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Abstract: Artificial intelligence has been incorporated into modern agriculture to increase agricultural output and resource efficiency.
Utilizing deep learning, particularly convolutional neural networks, for recognizing and diagnosing plant diseases is tempting. In parallel,
drone integration in precision agriculture has accelerated, providing new potential for crop monitoring, map creation, and targeted
treatments. This study analyzes over 100 significant research articles published between 2018 and 2023, examining the interaction
between drones and artificial intelligence in identifying plant diseases. We begin by explaining the value of sensor and drone technology
in identifying plant diseases and carefully mapping the area. The various CNN architectures and drone-based approaches essential for
precise illness detection and diagnosis are then highlighted in a thorough research review. Our research highlights how this combination
can transform how plant diseases are managed completely. This study emphasizes the conceptual underpinnings of this new fusion, even
if fulfilling this promise needs additional investigation. In conclusion, we expect changing research paths to direct improvements in
this field and integrate AI, deep learning, drones, and plant pathology into a coherent framework with significant agricultural consequences.
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1. Introduction
Plant diseases are a significant factor that affects food

production [1]. They can reduce the quality and decrease
the yield of crops [2],[3], and in extreme situations, they
can even inhibit the growth of certain crops. To prevent the
spread of these diseases, farmers must implement preventa-
tive measures such as using bioactive natural products [4],
pesticides [5], or fungicides [6]. Hence, staying informed
of the most recent advancements in combating diseases
and emerging trends in plant diseases is crucial. Therefore,
proper crop management is vital to sustain a stable and
sufficient food supply, as plant diseases pose a significant
risk to agriculture [7]. Early identification of diseases is a
valuable strategy for managing them, as it can help limit
the spread and progression of the disease [8]. However,
current detection techniques, such as visual inspections
and laboratory tests, have several limitations [9]. Visual
inspections, while helpful, can be prone to subjectivity due
to the inspector’s background and training. Laboratory tests,
on the other hand, can be costly and time-consuming.

To improve plant disease detection methods, ongoing
research into new technologies is crucial [10]. For instance,
by using Artificial Intelligence (AI) in combination with
drones, the detection process can be automated, increasing
accuracy. Recent advancements in AI have led to more
accurate plant disease detection. AI-based image analysis

uses algorithms to identify signs of disease objectively,
and deep learning algorithms can increase accuracy by
refining disease recognition models with training data [11].
This allows for identifying multi-class diseases at once
[12], particularly useful when multiple conditions affect the
same plant. The detection of plant diseases is a constantly
evolving topic. Therefore, it is essential to continue funding
creative approaches to increase the effectiveness of disease
management. Drones, also known as Unmanned Aerial
Vehicles (UAV), have become crucial tools for detecting
and monitoring plant diseases due to their high-resolution
imaging capabilities [13]. Their ability to quickly cover
large agricultural areas [14] and take images with high
precision [15] while reducing time and cost expenditures
[16] leads to the presentation of detailed insights into crop
viability. Both agriculturalists and researchers may benefit
from the data collected, which makes it easier to identify
and limit disease outbreaks and evaluate the effectiveness
of treatment. Drone technology is crucial in monitoring and
controlling plant diseases as it seamlessly integrates with
the need for accurate and rapid agricultural activities. The
variability in the viewing angles at which drones capture
images plays a significant role in disease detection. Certain
diseases may be more conspicuous from specific angles,
while others remain concealed. Therefore, it becomes es-
sential to formulate strategies that consider this diversity
while analyzing plant diseases.
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The present study delves into an exhaustive investigation
encompassing the latest amalgamation of specific sides of
artificial intelligence with drone technology. This fusion
appears indispensable for identifying and comprehending
the intricate processes inherent in the manifestations of
plant diseases. The study refines its focus to encompass
a comprehensive review of the myriad methodological
frameworks that harness drone-generated data, extending its
applicability to diverse challenges centered around imagery.
At the heart of this inquiry lies a meticulous scrutiny of
pivotal advancements within Convolutional Neural Network
(CNN) technology, characterized by enhancements tailored
to elevate CNN’s performance within the intricate landscape
of precise disease detection using drone imagery. The study
aspires to impart nuanced insights into the contemporary
milieu in which this interdisciplinary synthesis of artificial
intelligence and drone technology is currently situated, a
trajectory underscored by analytical rigor. A comprehen-
sive literature study, grounded in the dependable Scopus
database, was meticulously conducted to substantiate this
overarching aim. This analytical pursuit is inherently pro-
pelled by the aspiration to unearth the corpus of existing
literature pertinent to the fusion of drone technology and ar-
tificial intelligence in the context of plant disease identifica-
tion within the agricultural sphere. A distinctive search logic
was judiciously formulated and subsequently executed with
methodical precision. The discernible culmination of this
analytical undertaking finds eloquent articulation in Figure
1, graphically charting the temporal evolution of scholarly
publications germane to this thematic nexus, spanning the
years 2018 to 2023. The conspicuously ascending trend
depicted in the graphical representation is a testament to
the burgeoning importance and pertinence of this evolving
domain of study, calling for special attention. Appearing
from its meticulous analytical underpinnings, this study
ascends to the status of a potentially invaluable resource,
poised to guide and illuminate potential trajectories for
research within this sphere. Simultaneously, it gives a com-
prehensive and erudite overview of this rapidly maturing
interdisciplinary amalgamation.

In reference [17], the authors emphasized the challenges
to crop productivity, such as weeds, pests, and diseases.
The paper proposed precision agriculture with deep learning
and UAVs for early plant disease monitoring to enhance
agricultural production. The authors Albattah et al. [18]
presented an automated framework using deep learning
and lightweight drones to identify and categorize insect
pests. By employing a customized CornerNet approach with
DenseNet-100, the framework improves precision and recall
rates for identifying target insects in the field. In Ref.
[19], the authors proposed an intelligent method for crop
classification that employed a series of images captured
by drones and a model based on Convolutional Neural
Networks (CNNs). Furthermore, the authors implemented
the transfer learning technique to improve the efficiency
of the proposed method. The overall detection accuracy
rate was 92.93% in Ref. [20]. The authors presented a

novel machine learning technique that combined drone
technology and the Internet of Things (IoT) to detect and
classify rice leaf diseases accurately. The proposed method
incorporated a modified transfer learning approach utilizing
the VGG-19 architecture. The results of the study proved
the efficacy of the proposed technique with an impressive
overall accuracy rate of 96.08%, as well as high levels
of recall (96.17%), F1-score (96.10%), precision (96.20%),
and specificity (99.21%). Albattah et al. [21] proposed a
sophisticated drone-based deep-learning approach for pre-
cisely identifying and classifying crop leaf diseases. A
refined version of the EfficientNetV2-B4 architecture was
introduced as the central element of the proposed method.
The PlantVillage dataset was utilized as the primary source
of experimental data. The obtained results were 99.63% of
average precision, a recall of 99.93%, and an accuracy of
99.99%.

Figure 1. Number of articles by year.

Additionally, Tetila et al. [22] created a novel approach
for diagnosing afflictions impacting soybean leaves, uti-
lizing images obtained through unmanned aerial vehicles.
They employed open-source implementations of convolu-
tional neural networks, including Inception-v3, VGG-19,
ResNet-50, and Xception. The corpus of data utilized in
this study consisted of 300 aerial images. The Inception-v3
FT, 75% model, exhibited the highest level of accuracy at
99.04%, followed by ResNet-50, VGG-19 (99.02%), and
Xception (98.56%). With F1 scores of 82% for the training
dataset and 84% for the test dataset, the authors Lizarazo et
al. [23] successfully classified the severity of Verticillium
wilt in potatoes from multispectral drone images using ma-
chine learning, employing gradient reinforcement machines
(GBM). This improves disease identification for this per-
vasive crop issue. In Ref. [24], the authors compared three
CNN models, specifically: 1) RetinaNet, 2) faster R-CNN,
and 3) SSD, for the expeditious and accurate detection of
objects from uncrewed aerial vehicles. The corpus of data
employed in the experiment was the Stanford Drone Dataset
(SDD). The results indicated that RetinaNet outperformed
the other models in speed and precision in object detection
from drones, with an accuracy rate of 86.58%. An improved
YOLO-v4 model was offered by the paper’s Chen et al.
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[25] for the quick and accurate identification and tally of
oleanders in aerial images. The improved YOLO-v4 model
attained a high detection accuracy of 97.78% and a recall
rate of 98.16% after training. The YOLO-v4 optimized
model outperformed other models, including YOLO-v4,
YOLO-v4 small, YOLO-v3, and Faster R-CNN, regarding
recall rate (up to 97.45%) while retaining excellent accu-
racy. Meanwhile, the study [26] discussed its early and pre-
cise identification utilizing RGB aerial photos captured by
UAVs. The study’s main objectives are to compare several
YOLOv5 model architectures and assess their effectiveness
in identifying and categorizing verticillium fungus in olive
trees and determining their health state.

An unmanned aerial vehicle (UAV) with a Rededge-
MX multispectral camera was used by the authors Wenjing
et al. [27] to conduct an analysis of wheat scab in a
cultivated wheat field, utilizing three algorithms: Partial
Least Squares Regression (PLSR), Support Vector Machine
Regression (SVR), and Back Propagation Neural Network
(BPNN). The study’s results demonstrated that, in the multi-
source data fusion model, the SVR algorithm exhibited
superior performance in terms of efficacy compared to the
other algorithms in detecting and monitoring wheat scabs.
The authors, Daniel et al. [28], presented approaches for
classifying plant seedlings using a dataset containing 4,275
images. The experiment compared the performance of two
traditional algorithms, Support Vector Machines (SVMs)
and K-Nearest Neighbors (KNN), as well as a Convolu-
tional Neural Network (CNN). The study results indicated
that techniques based on CNNs could effectively automate
the classification of plant seedlings in agriculture. The CNN
achieved a training accuracy of 98.9% and a validation accu-
racy of 80.21%. Researchers have recently presented several
CNN-based approaches for detecting plant leaf diseases.
Notably, most of these articles were published after 2018,
demonstrating the recent and cutting-edge nature of this
approach to agriculture. According to reference [29], weed
detection in Chinese cabbage crops was trained using photos
from UAVs. CNN achieved a substantially higher overall
accuracy of 92.41% compared to the Random Forest (RF)
algorithm, which differentiated crops and weeds with an
overall accuracy of 86.18%. Stefania et al. [30] developed
a feature extraction approach based on AlexNet, VggNet,
and ResNet deep learning for plant species identification
and plant leaf disease classification. Pre-trained CNNs were
employed in this study for feature extraction and were
combined with SVMs for sort. The results revealed that
the AlexNet model performed exceptionally well, with an
accuracy of 99.86% on the dataset analyzed. In Ref. [31],
the authors suggested a deep convolutional neural networks-
based methodology for detecting illnesses on apple leaves.
The AlexNet architecture was employed in this study, and
a dataset of 13,689 images was utilized to train the model.
The results of the proposed deep CNN model revealed
an overall accuracy of 97.62%. Additionally, in [32], an
innovative approach using DDMA-YOLO and drone remote
sensing was introduced for the accurate detection and

monitoring of tea leaf blight (TLB), significantly surpassing
conventional methods with a 3.8% increase in average
accuracy (AP@0.5) and a 6.5% improvement in recall when
compared to the baseline network. In the document [33],
upgraded GoogleNet and Cifar10 models, based on deep
learning techniques, were proposed for the autonomous de-
tection and diagnosis of maize leaf diseases. The empirical
evaluation revealed that both models exhibited high levels
of accuracy, with an average identification rate of 98.9% for
the GoogLeNet model and 98.8% for the Cifar10 model.

The remainder of this paper is structured as follows:
Section 2 describes the methods employed in this research
and presents the drone-assisted detection of plant disease
and CNN architecture. Section 3 discusses the CNN appli-
cations in plant disease detection, the different CNN models,
and the drones used by the authors. Section 4 concludes the
paper and presents future directions.

2. ResearchMethod
A. Research and reading

This study aimed to comprehensively review the recent
literature on the application of artificial intelligence (AI) and
drones in the agricultural domain, focusing on identifying
and detecting plant diseases. The methodology adopted
for this study comprised two main stages: the first stage
involved collecting and compiling a sample of 80 relevant
research papers that addressed the intersection of deep
learning and drone technology concerning plant disease
detection. Figure 2 illustrates the method employed in
researching and selecting relevant scientific articles. The
second stage entailed a thorough analysis and review of the
collected literature. In the initial phase of our research, we
reviewed a literature search utilizing the Scopus scientific
database for papers and articles published between 2018
and 2023. Our research method employed a keyword-based
approach with several keywords, such as ”plant disease,”
”drone,” ”neural network,” ”CNN,” and ”deep learning,”
to cite only a few. Articles that mentioned CNN but
did not mention the plant disease were excluded from
further analysis. In the second phase, we systematically
analyzed the articles selected in the first phase, focusing
on addressing the research questions of this study. Such as:
what were the methods and dataset utilized in the study?
What issues were encountered during the research? What
outcomes were achieved? How were the model efficiencies
compared? What were the limitations of the study?

A methodical approach was employed, comprising the
stages of research, literature review, analysis, and synthesis.
A systematic review of the literature was conducted with a
focus on selecting relevant data for the study. Examining
the methods and performance of artificial intelligence, par-
ticularly Convolutional Neural Networks, is a crucial aspect
of this current research study. The selection of drones,
the process of image collection, and the transmission of
information play essential roles in this cutting-edge technol-
ogy. Therefore, we have conducted a thorough review and
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Figure 2. The process of selecting scientific articles.

analysis of relevant studies and compared the performance
of CNNs with other current technologies. Additionally, we
have summarized the most salient advantages and disad-
vantages of CNNs and examined and discussed the most
significant issues and limitations identified by previous
research.

B. Drone-assisted detection of plant disease
1) The growing use of Drones in Agriculture

Unmanned aerial vehicles (UAVs), commonly referred
to as “DRONE” (Dynamic Remotely Operated Navigation
Equipment [34]), are employed more frequently across a
variety of industries, including agriculture. In 2022, agri-
culture is anticipated to be the second-largest consumer of
drones, according to a Goldman Sachs analysis. They may
be employed for crop monitoring, mapping, and spraying,
increasing efficiency and lowering costs. Additionally, they
can aid in precision agriculture by focusing on sectors that
require care and conserving resources.

2) Types of Drones utilized in Agriculture
There are two main types of drones: fixed-wing airplanes

[35] and rotary-motor helicopters (or quadcopters) [36].
Fixed-wing aircraft have stabilizing tail sections and wings
that create lift. They are employed for long-distance travel
and high-altitude mapping and are more potent than rotary-
engine helicopters. Quadcopters, commonly called “rotary
motor helicopters,” are multi-rotor drones. They are utilized

for operations such as aerial photography and search and
rescue missions and are typically smaller.

3) Drone-assisted crop management: The future of farming
Drones have many applications in agriculture [37], such

as monitoring and mapping crops or fields [38], provid-
ing farmers with detailed information about crop growth
and health [39]. For precise spraying [40], UAVs can be
equipped with sprayers to apply pesticides and fertilizers
to crops [41]. Drones can monitor irrigation systems for
irrigation management to optimize water use and increase
crop yields. Drones can also collect soil samples [37]
and measure crop growth, which can be used to make
data-driven decisions about planting, harvesting, and crop
management. Figure 3 depicts unmanned aerial vehicles
(UAVs) or drones with various sensors to assess crop
conditions. To increase crop quality and minimize field
damage, this article will highlight the use of drones in
agriculture and showcase the newest and best-performing
ones available for monitoring and watching crops. Table 1
lists the various drones utilized by authors. Therefore, image
acquisition is essential in creating machine learning models.
This step prepares and checks labeled image data [42].
Since agricultural fields have large areas, unmanned aerial
vehicles, or drones, must be used to take pictures. These
images are then used to train and test machine learning
models [43].
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Figure 3. Schematic of methods for information data on a plant’s development during its growing season.

Drones equipped with RGB, hyperspectral, multispec-
tral, or thermal sensors are helpful for tasks such as de-
tecting plant diseases, mapping irrigation and weed areas.
These drones can also assess crop quality through near-
infrared or visible light imaging. Their ability to capture
precise ground images using RGB sensors makes them
ideal for evaluating plowing techniques at night. Overall,
drones are projected to play a crucial role in enhancing the
productivity of agriculture and will become a vital tool for
farmers shortly.

In the context of modern agriculture, the accurate and
timely detection of plant diseases is of paramount im-
portance. Integrating drones with AI-based image analysis
technologies into disease monitoring practices presents a
groundbreaking solution to this imperative need. This ad-
vancement enables early disease outbreak identification and
containment, revolutionizing how we safeguard our crops.
Geographical constraints do not confine drones equipped
with AI; they can hover above fields, offering an unbiased,
bird’s-eye view of the entire landscape. This unique vantage
point allows them to spot infected plants swiftly and without
prejudice. Moreover, applying deep learning algorithms
to the images captured by these drones can significantly
enhance the precision of disease identification. This means
multiple diseases can be diagnosed simultaneously, saving
time and resources compared to traditional laboratory test-
ing methods. One of the most compelling arguments for
integrating drones and AI in disease monitoring lies in its
potential to establish an effective and impartial process for
identifying and diagnosing plant diseases. This technology
democratizes disease detection access, benefiting small and
large farmers. It levels the playing field, ensuring that
all farmers, regardless of their resources, have access to
advanced tools for disease prevention. Moreover, the high-
resolution images of crop fields obtained by unmanned
aerial vehicles (UAVs) go beyond disease detection. They
enable us to identify crops and weeds accurately, even
during their early growth phases. This capability empowers

precision agricultural techniques that efficiently manage
weed issues while reducing costs and minimizing environ-
mental harm. By identifying weeds early in the growing
season, farmers can make targeted interventions, reducing
the need for excessive herbicide use and promoting sus-
tainable farming practices. Furthermore, drone photography
provides farmers with comprehensive insights into their
fields. It is an invaluable tool for monitoring crop devel-
opment, pinpointing disease or stress zones, and making
informed decisions regarding crop management. This, in
turn, enhances productivity and resource utilization while
minimizing waste.

However, as the reviewer aptly pointed out, the pro-
liferation of drones in agriculture raises ethical and envi-
ronmental questions. The paper acknowledges the pressing
need to delve into these aspects further to ensure that
the benefits of drone adoption in disease monitoring are
balanced with responsible stewardship of both the envi-
ronment and societal ethics. Ethical considerations may
revolve around privacy, data security, and equitable access
to technology, while environmental concerns may pertain
to drone fleets’ energy consumption and ecological impact.
Exploring these dimensions is essential to ensure drones’
holistic and sustainable integration into the agricultural
landscape.

Chew et al. [57] developed a deep learning algorithm for
identifying various crop types, such as bananas, legumes,
corn, and others, through an RGB camera mounted on a
drone. The results demonstrated the effectiveness of the
proposed model in detecting crops with a high degree of ac-
curacy. A new method for classifying agricultural progress
in rice-wheat rotation fields using RGB unmanned aerial
vehicle (UAV) images has been proposed by researchers
Song et al. [58], using a Regional Mean Model (RA)
model. Authors Zhu et al. [27] used a UAV equipped
with multispectral cameras to classify and apply wheat
scab using algorithms such as random forest and support
vector machine. In Ref. [59], the authors used RGB and
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TABLE I. Summary of the various drones used by authors.

Drone model Sensor type Application Method Reference

DJI Matrice 600 Pro Pika-L 2.4
hyperspectral sensor Morphophysiological traits in sugarcane MAPE: SPAD–NDVI-LAI Poudyal et al., 2023 [44]

DJI Phantom 4 RGB Camera Automatic weed classification Faster RCNN Ajayi and Ashi, 2023 [45]

DJI Phantom 4 Pro RGB Spinach seed yield Mask R-CNN Ariza-Sentı́s et al., 2023 [46]

DJI Mavic2 Pro RGB Rice Bakanae Disease YOLOv3-RestNETV2 101 Kim et al., 2023 [47]

DJI Mavic 2 Pro RGB Pommier disease classification GAN Prasad et al., 2022 [48]

DJI Tello 2 RGB Recognizing objects in the form of fruits CNN YOLOv5 Rahmania et al.,2022 [49]

Solo 3DR Multispectral Sequoia de Parrot Detection and location of drought-stressed areas of the potato crop CNN Retina-UNet-Ag Butte et al.,2022 [50]

DJI Matrix 600 Pro Multispectral Rededge-MX Monitor Wheat Scab PLSR – SVR - BPNN Zhu et al., 2022b [27]

DJI Phantom 3 Professional RGB Automatic recognition of soybean leaf diseases SLIC Tetila et al., 2020 [22]

DJI Matrice 600 pro Hyperspectral Pika L Detection of target spot and bacterial spot diseases in tomato MLP - STDA Abdulridha et al., 2020 [51]

DJI M200 series
Hyperspectral -

Nano-Hyperspec LiDAR –
LiAir 200

Detection of PSB Stress RF Panday et al., 2020 [52]

DJI Phantom 4 RGB Orthomosaic Fertilizer application level and yield of rice and wheat crops NDVI Guan et al., 2019 [53]

DJI S1000 Hyperspectral
Firefly UHD 185 Automatic detection of yellow rust in winter wheat fields DCNN Zhang et al., 2019 [54]

DJI Matrice 100 Multispectral ADC-Lite Detection of spider mite-infested cotton CNN - SVM Huang et al., 2018 [55]

Modified Mikrokopter
TAU II 320 Multispectral –
TetraCam ADC Snap RGB

- Canon EOS M 10
Precision Viticulture NDVI Matese and di Gennaro, 2018 [56]

hyperspectral imagery for potato yield prediction. A drone-
based LiDAR technology was used by Getzin et al. [60]
to identify gaps in the vegetation of a forest meadow. In
their paper [61], Crusiol et al. used thermal imaging from
a drone to monitor the water status of soybean plants. Mao
et al. [62] explored the impact of frost damage on tea plant
development due to climate change and the limitations of
labor-intensive visual evaluation methods. It recommends
employing a powerful CNN-GRU model with multimodal
remote sensing data (MS, TIR, RGB) acquired by a DJ
M200 V2 UAV for precise and objective assessment of cold
damage in tea plants. In addition, in [63], the DJI Matrice
210 drone was utilized to estimate the yield of Vicia faba
L. using machine learning methods like SVM, RR, PLS,
KNN, and RF. The study [64] tackled the issue of off-target
dicamba damage in soybean crops using DJI Phantom 4
Pro drone imagery combined with the DenseNet121 deep
learning model. Meanwhile, Kierdorf et al. [65] employed
a DJI Matrice 600 hexacopter to analyse cauliflower flower
growth, and Lizaraz et al. [23] utilized a Tarot FY680 hex-
acopter drone to identify and categorize potato Verticillium
wilt illness.

One of the most pressing challenges in deploying drones
for plant disease identification lies in the diversity of the
data they collect. Drones have become an invaluable tool
in modern agriculture, allowing for efficient and large-
scale monitoring of crops. However, the images captured by
these drones can vary significantly in several key aspects,
including resolution, viewing angle, quality, and format.
This diversity can pose substantial hurdles in harnessing

artificial intelligence’s (AI) power to identify plant dis-
eases accurately and reliably. The variation in resolution
among collected images can result from the drone’s altitude,
camera specifications, and environmental conditions during
flight. Lower-resolution images might lack the detail re-
quired for precise disease diagnosis, while higher-resolution
images may consume substantial storage and computational
resources. Balancing these factors becomes crucial for prac-
tical implementation.

C. Crop health monitoring using Deep Learning techniques
1) Convolutional Neural Networks (CNN)

Convolutional Neural Networks have become one of
the most representative neural networks in deep learning
[66], inspired by living creatures’ natural visual percep-
tion mechanisms [67]. They are widely used in pattern
recognition for image processing [68]. Multiple-layer neu-
ral network architectures called CNNs continually extract
abstract representations of the input data by building on
the layers behind them. The basic architecture of a typical
CNN is illustrated in Figure 4. Image analysis for the auto-
mated diagnosis of plant diseases has significantly advanced
according to deep learning methods, notably CNNs. This
might result in the creation of mechanical imaging systems
in agriculture for jobs like weed detection and the diagnosis
of plant diseases. These tools can help farmers embrace
excellent agricultural practices and more productive farming
methods, increasing food security. Using deep learning in
agriculture can significantly enhance the effectiveness and
efficiency of farming methods while promoting environ-
mentally sustainable practices. The diagnosis and identi-
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Figure 4. The architecture of a typical CNN.

fication of plant diseases have been commonly achieved
through the utilization of images in the past. This section
reviews the pre-trained and customized convolutional neural
network (CNN) models that the authors have developed.
An examination of various studies from the past indicates
that most researchers utilized transfer learning to meet
their objectives rather than constructing a new CNN model
from scratch. This approach allowed for the efficient and
expedient completion of research projects and attaining
goals in the past. The CNN model has been subsequently
applied in various transfer learning research endeavors.

2) Pre-trained convolutional neural networks
A standard method for classifying images is to em-

ploy pre-trained CNNs, often used in image classification
models. The models of pre-trained CNNs may need more
layers to categorize images as their complexity and variety
rise correctly. The model’s training may become more
challenging and time-consuming as a result. Despite this
difficulty, pre-trained CNNs continue to be beneficial for
classifying images because of their capacity to learn from
and extract beneficial characteristics from massive datasets.
Knowing how pre-trained CNNs perform in picture classifi-
cation requires understanding their fundamental principles,
such as transfer learning and feature extraction. There are
many pre-trained models: AlexNet [69], VGG-16 [70],
InceptionResNetV2 [71], DenseNet [72], ResNet [73], and
YOLO [74]. Figure 5 illustrates the chronology of the most
dominant models of pre-trained CNNs.

Quality issues, such as those arising from weather
conditions, lighting, and camera stability during flight, can
introduce variability in image quality, potentially degrading
the accuracy of disease identification algorithms. To address
these challenges, it becomes imperative to employ robust
preprocessing techniques. These techniques enhance image
quality and reduce noise, ensuring that AI models receive
clean and consistent data. Furthermore, the CNN model
is a potent tool, particularly in image classification. Its
versatility and adaptability shine through transfer learning,

which allows it to excel in various roles. The model can be
pre-trained on extensive databases and applied to various
research endeavors by customizing layers or adding new
ones to align with specific tasks. This adaptability renders
CNNs invaluable for diverse research applications, making
them a cornerstone.

Sharma et al. [75] proposed using convolutional neural
network (CNN) models, which were trained on segmented
image data, as a viable solution for the task. To evaluate the
effectiveness of this approach, the performance of the S-
CNN model, which was trained on segmented images, was
compared to that of the F-CNN model, which was intro-
duced on complete images. The results showed that the S-
CNN model achieved a high accuracy of 98.6 %. The article
[76] presented a novel CNN-based approach for detecting
rice diseases. The proposed model was trained using 20,639
images from the Plant Village dataset, consisting of infected
and healthy leaves of potatoes, tomatoes, and bell pepper.
The results of our experiments indicated that the proposed
CNN-based model achieved an accuracy of 98.90 % with
no evidence of overfitting. Hassan et al. [77] employed
depth-separable convolution to replace standard convolution
in the CNN models, using the InceptionV3, Inception-
ResNetV2, MobileNetV2, and EfficientNetB0 architectures.
The disease classification accuracy rates attained by the
implemented models were 98.42 %, 99.11 %, 97.02 %, and
99.56 %, respectively.

Elfatimi et al. [78] proposed a CNN-based system for
classifying bean leaf diseases. The MobileNet CNN model
demonstrated high accuracy, with an average identification
rate of 98.49 %. In addition, the authors in [79] proposed
a 14-layer deep convolutional neural network (14-DCNN)
model for detecting 42 leaf diseases in 16 different plant
species using a dataset of 20,639 images. On the training
dataset, the model achieved high accuracy (99.96 %), recall
(99.7966 %), and F1 score (99.7968 %). In the paper [80],
Memon et al. proposed a deep meta-learning model for
accurate identification of several cotton leaf diseases with
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Figure 5. Chronology of the most dominant models of pre-trained CNNs.

98.53 % accuracy, trained on a dataset of 2385 healthy
and diseased cotton leaf images using pre-trained models
VGG16, ResNet50, Inception V3, and a deep meta-model.
About [81], the authors introduced an Internet of Things
(IoT) centered system for identifying plant diseases. They
employed semantic segmentation techniques, encompassing
FCN-8s, CED-Net, SegNet, DeepLabv3, and U-Net with
CRF.The SegNet-CRFs system performed well compared
to the other methods, using a CNN-based model on a
dataset of 588 images. A method for classifying two types
of weeds in rice fields using semantic segmentation was
presented in a document [82] by Kamath et al. Three
models—SegNet, PSPNet, and UNet—were tested on 2695
images. The model PSPNet achieved the highest accuracy
at over 90 % for identifying both classes and plant shapes.
Jiang et al. used the VGG16 model to identify diseases
in rice and wheat plants [83]. The experiment’s outcomes
were compared to those of other cutting-edge models. The
VGG16 model’s overall accuracy for rice and wheat plants
was 97.22 % and 98.75 %, respectively. Furthermore, their
paper [84] suggested a CNN-based model for classifying
wheat varieties throughout various growing seasons. Based
on ResNet and SENet, the CMPNet in the study ranked
wheat at the seed stage with great accuracy reaching 99.51
%.

3. Results And Discussion
During this investigation, a comprehensive and exhaus-

tive review was undertaken to delve into the symbiotic
integration of artificial intelligence and drone technology

within the agricultural domain. This inquiry pivoted toward
a specific focus on employing convolutional neural network
(CNN) methodologies for identifying crop diseases. The
overarching objective spanning the temporal ambit of 2018
to 2023 entailed presenting a holistic portrayal of the con-
temporaneous state-of-the-art landscape concerning CNN-
based plant leaf disease detection. Central to this pursuit
was a meticulous dissection, encompassing an in-depth
analysis of diverse CNN architectures, frameworks, and the
encompassing application datasets. Within this analytical
vista, nuanced examinations unveiled various typologies of
drones that have found recent applicability within the agri-
cultural sphere, accompanied by an exploration of the array
of sensors deployed for data collection. The amplitude of
this analysis extended to encompass a thorough evaluation
of dataset magnitudes and the consequential experimental
outcomes of various models harnessed for identifying plant
leaf diseases. Notably, the recent chronology has witnessed
a marked escalation in research endeavors revolving around
integrating CNN methodologies for identifying plant leaf
diseases. Table 2 encapsulates all pertinent data, encom-
passing authors’ utilization frequency of diverse models,
as a testament to fostering informed comparative analyses
and facilitating methodological selection for researchers.
Remarkably, the column devoted to the authors’ frequency
of model deployment serves as an emblematic indicator
of the varying degrees of utilization, thereby offering a
compass to delineate the extensiveness of their application.
In crystallizing the synthesis of these multifarious analyses,
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TABLE II. Summary of the different UAVs and the deep learning models used by authors.

Reference Year Dataset Source Application Drone/UAV Method Results Frequency

[85] 2023 Personalized Artichoke DJI Phantom 4 Pro YOLOv5 92.00% *****

[86] 2023 Personalized Rubber Tree DJI Phantom 4 multispectral Boruta–SHAP - SVM 98.16% *****

[87] 2023 Personalized Soybean DJI P4 Multispectral AlexNet 99.07% *****

[88] 2023 Personalized Wheat DJI 4 pro LSTM-PSPNet 95.20% *****

[89] 2022 Personalized Pine
DJI Yu Mavic2

DJIFC200 camera
DJI M600

YOLOv4 94.56% *****

[90] 2022 dos Santos et al. 2017 Weed - CNN LVQ 99.44% *****

[21] 2022 PlantVillage Multiclass plant - EfficientNetV2 99.63% *****

[91] 2022 Personalized corn DJI Phantom 4 ResNet18 97.00% *****

[92] 2022 Personalized Sugarcane DJI P4 multispectral XGB, RF, and KNN 94.00% *****

[93] 2021 Personalized Olive DJI-Phantom 4 Mask R-CNN 94.51% *****

[94] 2021 Personalized Maize DJI Phantom 3 TD-CNN
R-CNN

95.90%
97.90%

*****
*****

[95] 2020 Personalized Soybean DJI S1000+ DNN 84.50% *****

[96] 2020 Personalized Crop Row SenseFly eBee CRowNet 93.58% *****

[97] 2020 Personalized Vine Scanopy Quadcopter SegNet 92.00% *****

[98] 2020 Personalized Banana DJI Phantom 4 Pro VGG-16 85.00% *****

[99] 2019 Personalized Citrus trees SenseFly eBee CNN 96.24% *****

[54] 2019 Personalized Wheat DJI S1000 DCNN 85.00% *****

[100] 2019 Personalized Opium poppy DJI YOLOV3 96.37% *****

[101] 2019 Personalized Wheat DJI Phantom 4 CNN 91.43% *****

[102] 2018 Personalized Maize DJI S1000 ANN 94.40% *****

[103] 2017 Personalized Soybean DJI Phantom 3 ConvNets 99.50% *****

the investigation’s core ethos emerges as an illumination of
the burgeoning landscape wherein the converging realms of
artificial intelligence, drone technology, and plant disease
identification coalesce. This not only shapes the contours
of contemporary research but also stands as a cardinal em-
bodiment of the multifaceted potential and critical nuances
that this fusion embodies.

This work also generates significant contributions that
extend beyond its immediate temporal scope and consid-
erably positively impact future developments in improved
illness detection systems. For aspiring researchers and
seasoned practitioners in the complex field of precision
agriculture, this research gives a viewpoint that has tan-
gible value by providing thorough insights into the delicate
interaction of artificial intelligence and drone technology.
Notably, these contributions reinforce innovative ideas and
are innately based on critical thought, as shown by the
critical evaluation that forms the foundation of the whole
research. This critical viewpoint is a clear guide for future
research, inspiring a study into the technological nuances

and methodological depths that call for reinforcement and
recalibration. Furthermore, this study’s effects extend be-
yond the borders of research, echoing ongoing projects
driven by the need to boost crop yields and strengthen food
security in the agricultural environment. The blending of
artificial intelligence with drone technology to detect plant
diseases exemplifies how advanced technological conver-
gence offers a fruitful ground for creativity. However, this
innovation strikes a balance when coupled with a thoughtful
critique that sparks a lively interaction between develop-
ment and meticulous analysis. The scope of the study
goes beyond merely disseminating results; it encompasses
a ground-breaking engagement with advancing scientific
and agricultural paradigms. It underlines how advancement
rooted in careful research and self-reflection may change
academic discourses and the more general parameters of
farm subsistence and resilience.

This technological advancement can radically shift agri-
cultural monitoring by providing farmers with precious
information to maximize crop development and output.
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Drones have the potential to bring improved crop moni-
toring precision while reducing operational costs through
productive interaction with neural networks. This combi-
nation gives farmers quick access to the information they
need to make timely and essential crop decisions. The
multifaceted effectiveness of this combination extends to
the preventive sphere, where it facilitates the early diagnosis
of illnesses and infections, preventing their spread and the
ensuing harm to crops. Large-scale agricultural operations
benefit significantly from the seamless integration of drones
and neural networks because of their versatility, which
allows for thorough coverage of expansive terrains. Our
study’s findings support the suggested method’s pronounced
accuracy in detecting illnesses early in various plant species.
This confirms the method’s significance as a revolutionary
tool in the armory of precision agriculture and emphasizes
the method’s effectiveness and potential for widespread
adoption.

Our comprehensive review highlights the revolutionary
potential of using drones and deep learning methods to
detect plant diseases. This convergence promises increased
efficacy and accuracy in disease identification and can
potentially change the entire landscape of agriculture. Our
evaluation also reveals significant gaps in existing research,
highlighting the critical need for more investigation to
strengthen the groundwork for this new study area. This
further research demands a purposeful effort to increase
the generalizability of results through a broader range of
situations and a larger dataset for reliable model validation.
Additionally, the importance of the temporal component
rises, necessitating real-time drone-based crop monitoring
to provide the procedure with dynamic adaptability. To
ensure effective disease management, it is essential to
thoroughly assess the algorithms’ ability to detect a broad
spectrum of illnesses. The variability in image collection
formats poses challenges in creating standardized datasets
for AI model training. This format diversity highlights the
need for effective data normalization techniques to pre-
vent biases and enhance model generalization. Developing
advanced image preprocessing methods tailored to drone-
collected data is critical. These techniques should focus on
standardizing image resolution, improving image quality,
and addressing variations in viewing angles. Furthermore,
adapting AI models to handle the inherent variability in
drone-captured images is paramount. Transfer learning,
involving pre-training models on diverse datasets and fine-
tuning them with drone-collected data, can be a valuable
approach to address these challenges comprehensively.

Parallel to this, a comprehensive strategy necessitates
addressing practical problems, such as operating costs,
implementation difficulties, data security, user-friendliness,
and privacy issues. The route of critical dialogue, thor-
ough comparison, and nuanced interpretation of findings
warrant further significance within our study in light of
the reviewer’s significant point. This would incorporate the
complex factors that affect the trajectory of developments

in this field and increase the academic quality of the study
and the robustness of its findings.

4. Conclusions and FutureWork
The convergence of artificial intelligence and drone

technology has swiftly emerged as a pivotal locus of inquiry
in recent years, precipitating a rapid expansion of scholarly
endeavors within plant disease detection. Drones have be-
come essential for maintaining agricultural health because
of their high-resolution photography capabilities and Con-
volutional Neural Networks (CNNs) analytic capability. The
convergence of these technologies has created a powerful
link that can detect early warning indications of plant
diseases, radically transforming how disease monitoring is
conducted in agriculture. The variety of their data poses
serious challenges. A multi-faceted strategy is needed to
overcome these obstacles, including creating sophisticated
pre-processing methods and modifying artificial intelligence
models. The research trajectory in this area has significantly
advanced because of the rapidly developing improvements
in CNN architectures and training approaches. This devel-
opment has symbolized improved illness detection precision
and quicker processing times. The effects of this advance-
ment could have a far-reaching cascading impact, reducing
the spread of diseases, increasing agricultural output, and
improving management effectiveness. As a result, the use of
CNNs and drones to identify plant diseases is expected to
increase in both acceptance and usefulness. But significant
obstacles must be overcome to improve this integrated
system. These difficulties show themselves while processing
varied datasets and coping with erratic changes in lighting
and weather. Despite these enormous obstacles, a crucial
turning point in plant disease detection and diagnosis is
approaching. The development of robust CNN architectures,
the automation of detection procedures, and the creation of
insightful decision-making models are all crucial to these
prospects for the future. The combination of drone technol-
ogy and artificial intelligence for plant disease monitoring
is set to unleash a range of transformational possibilities.
This development is based not only on a keen analysis of
the problems at hand but also on a vigorous search for novel
solutions that radically alter the outlines of agricultural
health management.
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