION
	References
	Biographies
	Pradini Puspitaningayu
	Nobuo Funabiki
	Yuanzhi Huo
	Yohanes Yohanie Fridelin Panduman


