

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Oct. 2023)

 http://dx.doi.org/10.12785/ijcds/1401106

E-mail: rharaty@lau.edu.lb

 https://journal.uob.edu.bh

Network Traffic Analysis as a Strategy for Cache

Management
Ramzi A. Haraty1 and Nancy M. Rahal1

1 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Received 3 Jan., Revised 29 Jul. 2023, Accepted 28 Sep. 2023, Oct. 1 2023

Abstract: Given the significant revolution in data and technology and the increasing need to optimize system performance, it is

imperative to transition towards unconventional caching methodologies in the context of contemporary technologies such as AI, edge

computing, heterogeneous IoT, big data, and 5G mobile networks. This research paper presents a novel methodology for cache writing,

wherein network traffic is carefully analyzed and examined, and data is categorized as highly accessed utilizing the probability

distribution of a bell curve. The proposed approach focuses on analyzing network traffic and selectively writing data into the cache,

unlike the old approach, which ignored network traffic and randomly added data into the cache. Empirical findings demonstrate

favorable performance outcomes in comparison to conventional techniques, namely LIFO, FIFO, LRU, LFU, MFU, and MRU.

Keywords: cache management, network traffic, hit ratio, total delay.

1. INTRODUCTION

Data caching involves storing multiple copies of data or
files in a temporary storage space, known as a cache, to
facilitate faster retrieval. It plays a crucial role in various
fields, including mobile computing, by utilizing
prefetching techniques to store recently accessed data in
local buffers for future use. When a user requests data that
is already present in the cache, the client can immediately
respond with the requested data, eliminating the need to
access the server. This approach significantly reduces
query time and conserves bandwidth, leading to improved
system performance [1]. However, maintaining cache
performance necessitates the adoption of a cache
replacement algorithm when the cache becomes full.
Caching techniques find application in databases, content
delivery networks (CDNs), Domain Name Systems (DNS),
session management, application programming interfaces
(APIs), hybrid environments, web caching, available
cache, integrated cache, and more.

In the field of data management, caching has emerged
as a vital mechanism for enhancing system performance,
particularly in mobile computing environments. By storing
frequently accessed data locally, caching minimizes query
delays and optimizes resource utilization. This paper
focuses on the challenges and considerations associated
with data caching in mobile computing environments,
aiming to propose an effective cache replacement
algorithm that maximizes cache performance.

The primary objectives of this research are as follows:
1. Improve Performance: The study aims to enhance

the performance of data retrieval in mobile computing
environments by leveraging caching techniques. By
reducing query delays and conserving bandwidth, the

proposed cache replacement algorithm seeks to optimize
system performance and enhance user experience.

2. Address Limitations: Caching, while beneficial,
presents certain limitations, such as cache size restrictions.
This paper aims to tackle these limitations by introducing a
cache replacement strategy that efficiently manages cache
space, ensuring optimal data storage and retrieval.

3. Enhance Cache Consistency: Maintaining cache
consistency is crucial to prevent data inconsistencies
between the client cache and the server. The proposed
cache replacement algorithm endeavors to maintain cache
consistency by adopting appropriate strategies that
synchronize cached data with the server's data.

4. Analyze Network Traffic: The research focuses
on analyzing network traffic patterns to gain insights into
data access frequencies and popular data items. By
considering the probability distribution of a bell curve, the
proposed algorithm intelligently categorizes data and
determines which items should be stored in the cache to
maximize the overall profit value.

The key contributions of this paper can be summarized
as follows:

1. Novel Cache Replacement Algorithm: This
research introduces a novel cache replacement algorithm
specifically designed for mobile computing environments.
Unlike traditional approaches that ignore network traffic
patterns, the proposed algorithm leverages network traffic
analysis to make informed decisions on data storage and
eviction in the cache. By selectively caching highly
accessed data items, the algorithm aims to improve cache
hit rates and overall system performance.

2. The key contributions of this paper can be
summarized as follows:

10348 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

3. Novel Cache Replacement Algorithm: This

research introduces a novel cache replacement algorithm

specifically designed for mobile computing environments.

Unlike traditional approaches that ignore network traffic

patterns, the proposed algorithm leverages network traffic

analysis to make informed decisions on data storage and

eviction in the cache. By selectively caching highly

accessed data items, the algorithm aims to improve cache

hit rates and overall system performance.

A. Cache Replacement Algorithms

When the cache is complete, a data victim needs to be

selected. Instead of randomly selecting a block and

negatively affecting system performance, cache

replacement mechanisms like LRU, FIFO, LIFO,

LFU, MFU, and MRU are adopted. Least recently

used (LRU) considers that data not recently used for

a long time will not be used in the future. Hence, the

most recently used data are stored in the front of the

cache, and the least recently in the back end. When

the cache is full, and new data comes, a new entry will

be placed on the top, and back-end data will be

removed. With First in First Out (FIFO), the oldest

data is found in the front and are replaced when the

cache is full. So, when a mobile user cache is full, the

first data entry stored in the cache is erased to make

room for a new cached data item.

On the contrary, Last In First Out (LIFO) replacement

algorithm evicts the most recently added data

disregarding how many times it was accessed before.

Then, according to Least Frequently Used algorithm

(LFU), the least frequently used data object is

removed to make room for new cached data when the

cache reaches its maximum capacity. The data entry

with the fewest count gets shuffled to the tail of the

list. The opposite of LFU is the MFU replacement

algorithm, where the data entry with the most

accesses get shuffled to the tail of the list. When the

cache is full, the most frequently used data object is

removed to make room for a new cached data object.

In contrast to LRU, the Most Recently Used (MRU)

throw-outs the most recently used data first. When a

cache is full, the most recently used data item is

removed to give its place to a new cached data object.

B. Scalable Asynchronous Cache Consistency Scheme –

SACCS

 Scheme and Key Features

 Consistency is a significant challenge when dealing with

caches. Several cache consistency maintenance algorithms

were created to tackle this issue. First, we have the

stateless approach whereby the server (or mobile support

station MSS in mobile system) is unaware of the client's

content (or mobile user cache MUC). This approach

employs simple database management schemes; however,

it needs more scalability and the ability to handle user

mobility and frequent disconnections. In contrast is

stateful, which is scalable for large database systems. The

authors in [1] introduced a third approach combining

stateless and stateful, known as the Scalable

Asynchronous Cache Consistency Scheme (SACCS).

“SACCS mainly uses flag bits at the server cache (SC) and

MU cache (MUC), an identifier (ID) in MUC for each

entry after its invalidation, and estimated time-to-live

(TTL) for each cached entry, and the conversion of all

valid MUC entries into an uncertain state upon MU

wakeup” [1]. In each zone, multiple MU communicate

wirelessly via a local mobile support station (MSS). Each

MSS belongs to a wired network connecting it to the

original server.

In SACCS, the mobile support station (MSS) needs to

recognize the legitimate state of MUC data items, as

opposed to the asynchronous stateful method, which

requires the MSS to identify all data objects for each

MUC. SACCS, on the other hand, has an advantage over

the stateless approach in that the server does not need to

broadcast IRs to all MUs regularly, lowering the quantity

of IR messages delivered over the network.

SACCS has four characteristics that make it a high-

performance, scalable, and low-complexity algorithm. At

SC and MUC, flag bits are used, and an ID is assigned to

each data entry in MUC once it has been invalidated.

When a MU reconnects (or wakes up), all valid data entries

in MUC become uncertain, and each cached data entry has

a TTL (time-to-live).

 Consistency and Maintenance Efficiency

In SACCS, the MUC consistency is maintained using a

flag bit for each data input. The flag is set to 1 if a MU

retrieves a data entry from MSS, indicating that this data

entry is located in a specific MU. When MSS receives an

update message for that data entry, it broadcasts an IR to

all MUs, and the flag bit is reset to 0. When an IR for data

is broadcast, the data in a connected MU is set to an ID-

only state or invalidated. The MU does not receive any IR

if it is disconnected and all the data items in its cache are

set to an uncertain state. Thus, SACCS maintains cache

consistency across MSS and MUs.

SACCS is also scalable and efficient. Each data object is

associated flag bit that reduces the amount of IRs that must

be broadcast. When data in MSS is updated, only the IR

for the data with the flag bit set to 1 is broadcast. As a

result, bandwidth usage is reduced.

This remainder of the paper is organized as follows:

Section 2 presents related works. Section 3 presents the

proposed algorithm. The experimental results are

presented in section 4. And a conclusion is drawn in

section 5.

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10349

https://journal.uob.edu.bh

2. LITERATURE REVIEW

Cache memory is an integral component of modern

computing systems, bridging the gap between high-speed

processors and slower main memory. Efficient cache

management is essential to leverage the benefits of the

cache hierarchy effectively. This literature review focuses

on the latest advancements in cache management schemes

and discusses their impact on system performance. Some

of the replacement polices include:

• ARC (Adaptive Replacement Cache): The ARC

algorithm combines the advantages of LRU (Least

Recently Used) and LFU (Least Frequently Used)

policies by adaptively adjusting the cache size based

on workload behavior [2].

• CAR (Clock with Adaptive Replacement): CAR

algorithm employs a clock-based replacement policy

and dynamically adjusts the clock hand movement

based on recent access patterns, thereby improving

the cache hit rate [3].

• Prefetching Techniques: 3.1. StreamPrefetch:

StreamPrefetch leverages data stream identification to

accurately predict and prefetch data blocks, reducing

cache misses and improving memory access latency

[4].

• Markov Prefetcher: Markov Prefetcher utilizes

Markov models to predict the next memory address to

be accessed, enabling effective prefetching and

reducing cache miss rates [5].

• Cache Partitioning: 4.1. CAT (Cache Allocation

Technology): CAT enables cache partitioning at the

hardware level, allowing different cache regions to be

assigned to specific applications or threads, thereby

providing better isolation and QoS guarantees [6].

• NUCA (Non-Uniform Cache Architecture): NUCA

divides cache into multiple regions with varying

access latencies, optimizing cache utilization and

improving performance in multi-core processors [7].

• Adaptive Management Algorithms: 5.1. COSMIC

(Contention-Oblivious Shared Memory Intelligent

Controller): COSMIC dynamically adjusts the cache

partitioning and replacement policies based on

contention levels, enhancing fairness and

performance in shared memory systems [8].

• PID-Controlled Cache Management: PID-Controlled

Cache Management employs a proportional-integral-

derivative (PID) controller to dynamically adjust

cache allocation and replacement policies, achieving

optimal cache utilization [9].

• Delayed-Eviction module, which will not execute

eviction until the fetching is completed, ensuring that

the accessed contents during the fetching period are

not evicted. For the Standard-Conflict problem, we

propose Unified-Standard module to measure the

access probability of the requested content with a new

value function as well as contents cached in the edge

server. The module can ensure that the high-

probability contents in access process will not be

evicted in the following eviction process. The two

modules are integrated together to form a two-layer

caching framework named Adele [10].

• Least Partition Weight (LPW): LPW takes

comprehensive consideration of different factors

affecting system performance, such as partition size,

computational cost, and reference count. The LPW

algorithm was implemented in Spark and compared

against the LRU as well as other state-of-the-art

mechanisms and showed enhanced performance [11].

Other cache replacement strategies include:

A. Edge Caching

Implementing caching techniques at the edge of the

network has been highly adopted lately because of its

positive impact on system performance. Edge caching can

improve the network's output, reduce energy consumption,

improve the quality of service, and decrease system traffic.

The authors in [12] highlights essential factors when

implementing edge caching. In addition to deciding when,

how, and what data items we need to cache, caching at the

edge of the mobile network need to identify where to cache

the content.

There are two main approaches to apply when thinking of

edge caching. The first approach is caching data at the base

stations, referred to as infrastructure caching [13] [14]. A

different approach, named infrastructure-less caching,

obliges the network to do caching on the user terminal.

Either approach can improve system performance, and

lower congestion and delay since prefetching of data is

done at a lower level, reducing the load on the leading

network. The first approach performs caching at the level

of base stations; while the second method uses more than

one type of caching. It can be device-to-device or push

caching done with a single device. It is evident that by

embracing edge caching, the load on the back-end link and

network decreases, and communication is directly

between base stations and the devices. According to [13],

the main objectives of edge caching are "enhancing system

throughput, cultivating energy efficiency, lessening

backhaul load, increasing connectivity, and reducing

service delay."

B. AI-Edge Computing and Caching

Computers and digitalized technologies, including the

concept of the Internet of Things, have invaded our world

and affected our daily lives. Physical and natural

communication between people decreased and was

substituted by virtual connections [15]. Lately, mobile

computing has had a significant boost starting with the

first generation's invention up to today's discoveries

including the fourth and fifth generation in addition to

LTE [16]. With the tremendous changes happening in IoT

and mobile computing, adding to it the tremendous

amount of data being processed and stored, it was crucial

to introduce a new technology capable of maintaining

good quality of service for the user. The suggested

10350 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

invention was heterogeneous IoT with edge computing.

According to [17-18], both qualities of service and

experience shall be improved with this approach. We are

discharging the load from the back network and decreasing

the weight from data warehouses. The main objective of

heterogeneous IoT architecture is to be clear and able to

distinguish between high-priority applications that are

delicate to delay.

The architecture consists of heterogeneous IoT, edge

cloud, and central cloud. The brain of this system is the

cognitive engine found in the cloud. In addition, the cloud

includes all the data and resources needed for

communication. To release its load, an edge cloud was

invented. Each edge cloud will have its router, base

station, and a gateway that connects it to the core cloud

called edge nodes. Caching is done intelligently at the

level of edge. Heterogeneous IoT communicates with the

edge cloud regarding data requests. The most important

are the sensors for gathering and sending data like sensing

sounds, acceleration, GPS, etc. [19].

C. Cache Management in 5G

When we say 5G or fifth-generation mobile networks, we

automatically think of the high speed and massive amount

of data being transmitted. Because of these two factors, 5G

networks continually rely on caching and cache

management policies to improve their performance.

Because 5G networks include big data to be circulated,

focusing on data when developing a design for such

networks is a big failure. For example, this will increase

network congestion if many users access or request the

same data simultaneously. Hence, causing the system to

jam. The authors in [20] proposed a request admission

control (RAC) policy to efficiently control data to be

cached, aiming to improve the system's capacity and

benefit from maximum utilization of system resources.

"Studies have demonstrated that by assuring the optimal

use of limited resources, an efficient admission control

mechanism can lower blocking or dropping probability as

well as higher bandwidth utilization" [20].

The design of the proposed scheme is made up of units of

base stations called "SBSs." On top of these, there are the

macro-cell base stations or "MBSs." "SBSs" and "MBSs"

are connected to the main network via a wired connection.

The "SBSs" are responsible for increasing and enhancing

the network's capability; whereas, the "MBSs" focus on

controlling and handling the entire network using signals.

"MBSs and SBSs use orthogonal spectrum bands to avoid

inter-tier interference" [21]. When a data request is issued,

the user is connected to a particular "SBS" holding a

cached copy of the requested data. Otherwise, the user will

be connected to "MB."

D. D2D Cluster-Caching for 5G Multimedia Mobile

Networks

There are several types of data sent over the Internet. One

of which is time-tolerant applications which are not

affected by delays like sending an email. However, there

is a type of data like buffering videos and images that

cannot tolerate delays and are time-sensitive. These data

are transmitted and exchanged in multimedia networks.

The main obstacle with multimedia networks lies in

controlling the delay time and time to transmit data from

one network to another. In order to preserve the quality of

service and experience for the user, a device-to-device

technique was invented for a 5G network that is said to

boost communication and preserve power and energy as

well as minimizing the load on the back end network [22].

Therefore, multiple caching and mining policies have been

developed to be paired with D2D links in mobile

multimedia networks to address the previously stated

issues of delay and traffic. "A heterogeneous statistical

QoS-driven resource allocation approach using the D2D

cluster-caching based system is applied to successfully

address the aforementioned issues" [23].

The architecture is divided into multiple clusters. Each

cluster includes several connected users through a cellular

or D2D link. First, the D2D broadcasting link connects the

clustering head to the base station. The head itself is

connected to multiple end users via a direct link. These

users are called D2D users. The head is responsible for

forwarding messages in both ways. In addition to ensuring

that the data is sent with the same speed to all D2D users

within the same cluster. An advantage of D2D users is that

they can build a connection with each other, not with the

BS only. The second type of user is connected using a

wireless link, which we call cellular users. A vital

advantage of the D2D method is that all D2D users can

access a downloaded file or data previously cached in a

D2D user, whether in the same cluster or not [23].

E. Collaborative Hierarchial Caching

As the name implies, caching with the collaborative

hierarchical approach is based on multiple layers, mainly

two: inter and intra levels [24]. This method of caching is

primarily beneficial in 5G wireless networks. A decision

should be taken to select the layer to do the caching of data.

Regarding data communications, three methods are used:

wired or wireless communication and the device to device

transmission.

Wired links are established between the cloud and the

routers responsible for caching. These routers are located

in the first layer of the wireless edge network. These

routers transmit data to each other using a wireless

network through wireless fidelity or a cellular connection.

Using a wired link, the cacheable routers of layer one are

connected to the base station in layer two, which is

connected to an end user via device to device connection.

In contrast, mobile users communicate and share data

using wireless cellular connections. These users are

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10351

https://journal.uob.edu.bh

located in the third layer of the architecture. By adopting

the collaborative caching approach based on caching layer,

system performance will be enhanced by increasing the

number of cache hits and reducing the number of hops in

the system.

F. 5G Content Caching

In a 5G network, the data is not found exclusively with the

content provider. Instead, this data is forwarded to the

caching node or the base station. Thus, the user of the data

requester will not have to wait for the data to be requested

and provided by the leading content supplier. A copy of

the requested data will be stored in the node to respond

immediately. This content caching strategy in 5G caching

has many advantages in terms of decreasing response

waiting time and reducing system energy and power usage

significantly. Hence producing a higher quality of service

and better customer experience, which in turn leads to

maximum user satisfaction [25]. There are several pros to

applying caching technology in 5G, according to [26].

"First, it can cut the need for backhaul connections,

resulting in a higher deployment density for nodes, better

spectrum use, and higher network throughput." Second,

network congestion will decline by storing a copy of the

highly accessed data in a node. Bearing in mind that the

data response time will drop significantly as well since the

reply to the request will be performed on the node level

instead of going back to the primary data supplier [27].

UE is the user gateway from which the network data is

requested. The Access and Mobility Management

Function or AMF is in charge of the management of users'

portability and access to the network. The AMF is a

control plane function in the 5G core network that handles

connection and management mobility tasks. The module

responsible for the last final access point in the 5G network

is Radio Access Network or RAN. A RAN connects

individual devices to other parts of a network through

radio connections. It is a major component of modern

telecommunications with different generations of mobile

networking evolving from 1G through 5G. "Stackelberg

game application function (S-AF) interacts with the 5G

network's core network, network information processing,

and the deployment of the cache optimization approach,"

according to [26]. To govern and regulate end-user

sessions, the SMF module is used. To manage the user

interface, the User Plane Function or UPF model is

utilized, which includes a function for this matter. The

UPF represents the data plane evolution of a Control and

User Plane Separation (CUPS) strategy, which is a

fundamental component of the 3GPP 5G core

network(5GC). The UPF plays the most critical role in the

process of data transfer.

Finally, the model which the data provided is located is

called the DN. The architecture of the system includes data

providers and wireless network operators. The network

operator will specify the cost of the base station. Then the

data supplier is notified. Based on the network operator

type and the base station cost produced, a slot or portion

of the content provider is allocated for end users' use.

Thus, the end user will simply download or have access to

the data immediately from the base station.

G. Cooperative Caching

 Cooperative Caching in Wireless Sensor Networks

(WSN)

Wireless sensor networks are made up of several nodes.

These nodes are capable of interchanging and coordinating

data. This is referred to as cooperative caching. The

critical advantage of cooperative caching is that it allows

vertices to have a collaborative cache room, reducing the

cost of the communication link. Based on [28], several

preconditions should be present for cooperative cache

management to be efficient. First, the CDA. A cache

discovery algorithm is needed to specify means to fetch

and allocate the asked-for data to the adjacent nodes.

Another fundamental requisite is the CAC or what is

known as Cache Admission Control Algorithm. This

algorithm identifies which data will be used later and must

be cached. Besides, CRA is crucial in cooperative caching.

When the cache is full, a cache replacement algorithm is

needed, and the decision should be taken to choose a

candidate item to be replaced. Finally comes the cache

consistency algorithm, which validates the correctness of

data written in the cache. The validation process analyzes

the value of time-to-live (TTL).

 Caching in Cooperative Zones (CCZ)

Caching in Cooperative Zones (CCZ) is based on dividing

the network into zones. The main advantage is that the cost

in local zones is low since adjacent nodes located in the

same local zone share the cached data. Nodes are called

sensor nodes, and the network is called a wireless sensor

network. When a request for a data item occurs, the

receiver will check if data is found in local memory. If

found and valid, i.e., the consistency algorithm resulted in

a valid copy, the data requested is provided, and a local hit

happens. If not valid, the node will ask for a validated copy

from an adjacent neighbour in the local zone. If data is not

found locally, then local miss happens, and we need to

search for the territory of the local zone. If data is found in

one level neighbouring node, it will be retrieved and sent

back to the requester resulting in a zone hit. Otherwise, a

zone miss occurs, and we need to check and search for the

requested data in the zones along the path of the original

node. If data was found in other zones, a remote hit occurs.

If not found, it will be requested from the data centers of

the original node, and a global hit will occur. In cases of

remote and global hits, the cache admission and cache

replacement algorithms are used to provide data requested

by the user [28].

H. IoT and Caching

 IoT

Internet of things – IoT is considered the second most

extraordinary transformation in the world of technology

and science after the invention of the Internet. IoT is a

10352 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

simulated and uncontrolled network of interconnected

objects and devices that exchange data and information

according to a conventional and recognized set of rules.

According to references [29] [30], the primary task of the

Internet of Things is to identify, trace, track, observe and

control devices intellectually and wisely. "It now appears

in various domains; Smart Home, Wearable, Retail, Smart

Cities, Healthcare, Agriculture,

Automotive/Transportation, Industrial Automation, and

Energy Management" [31]. Likewise, it grants easy access

and involvement of a range of devices including "home

appliances, surveillance cameras, monitoring sensors,

actuators, displays, vehicles, and so on," according to the

study in reference [18]. IoT was referred to as AAA:

anytime, anywhere, anything. However, there is discord

among scientists regarding the definition of IoT, resulting

in multiple interpretations of the matter on business type

and individual preference [32]. One of the main reasons

that made IoT booming in the field of data science is its

application and uses in almost all types of fields and

domains.

The authors in [33] [34] demonstrate a generic list of areas

where IoT is significantly used, such as "Home

automation, medical aids, mobile healthcare, elderly

assistance, intelligent energy management, and smart

grids, automotive, traffic management and many others”

[34].

IoT is capable of location detecting, distributing,

controlling from a distance, and communicating securely

and efficiently in addition to ad hoc networking. Recall the

significant impact of IoT when applied to mobile

computing. The author in [29] says that IoT can help

mobile networks with "tracking, fleet management, traffic

information system, disaster detecting and much more”.

Three layers build up the internet of things architecture

[35]. The lowest layer is the level that deals with nodes and

circuits and is responsible for the instilled and internal

communications. This is known as the hardware layer.

Then comes the middleware layer, which is responsible for

managing, processing, and storing data. The upper layer,

known as the presentation layer, is the high-end layer, i.e.,

it contains advanced high-end tools that can flexibly work

with several interfaces from different applications and

provide data in one unified, comprehensive form.

 IoT and Edge Computing

Mobile computing is considered a solid foundation for the

invention and creation of the Internet of Things. The

reason behind that is that the earlier was well known for

its applications and technologies in linking everything

(objects, things, etc.) to the internet, as well as being

ideally used in applications based on time. However, for

non-time sensitive applications, SDN or Software Defined

Network was suggested in [31]. Centralization of data is a

crucial concept in mobile computing, which causes a

significant drawback in terms of performance degradation

because of limited battery life and computing power. The

issue of data centralization is addressed by introducing a

new concept in network computing, referred to as edge

computing. Edge computing means forcing or pushing all

the computing functions to the network edges instead of

concentrating them in the center. This can significantly

improve performance by minimizing latency and delay

time needed to fetch data. Also, it will help increase the

accessible band [21, 32]. This is precisely what Cisco

created. A new concept of edge computing, called fog

computing, was introduced to enhance and improve

system performance [21, 36].

In contrast to mobile computing, Fog computing

legitimizes programs and software of devices to run

directly at the network edge. The devices on which these

applications run must be in the IoT. Fog computing is

powerful in terms of the number of connected devices it

can handle. The applications will execute on the network

edge as long as these devices are in the IoT. That is why

fog computing pairs well with IoT scenarios [37].

 IoT-based NDN and Hybrid Cache Management

Internet Protocol IP is considered limited in terms of data

distribution when it comes to applications based on the

Internet of Things. Hence, the Named Defined Network,

known as NDN, was adopted. The NDN paradigm is

identified as a key enabler of 6G network architectures

aimed at improving content distribution. NDN is an

information centric networking (ICN) architecture that

promotes a communication model directly based on

topology-independent content names, instead of internet

protocol (IP) addresses.

Where to place caching program and what the adopted

technique used for replacement when the cache is full are

believed to be critical factors that are highly needed for

IoT networks. To handle and tackle internet issues in terms

of data delivery, the number of hop counts and percentage

of hit ratio, and improving system performance in general,

an innovative strategy was created to enhance

performance in networks, specifically in IoT

environments. A hybrid cache management technique is

adopted in the Name Defined Networks. NDN networks

consist of several cacheable nodes. These nodes are

responsible for storing and fetching data each time a data

request is explicitly sent in IoT schemes resulting in a high

hit ratio due to fast identification of data accessibility. In

addition, the NDN hybrid cache system helps reduce

energy consumption and various benefits can be achieved

via the IoT, including "quick data availability, reduced

energy and power consumption, reduced network resource

usage, reduced network congestion, and effective

bandwidth utilization" [38].

 Caching in ICN

a) Information–Centric Network – ICN

As the name implies, an information-centric network of

ICN is based entirely on information and material of the

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10353

https://journal.uob.edu.bh

customer regardless of the latter's location or type of

requester. "This concept provides unique and location-

independent content names, in-network caching, and

name-based routing." With ICN retrieving and accessing

data is easy because of caching, in addition to the

significant advantage, which is distributing the load

between the customer and producer. Because ICN does not

depend on location, the traffic and congestion are reduced.

An information-centric network is considered an ideal

solution for IoT environments, particularly for named data

networking (NDN) [31].

b) In-Network Caching Strategies

As stated above, the named defined networks are based on

cacheable nodes. These nodes are part of the request and

response paths when data is requested. Based on the

adopted caching policy, each node decides whether it

should store a copy of the requested data. The first type is

the LCE method or as known as Leave Copy Everywhere

[39 – 41]. Each cacheable node residing on the requesting

path will save a copy of the requested data. Second is the

Leave Copy Down (LCD) technique. With LCD, two

nodes will save a copy of the requested data in contract to

LCE. A copy is saved in the gateway and a second copy is

on the returning path to the client. Then comes the edge-

caching approach [42], which is the opposite of LCD. The

cached data is saved on the final doorway node on the path

back to the user. Another in-network caching strategy is

the consumer-cache strategy [43] is an alternative to edge-

caching. The cached data is saved on the first node on the

return path to the client.

Next comes the between-ness centrality. This caching

strategy is based on counts. Nodes with the highest number

of counts will store a copy of cached data. If node x is part

of connecting two other nodes in the network, the count

for node x is incremented. The node with the highest count

is responsible for storing a copy of data. This count is

referred to as the "between-ness centrality metric" [44].

Finally, the last type of caching method in ICN is the

ProbCache caching approach [44] which is based on

probability. The probability is calculated based on the

inversely proportional link of the distance between the

user and the creator. The node with the highest probability

is the node to store a copy of the cached data.

I. Big Data

The number of internet and technology users has increased

dramatically in the past years due to the widespread of

social networking platforms and wireless mobile

applications. A vast amount of information is generated,

processed, and stored every second. This is known as big

data. Big data comes in different types and from different

resources. Data can be structured, semi-structured, or

unstructured; may come from databases, logs, social

networks, documents, etc. Big data is empirical because it

allows businesses to improve by making the right

decisions by collecting data and studying and analyzing

previous and current behaviors. Despite its advantages, big

data has many drawbacks. Scalability is a major downside.

While all applications, systems, and platforms are oriented

towards expansion in data and information, and to solve

the issue of robustness, it is required to become software-

defined. This problem occurs in wireless mobile

frameworks because of their limited architecture. In this

context, fog computing was an ideal solution whereby

edge devices and the cloud operate similarly [45 - 46]. A

popular example where big data is highly famous and used

is Hadoop; it proved to be a successful example of "big

data management software offering software solutions in

terms of cost, processing capabilities, analytic techniques

compared to traditional tier-one database infrastructures"

[45]. Hadoop adopted edge or fog computing. It pushes

data toward users and forces the required applications to

the edge, increasing customer satisfaction. Edge

computing and big data work as follows. "A big data

platform installed at the core site is in charge of monitoring

and forecasting user demand, and cache-enabled BSs store

the strategic contents that the big data platform has

forecast."

The cache-enabled architecture includes a big data

platform and cache-based station. So instead of accessing

the core router, which will access the cloud and hence

increase network traffic and congestion, leading to

bottlenecks, the big data platform will include a database

and cluster computing system that locates or caches data

based on machine learning and analyses of users'

behaviors.

This literature review has provided an overview of the

latest cache management schemes, covering replacement

policies, prefetching techniques, cache partitioning, and

adaptive management algorithms. The discussed schemes

have demonstrated improvements in cache performance,

hit rates, and system throughput. However, further

research is needed to explore their scalability, adaptability

to diverse workloads, and integration with emerging

architectures.

3. THE APPROACH

When the caching concept was first introduced,

minimizing and decreasing network congestion traffic was

the primary purpose. The system will respond immediately

with a copy of the requested data if found or stored in the

small memory known as a cache. Hence reducing delay

from one side and decreasing circulation of requests in the

network from the other, leading to less congestion and

network traffic. Despite its advantages, caches have some

significant drawbacks. Limitations in size led to the

introduction of cache replacement algorithms that aimed

to improve cache work in case the latter was full. Several

algorithms were presented, and two or more replacement

algorithms were combined to maximize the efficiency of

the cache. Another area for improvement in the cache was

consistency. To assure data in the cache are reliable, i.e.,

consistent with their original copies in main memory,

numerous consistency schemes were adopted like stateful

10354 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

and stateless methodologies. An approach combining

stateful and stateless methods called Scalable

Asynchronous Cache Consistency Scheme (SACCS) was

introduced to improve system performance. SACCS was

combined with known replacement algorithms like FIFO

and MFU to maximize system performance [1].

We currently live in a world that is shifting towards

analyzing and processing data continuously. A massive

amount of data is created every day. "Data is the new oil,"

a quote by Branka Vuleta reflecting today's global

economy and our digital lifestyle. With all this being said,

we can no longer stick to the traditional methods of

caching and cache replacement algorithms. We need to

maximize the work of a cache to improve system

performance, which will lead to end-user satisfaction.

Previously with SACCS and all the replacement

algorithms, data was written to cache randomly. In our

work, we will adopt a different writing method to cache.

Updating the cache will be based on analyzing network

traffic to identify winner data to be allocated in the cache.

With the newly adopted approach, system performance

improved significantly. This was experimented with by

testing the cache hit ratio, cache miss ratio, and access

delay. Experimental results will be represented in section

4 of this paper.

A cache hit occurs when the data requested by the user or

application is already found in the cache. It provides a fast

reply since data is retrieved by reading the cache memory.

To evaluate cache performance, the cache hit ratio is

calculated. It is equivalent to the number of cache hits

divided by the total of cache hits and cache misses (or 1 -

cache miss ratio). Similarly, as the name implies, a cache

miss happens when the requested data is not found in the

client's cache. The client only requests the data from the

server (main memory). The client will retrieve the

requested data from the server, keep a copy of it in its local

cache for future requests, and then forward the data item

to the client. The Miss ratio is calculated to evaluate the

performance. It corresponds to the number of cache miss

divided by the total of cache hit and cache miss (or 1 -

cache hit ratio).

To improve performance, i.e., increase cache hit (decrease

cache miss), the new approach focuses on analyzing

network traffic and selectively writing data into the cache,

unlike the old approach, which ignored network traffic and

randomly added data into the cache.

Network traffic follows a log-based probability

distribution based on a bell curve. In this distribution,

around 70% of system traffic goes to 30% of the data. The

remaining 30% of the traffic goes to 70% of the data. This

means that data is categorized into two groups: highly-

requested and not-highly-requested. Highly requested data

comprise 70% of network traffic, and not-highly-

requested data make up the remaining 30%. Simply this

approach will check and identify data before adding it to

the cache. If the data is highly requested and is not already

in the cache, it will be written into the cache. However, if

the data is rarely accessed and not highly requested, it will

be ignored and not added to the cache. We are

automatically increasing the hit rate by adopting this

approach since we are filling up the cache with highly

accessed and frequently requested data items.

Furthermore, the red curve in figure 1 below highly

describes the behavior of network traffic, similar to that of

a log probability distribution. Zones 1 and 3 represent 30%

of network traffic, including 70% of the data. These data

are labelled as not-highly-requested data. Zone 2

represents 70% of network traffic and includes highly-

requested data (30% of the data). We are greatly interested

in these data items and will write to cache to increase the

cache hit and improve system performance.

Based on the bells curve and the log-based probability

distribution, data were classified as either highly accessed

or not to identify whether to write it to cache or ignore it.

The below flowchart of figure 2 illustrates the way the

approach works.

When a data item is requested, the approach checks

whether the requested data is highly accessed based on

network traffic analysis. If so, data is written into the cache

if not already in the cache. If data is not highly accessible,

it will be ignored and not added to the cache. To illustrate,

the suggested approach depends on five critical procedures

illustrated in the tables below. Foremost, a table is created

to store the frequency of access for each data point. Each

time a request is sent to access a particular data point, the

frequency table is updated to reflect the change. Ideally,

the newly added data points will be located at the bottom

because they have zero access. As more requests are

received with time, the frequency of the data requested

will be updated, and consequently, the data point will have

its proper positioning. Accordingly, the decision to cache

Figure 2. Red Curve illustrating the behaviour of network

traffic

 Figure 1. network traffic analysis flow

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10355

https://journal.uob.edu.bh

or not will be performed. The process of updating the

frequency of the data point is shown in table 1 below.

TABLE I. UPDATE FREQUENCY PROCEDURE

 Data Point Frequency Update Method

 Begin

1 UpdateFrequency(data_point):

2 frequency = GetDataPointFrequency(data_point)

3 frequency += 1

4 SetDataPointFrequency(data_point, frequency)

 End

The current frequency value for the data item is identified

by calling the GetDataPointFrequency(data_point)

method. Then this value is incremented by one and

updated using the SetDataPointFrequency(data_point,

frequency) method. To keep data in the cache consistent

and updated, the method shown in table 2 below should be

called periodically. To update the cache table, we need to

know the probability of the data item. This is done using

the GetProbability(data_point) function. The procedure

checks if the probability is less than 0.3 (i.e., a data item is

not highly accessible according to the adopted approach

and bell's curve). Hence, data should be removed from the

cache.

TABLE II. UPDATE CACHE TABLE PROCEDURE

 Cache Table Update Method

 Begin

1 for data_point in data_points:

2 probability = GetProbability(data_point)

3 if probability < 0.3:

4 RemoveFromCache(data_point)

 End

The get-all frequencies method of table 3 is used to view

and retrieve the frequencies of all data items. The

frequency value is retrieved by using

GetDataPointFrequency(data_point). Each data point has

a count that is incremented when accessed. The method

would return how many times a data point has been

accessed. The method will return a zero value if the data

item does not exist.

TABLE III. GET ALL FREQUENCIES PROCEDURE

 Get All Frequencies Method

 Begin

1 GetAllFrequencies:

2 frequencies = []

3 index = 0

4 for data_point in data_points:

5
frequency =

GetDataPointFrequency(data_point)

6 frequencies[data_point] = frequency

7 return frequencies

 Get All Frequencies Method

 End

Upon the arrival of the request for a data item di, we are

assuming we have a history of network traffic. We need to

analyze the traffic of this data and see if it is highly

accessed. This is done based on the bell curve, and since

70% of network traffic includes highly accessed data, we

check if the requested data has a probability greater or

equal to 0.7, i.e., it lies in the area of highly accessed data

in the bell curve. This is decided based on the output of

getting probability and should cache methods illustrated in

tables 4 and 5, respectively. The get probability method

will retrieve all the frequencies using the

GetAllFrequencies() method and then sort them using the

sort() method. If the data item is at the 30% bottom, i.e., it

is not highly accessed and should not be cached, it will be

identified by returning its position.

TABLE IV. GET PROBABILITY PROCEDURE

 Get Probability Procedure

 Begin

1 GetProbability(data_point):

2
frequency =

GetDataPointFrequency(data_point)

3 all_frequencies = GetAllFrequencies()

4 sort(all_frequencies)

5 # data point is at the bottom 30%

6 return position(frequency, all_frequencies)

 End

The should cache method is responsible for the following.

If the retrieved probability value for the get probability

method is below 0.3 (i.e., the data point is located in the

30% bottom), the method points out that data should not

be cached. If it is not the case (i.e., the data item is located

in the top 70%, which means it should be cache), the

system will check if there is space in the cache to add this

item. If the cache is not full, the data item will be added.

Otherwise, we need to check if we can replace the data to

be cached with an existing cached item. We need to

replace an existing cache item with a lower probability

than the new one. Else, all cached data have a higher

probability. Hence the data point will not be cached.

TABLE V. SHOULD CACHE PROCEDURE

 Should Cache Procedure

 Begin

1 ShouldCache(data_point):

2 probability = GetProbability(data_point)

3 if probability < 0.3:

4 return False

5 if CacheIsNotFull:

6 return True

7 if CacheIsFull:

8 for cached_point in cache:

10356 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

 Should Cache Procedure

9 prob = GetProbability(cached_point)

10
replace an existing cache item that has a

lower probability with the new item

11 if probability > prob:

12 return True

13
all cached data have a higher probability,

so the data point will not be cached

14 return False

 End

Finally, if should cache method result was to write the data

item into the cache, the cache method displayed in table 6

is responsible for this task. Item will be inserted to cache

if cache capacity permits (i.e., the cache is not full).

Otherwise (i.e., if the cache is full), we need to find a

cached item with a probability lower than the new data

item we need to add. In other words, the probability of the

data item we need to write to the cache should be greater

than the lowest cached item's probability.

TABLE VI. CACHE PROCEDURE

 Cache Procedure

 Begin

1 Cache(data_point):

2 if CacheIsNotFull:

3 InsertToCache(data_point)

4 else:

5 for cached_point in cache:

6 prob = GetProbability(cached_point)

7
replace an existing cache item that has a lower

probability with the new item

8 if probability > prob:

9 # replace cached_point with the new data_point

10 ReplaceInCache(cached_point, data_point)

11 return

 End

4. EXPERIMENTAL RESULTS

For testing purposes, every experiment was performed ten
times with a fixed number of requests (1000 requests) for
the six algorithms. Four factors were used to evaluate and
test the efficiency of the adopted approach: writing to cache
based on network traffic analysis—the number of cache
hits and misses, delay time, and percent of delay
improvement. The experimental results are compared with
the old traditional approach, writing randomly to cache. By
definition, a cache hit is when the data requested for
processing is located and found in cache memory; whereas
cache miss is the reverse, i.e., data requested is not in cache
memory. If the cache hit is (x), a cache miss is computed
using (1-x) and vice versa. In case of a cache miss, the
system must retrieve the requested data from the main
memory. The time needed to do that is known as delay
time. The Delay time in cache hit is zero. In our work, we
use the terms delay and total delay. Delay time is the actual
delay when utilizing a cache strategy which is writing to

cache based on network traffic. However, the total delay
time is when not using any caching strategy, i.e., writing to
cache randomly. To evaluate the attained improvement of
the new approach, the incremental improvement in the
delay is calculated using: Total improvement = 1 –
(delay/total delay). The below figures illustrate the
experimental results of the adopted approach of analyzing
network traffic to write efficiently to cache. Figure 3 below
shows that all algorithms performed better with the
network traffic analysis approach with a maximum cache
miss ratio of 69.6 (LIFO replacement algorithm). FIFO and
MFU performed the best, with the lowest cache miss ratio
of 59.6. Then comes LFU (60.52) and LRU (60.69); finally,
MRU has a 67.37 cache miss ratio. In the previous
approach, FIFO performed the best with a cache miss ratio
(of 69.1).

In figure 5, a comparison between time delay and total

time delay shows the efficiency of the adopted approach.

This is reflected by dramatic improvement and a decrease

in delay in all the replacement algorithms. As shown

below, LRU has 14616.3 delay time with the new

approach vs. 24262.5 with the old approach, resulting in

an improvement of 39.75 %, as represented in figure 6.

FIFO had the highest delay improvement percentage,

40.28%, with a delay of 14758.4 compared to 24712.9

with writing randomly to cache. MFU delay time

improved by 40.21%, as shown in figure 6. Its delay time

with writing to cache based on the network traffic

approach improved to 14698.8 compared to 24586.3 with

the old approach. LRU and LFU come next with 39.75%

and 38.27% of improvement, respectively. In a nutshell,

the delay time for all replacement algorithms improved

significantly by a minimum of 30% (LIFO) and a

maximum of 40.28% (FIFO).

As a result, the newly adopted approach of this study has

experimentally proven its efficiency based on the positive

outcomes of all testing factors. The cache hit ratio and

cache miss ratio improved significantly, with all

replacement algorithms bypassing the best results of the

old approach (FIFO + SACCS). With the improved cache

Figure 3. Cache Hit Ratio

Figure 4. Cache Miss Ratio

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10357

https://journal.uob.edu.bh

hit ratio and cache miss ratio, the delay time improved

vividly.

Analyzing traffic in a cache replacement strategy

surpasses other cache replacement strategies due to its

ability to leverage fine-grained information about data

access patterns, resulting in improved cache performance.

By analyzing traffic, the replacement strategy can

effectively identify frequently accessed data blocks and

prioritize their retention in the cache, while evicting less

frequently accessed or cold data. This approach enables

the cache to adapt dynamically to workload variations,

reducing cache misses and improving overall cache hit

rates. Unlike traditional replacement strategies that rely

solely on limited information such as recency or frequency

of data accesses, traffic-based analysis considers the

temporal and spatial locality of data references, enabling

more accurate predictions of future data accesses.

Furthermore, analyzing traffic provides insights into the

access patterns of different data types or application

domains, allowing the cache replacement strategy to tailor

its decisions to specific workloads, thus optimizing cache

utilization and system performance. Overall, the

incorporation of traffic analysis in a cache replacement

strategy offers a more comprehensive and sophisticated

approach that outperforms other strategies by exploiting

detailed knowledge of data access patterns for efficient

cache management.

CONCLUSION

Caching plays a pivotal role in enhancing data retrieval

performance within mobile computing environments. Due

to the wireless communication between the mobile device

and the server, numerous challenges arise, including

intermittent connections, limited uplink bandwidth, and

constrained client resources. Caching at the mobile client

alleviates these issues, albeit with certain limitations.

Various approaches, such as stateful, stateless, and

SACCS methodologies, have been proposed to maintain

cache consistency. However, the cache size limitation

remains a challenge. To address this limitation,

replacement strategies have been suggested.

In this study, we introduce a novel cache replacement

algorithm based on network traffic analysis and the

categorization of data according to a bell curve's

probability distribution. Our proposed approach focuses

on analyzing network traffic and selectively storing data in

the cache, departing from the previous approach that

disregarded network traffic and randomly added data to

the cache. The primary objective is to maximize the

overall profit value of cached data items. Comparative

evaluations with other strategies demonstrate superior

performance of our algorithm.

Future work in cache management research will include

comparative evaluations of our proposed cache

replacement strategies with the latest cache replacement

strategies available in the literature. This comparison aims

to determine the relative performance and effectiveness of

different cache replacement schemes.

By conducting a comprehensive analysis of the newest

cache replacement strategies, we can gain insights into

their strengths, limitations, and potential areas of

improvement. This evaluation will involve benchmarking

the different replacement policies against a wide range of

workloads and assessing their cache hit rates, miss rates,

and overall system performance. The comparative study

will provide valuable information to determine which

cache replacement strategies outperform others in specific

scenarios. It will enable us to identify the most efficient

and effective strategies that can be adopted in various

computing environments, such as high-performance

computing, cloud computing, and embedded systems.

Additionally, the comparative evaluation will help identify

the impact of different cache replacement strategies on

system-level metrics, such as energy consumption,

resource utilization, and response time. This holistic

analysis will enable researchers and practitioners to make

informed decisions when selecting cache replacement

strategies for specific applications or computing systems.

Furthermore, the comparison of cache replacement

strategies will facilitate the identification of potential
research directions and areas for further improvement. It
may reveal opportunities to develop novel hybrid or
adaptive cache replacement approaches that combine the
strengths of multiple existing strategies to achieve even
better performance.

REFERENCES

[1] Haraty, R. A., & Nahas, L. H. (2018). A Recommended
Replacement Algorithm for the Scalable Asynchronous Cache
Consistency Scheme. Proceedings of the 7th iCatse International
conference on IT Convergence and Security, Seoul, Korea, 25-28
September 2017.

Figure 5. Delay vs. Total Delay in msec

Figure 6. Percent in Delay Improvement

10358 Haraty, et al.: Network Traffic Analysis as a Strategy for Cache Management

https://journal.uob.edu.bh

[2] Megiddo, N., & Modha, D. S. (2003). ARC: A Self-Tuning, Low
Overhead Replacement Cache. In USENIX Annual Technical
Conference (pp. 1-14).

[3] [3] Jiang, H., Zhang, X., & Li, H. (2012). CAR: Clock with
Adaptive Replacement. IEEE Transactions on Computers, 61(1), 5-
18.

[4] [4] Liu, J., & Chung, S. (2018). StreamPrefetch: Exploiting Data
Stream Identification for Efficient Prefetching. ACM Transactions
on Architecture and Code Optimization, 15(4), 1-25.

[5] [5] Gao, Y., & Lilja, D. (2011). Markov Prefetcher: An Accurate
Next-Address Predictor for the Memory Hierarchy. IEEE
Transactions on Computers, 60(9), 1285-1301.

[6] [6] Intel Corporation. (2015). Intel® Cache Allocation Technology
(CAT): A new performance capability for the Intel® Xeon®
Processor E5 Family. Retrieved from
https://software.intel.com/content/www/us/en/develop/articles/inte
l-cache-allocation-technology.html

[7] [6] Hsieh, S., & Jouppi, N. P. (2006). Understanding the
Interactions of Pthreads in Speculative Parallelization. In
Proceedings of the 2nd Annual Workshop on the Interaction
between Compilers and Computer Architectures (pp. 1-9).

[8] [8] Li, Q., Gao, M., & Zhang, Z. (2018). COSMIC: A Contention-
Oblivious Shared Memory Intelligent Controller. In Proceedings of
the 27th International Conference on Parallel Architectures and
Compilation Techniques (pp. 131-143).

[9] [9] Yuan, K., & Niu, X. (2012). PID-Controlled Cache
Management for Embedded Systems. Journal of Computers, 7(7),
1651-1660.

[10] [10] Pengmiao Li, Yuchao Zhang, Huahai Zhang, Wendong Wang,
Ke Xu, Zhili Zhang, A delayed eviction caching replacement
strategy with unified standard for edge servers, Computer
Networks, Volume 230, 2023, 109794, ISSN 1389-1286,
https://doi.org/10.1016/j.comnet.2023.109794.

[11] [11] Hui LI, Shuping JI, Hua ZHONG, Wei WANG, Lijie XU,
Zhen TANG, Jun WEI, and Tao HUANG, LPW: an efficient data-
aware cache replacement strategy for Apache Spark. Science China
– Information Sciences, Vol. 66, 112104:1–112104:20, January
2023.

[12] [12] J. A. Stankovic, “Research directions for the Internet of
Things,” IEEE Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[13] [13] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative
hierarchical caching in 5G cloud radio access networks,” IEEE
Network Magazine, August 2016.

[14] [14] M. Zhang, H. Luo, and H. Zhang, “A Survey of Caching
Mechanisms in Information-Centric Networking,” IEEE Commun.
Surveys & Tutorials, vol. 17, no. 3, 2015, pp. 1473–99.

[15] [15] L. Zhou et al., “When Computation Hugs Intelligence:
Content-Aware Data Processing for Industrial IoT,” IEEE Internet
of Things J., vol. 5, no. 3, June 2018, pp. 1657–66.

[16] [16] D. Wu et al., “Optimal Content Sharing Mode Selection for
Social-Aware D2D Communications,” IEEE Wireless Commun.
Letters, vol. 7, no. 6, 2018, pp. 910–13.

[17] [17] Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad, and
S. U. Amin, "Smart-Edge-CoCaCo: AI-Enabled Smart Edge with
Joint Computation, Caching, and Communication in
Heterogeneous IoT," in IEEE Network, vol. 33, no. 2, pp. 58-64,
March/April 2019, DOI: 10.1109/MNET.2019.1800235.

[18] [18] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen and M. Chen,
"In-Edge AI: Intelligentizing Mobile Edge Computing, Caching
and Communication by Federated Learning," in IEEE Network,
vol. 33, no. 5, pp. 156-165, Sept.-Oct. 2019, doi:
10.1109/MNET.2019.1800286.

[19] [19] Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad, and
S. U. Amin, "Smart-Edge-CoCaCo: AI-Enabled Smart Edge with
Joint Computation, Caching, and Communication in
Heterogeneous IoT," in IEEE Network, vol. 33, no. 2, pp. 58-64,
March/April 2019, DOI: 10.1109/MNET.2019.1800235.

[20] [20] M. F. Ahmad and M. Arif Hossain, "Mobility Aware Cache
Management in 5G Future Generation Wireless Communication
System," 2019 1st International Conference on Advances in

Science, Engineering and Robotics Technology (ICASERT), 2019,
pp. 1-6, DOI: 10.1109/ICASERT.2019.8934710.

[21] [21] S. Zhang, N. Zhang, P. Yang, X. Shen, "Cost-effective cache
deployment in mobile heterogeneous networks." IEEE
Transactions on Vehicular Technology 66.12 (2017): 11264-
11276.

[22] [22] Y. Shen, C. Jiang, T. Q. S. Quek, and Y. Ren, “Device-to-
device-assisted communications in cellular networks: An energy
efficient approach in downlink video sharing scenario,” IEEE
Transactions on Wireless Communications, vol. 15, no. 2, pp.
1575–1587, Feb. 2016.

[23] [23] X. Zhang and J. Wang, "Heterogeneous Statistical QoS-Driven
Resource Allocation for D2D Cluster-Caching Based 5G
Multimedia Mobile Wireless Networks," 2018 IEEE International
Conference on Communications (ICC), 2018, pp. 1-6, DOI:
10.1109/ICC.2018.8422701.

[24] [24] X. Zhang and Q. Zhu, "Collaborative Hierarchical Caching
over 5G Edge Computing Mobile Wireless Networks," 2018 IEEE
International Conference on Communications (ICC), 2018, pp. 1-6,
DOI: 10.1109/ICC.2018.8422371.

[25] [25] R. Torre, I. Leyva-Mayorga, S. Pandi, H. Salah, G. T. Nguyen,
and F. H. P. Fitzek, “Implementation of network-coded cooperation
for energy efficient content distribution in 5G mobile small cells,”
IEEE Access, vol. 8, pp. 185964–185980, 2020.

[26] [26] Yanfang Zha, "Key Technologies of Cache and Computing in
5G Mobile Communication Network", Wireless Communications
and Mobile Computing, vol. 2021, Article ID 3099272, 11 pages,
2021. https://doi.org/10.1155/2021/3099272

[27] [27] A. Gupta and R. K. Jha, “A survey of 5G network: architecture
and emerging technologies, ” IEEE Access, vol. 3, pp. 1206 – 1232,
2015

[28] [28] Charan, Piyush & Usmani, Tahsin & Paulus, Rajeev & Saeed,
Syed. (2018). A Cooperative Cache Management Scheme for
IEEE802.15.4 based Wireless Sensor Networks. International
Journal of Electrical and Computer Engineering (IJECE). 8. 1701.
10.11591/ijece.v8i3. pp1701-1710.

[29] [29] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, "A Vision of
IoT: Applications, Challenges, and Opportunities With China
Perspective," in IEEE Internet of Things Journal, vol. 1, no. 4, pp.
349-359, Aug. 2014, DOI: 10.1109/JIOT.2014.2337336.

[30] [30] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things:
A survey,’’ Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct.
2010.

[31] [31] Maroua Meddeb, Amine Dhraief, Abdelfettah Belghith,
Thierry Monteil, Khalil Drira. How to cache in ICN-based IoT
environments? ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA 2017), Oct 2017, Hammamet,
Tunisia. HAL-01575386

[32] [32] Gupta D, Rani S, Ahmed SH, Verma S, Ijaz MF, Shafi J. Edge
Caching Based on Collaborative Filtering for Heterogeneous ICN-
IoT Applications. Sensors (Basel). 2021 Aug 15;21(16):5491. DOI:
10.3390/s21165491. PMID: 34450933; PMCID: PMC8402262.

[33] [33] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M.
Mustaqim, "Internet of Things (IoT) for Next-Generation Smart
Systems: A Review of Current Challenges, Future Trends and
Prospects for Emerging 5G-IoT Scenarios," in IEEE Access, vol. 8,
pp. 23022-23040, 2020, DOI: 10.1109/ACCESS.2020.2970118.

[34] [34] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi,
"Internet of Things for Smart Cities," in IEEE Internet of Things
Journal, vol. 1, no. 1, pp. 22-32, Feb. 2014, DOI:
10.1109/JIOT.2014.2306328.

[35] [35] Salman, O.; Elhajj, I.; Kayssi, A.; Chehab, A. Edge computing
enabling the Internet of Things. In Proceedings of the 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT), Milan, Italy,
14–16 December 2015; pp. 603–608.

[36] [36] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, "Fog computing
and its role in the internet of things," MCC workshop on Mobile
cloud computing, August 2012.

[37] [37] Lee, K.; Kim, D.; Ha, D.; Rajput, U.; Oh, H. On security and
privacy issues of fog computing supported Internet of Things
environment. In Proceedings of the 2015 6th International

 Int. J. Com. Dig. Sys. 14, No. 1, 10347-10359 (Oct-2023) 10359

https://journal.uob.edu.bh

Conference on the Network of the Future (NOF), Montreal, QC,
Canada, 30 September–2 October 2015; pp. 1–3.

[38] [38] M. A. Naeem, T. N. Nguyen, R. Ali, K. Cengiz, Y. Meng, and
T. Khurshaid, "Hybrid Cache Management in IoT-Based Named
Data Networking," in IEEE Internet of Things Journal, vol. 9, no.
10, pp. 7140-7150, May 15, 2022, DOI:
10.1109/JIOT.2021.3075317.

[39] [39] B. Alahmri, S. Al-Ahmadi and A. Belghith, "Efficient Pooling
and Collaborative Cache Management for NDN/IoT Networks," in
IEEE Access, vol. 9, pp. 43228-43240, 2021, DOI:
10.1109/ACCESS.2021.3066133.

[40] [40] Boubakr Nour, Kashif Sharif, Fan Li, Hassine Moungla,
Ahmed E. Kamal, et al. NCP: a near ICN cache placement scheme
for IoT-based traffic class. GLOBECOM 2018: IEEE Global
Communications Conference, Dec 2018, Dubai, United Arab
Emirates. pp.1 - 6, ⟨10.1109/GLOCOM.2018.8647629⟩. ⟨hal-
02049991⟩

[41] [41] L. Saino, I. Psaras, and G. Pavlou, "Icarus: a caching simulator
for information-centric networking (ICN)," in Proceedings of the
7th International ICST Conference on Simulation Tools and
Techniques, ser. SIMUTOOLS'14. ICST, Brussels, Belgium,
Belgium: ICST, 2014.

[42] [42] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T.
Koponen, B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain,
most of the gain: Incrementally deployable ICN," SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 147–158, Aug. 2013.

[43] [43] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira,
“Cache coherence in machine-to-machine information centric
networks,” in Local Computer Networks (LCN), 2015 IEEE 40th
Conference on, Oct 2015, pp. 430–433.

[44] [44] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache” less for
more” in information-centric networks,” in Proceedings of the 11th
International IFIP TC 6 Conference on Networking - Volume Part
I, ser. IFIP’12. Springer-Verlag, 2012, pp. 27–40.

[45] [45] Zeydan, Engin & Bastug, Ejder & Bennis, Mehdi & Kader,
Manhal & Karatepe, Alper & Er, Ahmet & Debbah, mérouane.
(2016). Big Data Caching for Networking: Moving from Cloud to
Edge. IEEE Communications Magazine. 54.
10.1109/MCOM.2016.7565185.

[46] [46] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” in Proceedings of
the first edition of the MCC workshop on Mobile cloud computing,
Helsinki, Finland, August 2012.

Ramzi A. Haraty is an associate

professor of Computer Science in the

Department of Computer Science and

Mathematics at the Lebanese American

University in Beirut, Lebanon. He is a

program evaluator (PEV) for

CSAB/ABET. He also serves as the

Secretary of the Syndicate of Computer

Sciences in Lebanon. He received his B.S. and M.S.

degrees in Computer Science from Minnesota State

University - Mankato, Minnesota, and his Ph.D. in

Computer Science from North Dakota State University -

Fargo, North Dakota. His research interests include

database management systems, artificial intelligence, and

multilevel secure systems engineering. He has well over

110 books, book chapters, and journal and conference

paper publications. He supervised over 110 dissertations,

theses and capstone projects. He is a member of the

Association of Computing Machinery (ACM), ACM

SIGAPP, Institute of Electronics, Information and

Communication Engineers, the International Society for

Computers and Their Applications, and the Syndicate of

Computer Sciences in Lebanon.

Nancy Rahal is currently serving as an

institutional analyst within the office of

Institutional Effectiveness and Decision

Support at the American University of

Beirut. Previously, she worked as a Data

Analyst in the Enrollment Management Unit

at the Lebanese American University. Nancy

holds a Bachelor of Science and Master of

Science degrees in Computer Science, with a

minor in Mathematics, from the Lebanese American University

of Beirut – Lebanon. Her research focuses on various areas

including database management, caching, analytics, BI tools and

data visualization.

