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Abstract: Front and back views gait recognitions are important, especially for narrow corridor applications. Hence, it is important
to experiment with new algorithms on the front and back views gait recognitions. In this paper, we present the experiments on gait
recognition using the pretrained EfficientNets and EfficientNetV2 models and Gait Energy Image. These models are chosen because
they are among the best deep learning models in computer vision. The pretrained models were used in this experiment because it can
produce faster and better accuracies compared to training the models from scratch. In addition to the pretrained models, we also propose
ensemble models so that they can produce better accuracies. The result shows that the EfficientNetB7-Augm+ EfficientNetB6-Augm
is the best overall accuracy (79.59%). However, combining the models slow down the inference speed. So, for recognition speed,
EfficientNetB6 and EfficientNetB6-Augm are the best with 87.01ms speed per input image. The results produced are very good
considering no cross-view algorithms applied to the Gait Energy Image. Future works will include the cross-view algorithms to further
improve the accuracies of the proposed method.

Keywords: Gait Recognition, Deep Learning, EfficientNets, EfficientNetV2

1. INTRODUCTION
Gait is a walking process that involves the combination

of posture and bodily motion [1]. These produce features
that are useful for biometric applications [2]. It is applied in
biometrics due to the uniqueness of the gait patterns of an
individual [2], [3]. Unlike other biometrics, gait features can
be identified using a camera, so it is contactless, without any
specific spot, and can be acquired without the awareness and
cooperation of the individuals under observation. Also, gait
is difficult to be concealed and disguised. Gait recognition
can be employed using low-resolution cameras and the
features are identifiable at a long distance [2].

The gait features can be captured and applied at any
view angle. The front and back views are the most suitable
angles to capture gait features in narrow corridor situations
[4]. Recently, many studies focused on cross-view gait
recognition. Cross-view involves a gallery (the data/images
made known to the algorithm) of one view and a probe (the
data/images tested on the algorithm) in different views. The
experiments on cross views of front and back are included
in the studies. Most of these research employ the gait image
representation known as Gait Energy Image (GEI) invented
by Han and Bhanu [5]. The GEI is widely used in gait
recognition because it is robust against noise.

Among the earliest that conduct cross-view gait recog-
nition is Yu et al. [6]. They employ the raw GEI feature
and nearest neighbour as the classifier. Same as in [6],
the CMCC [7] also applies the GEI in their method.
However, in [7], the GEI is further processed by creating
features to overcome the view difference problems. The
features are produced by using the Canonical Correlation
Analysis (CCA) on the same segment of different views.
Like [7], the method in [8] employs the same method on
overcoming the cross-view problems. In [7] and [8], sum
of cosine similarity and nearest neighbour are employed as
the classifiers respectively.

The methods in [9], [10], [11] employ a method known
as View Transformation Model (VTM). In [9], Support
Vector Regression (SVR) is employed to create the VTM.
In [10], the VTM is generated using SVD from GEI and
the quality measures are incorporated to further improve the
VTM. In [11], Optimized Gait Energy Image and Truncated
Singular Value Decomposition (TSVD) are utilized to build
the VTM. For classification, the similarity of features mea-
surement based on Euclidean distance is carried out in [9]
and [11]to recognize the individuals. On the other hand, in
[10], the dissimilarity score is utilized as the classifier to
measure the difference between the probe and gallery.
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TABLE I. Summary of the related works

Paper Features Additional Processing and Classifier

Yu et al. [6] Raw GEI Nearest Neighbour

Kusakunniran et al. [7] Canonical Correlation Analysis
based on GEI Sum of Cosine Similarity

Xing et al. [8] Complete Canonical Correlation
Analysis based on GEI Nearest Neighbour

Kusakunniran et al. [9] VTM generated using SVR from
GEI Similarity measurement based on Euclidean Distance

Muramatsu et al. [10]
VTM generated using SVD from
GEI and the VTM enhanced using
the quality measures

Dissimilarity score

Kusakunniran et al. [11] VTM based on Optimized Gait En-
ergy Image and TSVD Similarity measurement based on Euclidean Distance

Wu et al. [12] subGEI generated from GEI using
spatial pyramid matching. New Convolutional Neural Network

Ben et al. [13] CPA generated from GEI Nearest Neighbour

Ben et al. [14] CBDP generated from GEI Improved metric learning approach

Isik and Ekenel [15]

Retrained the VGG16 feature lay-
ers using binary silhouette and
RGB images to produce new fea-
tures.

Maximum similarity using cosine classifier

Zhang et al. [16] Sequence of Binary silhouettes Fusion of convolutional variational autoencoder
and deep Koopman embedding

Figure 1. The Proposed Algorithm
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To overcome the cross-view limitation, Wu et al. [12]
used the spatial pyramid matching in [17] to produce a gait
image representation called subGEI from the GEI. Later
they created a new Convolutional Neural Network (CNN)
model to classify the individuals. The CPA [13] and CBDP
[14] apply many parameters to extract features from GEI for
cross-view gait recognition. In [13] and [14], they use the
nearest neighbour and improved metric learning approach as
classifiers respectively. In [15], Isik and Ekenel used the gait
sequence in the forms of silhouette and RGB images as the
features and employs VGG16 to extract the features. After
that, the maximum similarity based on the cosine technique
is employed as the classifier.

Zhang et al. [16] used the silhouette from the gait
sequence and employ the fusion of convolutional variational
autoencoder and deep Koopman embedding to recognize
individuals based on their gait patterns.. The multiview gait
recognition studies are not discussed here because they used
multiple views as a gallery and any one view as the probe
such as the recent studies in [18], [19], [20].

The summary of the related works is presented in Table
I. Based on the related works carried out, none of the
methods employed pretrained CNNs. Using the pretrained
model can speed up the development process. Hence, it
is important to study the effectiveness of the pretrained
CNNs, especially the state-of-the-art models such as the
EfficientNets [21] and EfficienNetV2s [22].

The EfficientNets [21] and EfficienNetV2s [22] are two
groups of models that show great performance compared to
many models when tested using publicly available datasets.
Hence, it is important to understand the impact of these
models on gait recognition. Therefore, our contributions are:

• Rigorous experimental studies of the best
EfficientNets [21] and EfficienNetV2s [22] models
for front and back views gait recognition using raw
GEI.

• A new ensemble model based on the best
models of EfficientNets [21] and EfficienNetV2s
[22].

The organization of this paper is as follows: Section
2 explains the proposed methodology for the front and
back views gait recognition algorithms. The experimental
results of this research are presented in Section 3. Section
4 analyzes and discusses the results. Section 5 concludes
the paper.

2. METHODOLOGY
In this experiment, several pretrained models based on

the EfficientNets [21] and EfficientNetV2 [22] are em-
ployed. In addition to that, we proposed ensembled models
based on the models in [21] and [22] to improve the
accuracies.

The EfficientNets is a family of models created for better
performance by scaling up MobileNets and ResNets in
terms of the depth and width of the models and input image
resolutions. Eight models in the EfficientNets were created
and the transfer learning experiments based on multiple
datasets shows that in general, EfficientNetB7 was the best
algorithm and other EfficientNets’ models performed better
than most of the previous models [21].

In addition to EfficientNets, Mingxing Tan, and Quoc
Le created another family of models called EfficientNetV2.
The motivation of their research was to have faster training
speed and parameter efficiency. This was carried out by
including adaptive regularization techniques to produce the
expected results. Based on the transfer learning results,
EfficientNetV2-L and EfficientNetV2-M were the best mod-
els [22].

Also based on Keras Applications [23], the best four
Rank-1 accuracy are EfficientNetV2-L, EfficientNetV2-M,
EfficienNetB7, and EfficentNetB6. These models outper-
formed many previous models on the ImageNet dataset
[24]. Hence, in this research, transfer learning and ensemble
learning experiments are conducted based on these four
models. The general framework of the proposed algorithm
is shown in Fig. 1. In this experiment, the GEI with the
size of 240 × 240 is used as the input images to the deep
learning models. The GEI is the mostly used gait image
representation which was created by Han and Bhanu [5].
Before producing the GEI, the human silhouette in each
frame is extracted and binarized. The binarization process
eliminates the impact of colour and illumination on gait
recognition accuracy. All binary silhouettes in one gait cycle
are averaged to produce the GEI. The averaging process
reduces errors caused by the silhouette extraction algorithm.
One gait cycle involves two strides, left and right strides.

The first part of the proposed algorithm is the transfer
learning process as indicated by the dotted box in Fig. 1.
As mentioned in the previous section, the EfficientNetV2-
L, EfficientNetV2-M, EfficienNetB7, EfficentNetB6 are ex-
perimented. The models were pretrained using ImageNet
which contains 1000 classes of objects with RGB colour
images. The feature extractors of these models as in [23] are
utilized, and this is carried out by removing the classifiers
or the top parts of the models. The Global Average Pooling
averaging reduces the dimension of the last layer of the
feature extractor. Next, the dropout layer is included as the
regularization technique to reduce overfitting with a dropout
rate is 0.5. After that, the fully connected network is applied
to classify the individuals based on their gait patterns.
Finally, the Softmax activation function is employed to
produce the probabilistic output of the classification.

For the training of the transfer learning model, the Adap-
tive Moment Estimation (Adam) optimizer is employed with
learning rate, η = 0.001, exponential decay rate parameters,
β1 = 0.9, β2 = 0.9999, and ϵ = 10−8.
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These parameters are chosen because they are good
parameters in general as recommended in the Adam paper
[25]. The categorical cross entropy is used as the loss
function. All the models are trained up to 500 epochs with
a batch size is 32. In avoiding overfitting, the early stopping
method is introduced. The training will stop if the validation
loss does not change for 50 epochs. The fusion algorithm or
ensembled technique is implemented by using the following
formula:

T = argmax
∑

j
i=1y(x)i (1)

where T is the identity of a subject being tested, the y are
the predicted probabilities of the x subjects in the gallery
by model i in the ensembled models. This equation sums
the predictions of all the models and finds the index of
the summation results with the maximum value as the
individual identity.

3. EXPERIMENTAL RESULTS
In this experiment, besides the test on accuracies, the

inference time was also computed. Both are carried out
using Python 3.10.4 programming language with deep
learning libraries such as Tensorflow 2.8.0 and Keras 2.8.0.
The programs are run on a computer with the following
specifications:

• Computer System: HP Pavilion Gaming Laptop 15-
dk0xxx
• Microprocessor: Intel® CoreTM i5-9300H CPU @
2.40GHz
• Installed RAM: 8.00 GB
• Operating System: Windows 10 Home Edition (64-
bit)
• Graphic Processor Unit (GPU): NVIDIA GeForce
GTX 1650, 1560MHz, 4096 MB GGDR5.

In this experiment, the CASIA B dataset [6], [26] is
used to examine the performance of the proposed algo-
rithms. Only the normal walks gait sequences are used
with NM01-NM04 used as the gallery and NM05-NM06
are utilized for the probe. The GEI images were used
are as provided by [26]. In this experiment, only front
(0◦) and back (180◦) views are considered. The results of
the accuracies are presented in Table II. Hence, we have
four categories of experiments: i) gallery 0◦ and probe 0◦
ii) gallery 0◦ and probe 180◦ iii) gallery 180◦ and probe
0◦ iv) gallery 180◦ and probe 180◦. In this experiment,
first, we conduct training on the first four models in Table
I, the EfficientNetV2-M, EfficientNetV2-L, EfficentNetB6,
and EfficienNetB7. Due to the better performance of Effi-
centNetB6 and EfficienNetB7 than EfficientNetV2-M and
EfficientNetV2-L, the experiments on the performance of
EfficentNetB6, and EfficienNetB7 on augmented images are
also carried out. Furthermore, experiments on the fusion of
models based on EfficentNetB6 and EfficienNetB7 are also
conducted with the expectation to produce better results.

In addition to accuracy experiments, the speeds of
the models are also compared. Fig. 2 shows the over-
all accuracy versus the inference time plot for all the

algorithms in this experiment. The inference time is the
average time for each of the models that run 10 times
and identification is using a single input image. The
inference process was run on the aforementioned GPU.
For the models that have image augmentation, such as
the combinations of EfficientNetB6 and EfficientNetB6-
Augm, EfficientNetB7 and EfficientNetB7-Augm, we use
the same result because the augmentation only affects the
values of the trainable parameters and does not change
other factors that affect the inference speed. Similarly, for
the EfficientNetB6+EfficentNetB7, the result is using the
same inference time results as the following combined
proposed models: EfficientNetB7-Augm+EfficientNetB6-
Augm, EfficentNetB6-Augm+EfficientNetB7, and also the
EfficientNetB7-Augm+EfficientNetB6.

4. DISCUSSION
Based on the results in Table II, the EfficientNetB7 and

EfficientNetB6 perform better than the EfficientNetV2-M,
and EfficientNetV2-L. Although in [22], the EfficientNetV2
performed better than the EfficientNet, the experiment on
the Flowers dataset [27], shows that the models in Effi-
cientNets can possibly produce better results than the Effi-
cientNetV2 models. In the experiment, the EfficientNetB7,
EfficientNetV2-L, and EfficientNetV2-M produced, 98.8%,
98.8 ± 0.05%, and 98.5% ± 0.08% respectively. On the
other hand, the EfficientNetV2 models performed much
better than the EfficientNets models on the ImageNet dataset
[24]. This might be caused by the diversified classes of the
ImageNet such as CD player, canoe, baseball, land animals,
sea animals, etc. Furthermore, the flower dataset is limited
to flower types of classes only. Hence, the features of the
Flower dataset are narrower (quite similar to each other)
than the ImageNet dataset. Similarly, GEI has narrower
features compared to Flower and ImageNet datasets. In
terms of shape features, it is more difficult to distinguish
individuals based on GEI compared to flowers in the Flower
dataset. Moreover, the GEI input features are grayscale
which has one channel only while flowers in the Flower
dataset are in RGB format having three channels. This
makes the flowers easier to be distinguished than human
individuals using GEI features. This can be the reason why
the EfficientNets perform better than the EfficientNetV2 in
this experiment which is using GEI.

As presented in Table II, for the gallery 0◦ and probe 0◦,
as expected EfficientNetB7 performs better than Efficient-
NetB6. However, for the gallery 180◦ and probe 180◦, they
produce the same accuracy. For the cross-view experiments
(gallery 0◦ and probe 180◦, and gallery 0◦ and probe 180◦),
the EfficientNetB6 performs better than the EfficientNetB7.
This is similar to the result in [21], based on Oxford-IIIT
Pets dataset [28]. The dataset in [28] contains, cats and dogs
in multiple views with narrow features (dogs and cats only).
Based on this dataset, EfficientNetB6 is the best compared
to all the EfficientNets models including the EfficientNetB7.

In this experiment, we perform the augmentation on
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TABLE II. Top-1 accuracies of all the models

Algorithms Gallery View Probe 0◦ Probe 180◦ Each Gallery View Overall Accuracy

EfficientNetV2-M [22] 0 88.33 28.33 58.33
180 35.00 89.58 62.29 60.31

EfficientNetV2-L [22] 0 84.58 20.42 52.50
180 28.33 81.67 55.00 53.75

EfficientNetB6 [21] 0 96.67 50.42 73.55
180 59.58 97.08 78.33 75.94

EfficientNetB7 [21] 0 98.33 46.25 72.29
180 56.25 97.08 76.67 74.48

EfficientNetB6-Augma[21] 0 95.42 55.00 75.21
180 56.67 95.00 75.84 75.53

EfficientNetB7-Augma[21] 0 98.33 48.75 73.54
180 55.83 97.92 76.88 75.21

EfficientNetB7- 0 98.33 56.67 77.50
Augm.+EfficientNetB6-Augma 180 65 98.33 81.67 79.59

EfficientNetB7- 0 98.75 52.97 75.84
Augm.+EfficientNetB6a 180 62.08 97.92 80.00 77.92

EfficientNetB7- 0 98.33 49.17 73.75
Augm.+EfficientNetB7a 180 58.75 97.5 78.13 75.94

EfficientNetB6- 0 98.33 55 76.67
Augm.+EfficientNetB7a 180 65.42 98.75 82.09 79.38

EfficientNetB6- 0 96.67 52.92 74.80
Augm.+EfficientNetB6a 180 59.17 96.25 77.71 76.26

EfficientNetB7+EfficientNetB6 0 98.75 52.92 75.84
180 64.17 98.33 81.25 78.55

a. Augm stands for Augmented

the training set by performing horizontal flipping. For the
EfficientB6, the performance decreases for all cases except
for gallery 0◦ and probe 180◦ where it increases from
50.42% to 55.00%. For the EfficientNetB7, for both 180◦
probe experiments using the same view (gallery 180◦) and
cross-view (gallery 0◦), the performances have improved
from 97.08% to 97.92% and 46.25% to 48.75%. For gallery
0◦ and probe 0◦, the result remains the same but for gallery
180◦ and probe 0◦, it is slightly reduced from 56.25% to
55.83%. In general, if we compute the average accuracy for
the augmentation experiments (EfficientNetB6-Augm and
EfficientNetB7-Augm), it is 75.37% which is slightly better
than the experiments without augmentation, EfficientNetB6
and EfficientNetB7 that only produce 75.21% average ac-
curacy. Hence, we can infer that augmentation helps the
models to improve by adding additional features for the

models to learn.

To enhance the accuracy of the EfficientNets models,
we propose ensemble learning based on (1). Since both
EfficientNetB6, EfficientNetB7, EfficientNetB6-Augm, and
EfficientNetB7-Augm have their pros and cons in terms
of the accuracies, we decided to combine any two of
the algorithms, so that they may produce better results.
For gallery 0◦ and probe 0◦ result, the two combined
algorithms, EfficientNetB7-Augm+EfficientNetB6 and Ef-
ficientNetB7+EfficientNetB6 produce the highest accuracy.
EfficientNetB7-Augm+EfficientNetB6-Augm has the high-
est accuracy score for gallery 0◦ and probe 180◦. For gallery
180◦ and for both probes 0◦ and 180◦, the EfficientNetB6-
Augm+EfficientNetB7 is the best for both experiments as
stated in Table II. Based on this experiment, the ensemble
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Figure 2. Inference Time (ms) vs Overall Accuracy (%)

of any of the two models produces better results than its
constituent model performance.

Based on the evaluation of each gallery view,
as presented in Table II, the EfficientNetB7-
Augm+EfficientNetB6-Augm is the best for using 0◦
gallery view and for the one using 180◦ view, the
combination of EfficientNetB6-Augm+EfficientNetB7 is
the best. For the overall best performance by using both
views, the EfficientNetB7-Augm+EfficientNetB6-Augm
(79.59%) is the best and followed by EfficientNetB6-
Augm+EfficientNetB7 (79.38%). So, for the effective
ensemble in frontal view gait recognition, the
EfficientNetB6 must be augmented and combined with
EfficientNetB7 with or without augmentation. The reason
for the better performance of the fusion algorithms is that,
different deep learning models learn dissimilar complex
nonlinear relationships between the inputs and outputs.
The models’ architecture response differently to the inputs,
initial random weights, noise and hyperparameters in the
training dataset. Hence, one model can produce good result
on one type of inputs but failed on other types. By having
the ensemble learning, the output is capable to produce the
best results of both models.

Referring to the plot in Fig. 2, we want the point to
be in the bottom right-hand corner of the plot. In this
area, the accuracy is very high and the inference time
is very low. The lowest inference time is EfficientNetB6
and EfficientNetB6-Augm with 87.01ms. The worst per-
formance is EfficientNetV2-L (135.51ms). The Efficient-

NetB7 and EfficientNetB7-Augm have lower overall ac-
curacy and slower recognition speed compared to both
EfficientNetB6 and EfficientNetB6-Augm. Also, the en-
semble of EfficientNetB6-Augm+ EfficientNetB6 produces
better overall accuracy and recognition speed compared to
EfficientNetB7-Augm+ EfficientNetB7.

All four proposed ensemble models of EfficientNetB6
combine with EfficientNetB7 produce very good accu-
racies but have the lowest inference speed. Hence, we
can conclude that the EfficientNetB6 model is important
in terms of producing high speed recognition and good
accuracy. The inference time of a deep learning model
is affected by the size of the models and the number of
parameters used. Based on Table III, for single models,
we can infer that the number of parameters is directly
proportional to the inference time. This is also applicable
if comparing is made within the fusion models. However,
comparing the EfficientNetV2L, and other combined mod-
els except EfficientNetB7-Augm+EfficientNetB7, Efficient-
NetV2L with 119 million parameters has a lower inference
time compared to those combined models (86.6 million and
111.0 million parameters). This is caused by the fusion
algorithm computation.

The front and back views gait recognitions that are
employed in this research are suitable for narrow corridor
applications where cameras cannot be mounted from differ-
ent view angles to capture the gait features. Furthermore,
the advantage of the setting suggested in this research,
only one camera is needed to capture the training data
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TABLE III. Number of parameters and inference time

Model Parameters (Million) Inference Time (ms)

EfficientNetB6 43.3 87.0

EfficientNetB6-Augm 43.3 87.0

EfficientNetV2M 54.4 87.1

EfficientNetB7 66.7 106.8

EfficientNetB7-Augm 66.7 106.8

EfficientNetV2L 119 135.5

EfficientNetB6-Augm+ EfficientNetB6 86.6 141.4

EfficientNetB7 + EfficientNetB6 111.0 181.2

EfficientNetB7-Augm + EfficientNetB6 111.0 181.2

EfficientNetB6-Augm+ EfficientNetB7 111.0 181.2

EfficientNetB7-Augm+ EfficientNetB7 133.4 184.3

either from the front or back view. The probe for the
inference can also be captured from the front or back view.
Figures 3 and 4 illustrate the setting in which the front or
back view trained models can be used for the inference
of front and back views. Therefore, the best algorithm for
each category can be used together to be implemented
in the settings. The EfficientNetB7+EfficientNetB6 and
EfficientNetB7-Augm+EfficientNetB6 can be applied for
front view training data with front view and back view
inference. EfficientNetB7+EfficientNetB6 is chosen instead
of EfficientNetB7-Augm+EfficientNetB6 because the aug-
mentation requires more time to produce augmented images
and also increases training time due to more images have to
be trained. Since the EfficientNetB6 -Augm+EfficientNetB7
produces the best results, hence the algorithm is the most
appropriate for the front and back views inference using the
back view training data. Table IV shows the comparison
of the proposed method with other methods found in the
literature. Since the algorithms can be applied separately
depending on their situations, hence we combine the results
and tabulate them in Table IV. Comparing the results of
the same views, the proposed methods have almost sim-
ilar results to the other methods. On the other hand, for
different view angles results, the proposed methods were
outperformed by Işık and Ekenel [15] and Ben et al. [14].
For the Ben et al. [14] method, the same view results are
not available. Işık and Ekenel [15] proposed a method that
was implemented by using all the binary silhouettes in one
gait sequence which is more than one gait cycle. Unlike the
GEI which is based on the average of binary silhouettes in
one gait cycle. The main problem with this method is if the

Figure 3. Applications of the proposed method: front view training
for front and back views inference

architecture is trained with sequences of binary silhouettes
and later when a camera captures shorter or longer gait
sequences, it may not be able to generate similar gait
features, hence producing inaccurate recognition. This kind
of setting were not tested in their experiments. The method
in [14] produces the best results but uses a smaller number
of subjects for the probe compared to the experiment
conducted in this paper. This is because the method uses
different subjects for training and testing. The problem with
this method is that it requires more than one view to produce
the projection of other views. Hence, the method is not
possible to be implemented, if only one view gait sequences
are available for the training. This can happen especially
in the narrow corridor situation. Hence, the method is not
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TABLE IV. Comparison of the proposed methods with other state of the art methods in the literature

Algorithms View 0◦ 180◦

Yu et al. [6] 0 99.2 37.9
180 41.1 99.6

Proposed Methods 0 98.8 56.7
180 65.4 98.8

Işık and Ekenel [16] 0 100 90
180 94 100

Ben et al. [15] 0 - 96.1
180 96.4 -

Figure 4. Applications of the proposed method: back view training
for front and back views inference

fully suitable for narrow corridor applications. Furthermore,
it requires several manually tuned parameters to perform the
view projection.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present the front and back views for

gait recognition algorithms using the best EfficientNets and
EfficientNetV2 models. New ensemble learning algorithms
based on the best results of the aforementioned models were
created. The input images used by the models are raw GEI
without any enhanced feature extraction.

Based on the experiment, EfficientNetB6 and Effi-
cientNetB7 perform better than EfficientNetV2-M, and
EfficientNetV2-L. The augmentation by horizontal flipping
on the GEI input images has a mixture of results on the per-
formance of both EfficientNetB6 and EfficientNetB7 but on
average produces better results. In addition to that, in gen-
eral, ensembled algorithms of EfficientNetB6 and Efficient-
NetB7 seem to have improved the recognition accuracies in
all the experiments based on the matching between gallery
0◦ and probe 0◦, gallery 0◦ and probe 180◦, gallery 180◦
and probe 0◦, and gallery 180◦ and probe 180◦. If only one
gallery view is used, for gallery view 0◦ (probe either 0◦ or

180◦) the EfficientNetB7-Augm+EfficientNetB6-Augm is
the best algorithm, but the EfficientNetB6-Augm+ Efficient-
NetB7performed the best for gallery view 180◦ (probe either
0◦ or 180◦). The EfficientNetB7-Augm+EfficientNetB6-
Augm is the best overall algorithm in terms of accu-
racy. However, the EfficientNetB6+EfficientNetB6-Augm
and ensembled models do not perform well in terms of
inference time.

Therefore, we can conclude that the EfficientNetB6-
Augm is important for the front and back views gait
recognitions using GEI. It can produce good accuracy and
high recognition speed. The fusion of EfficientNetB6 with
EfficientNetB7 either augmented or not can improve the
performance with the drawback in terms of inference time.

However, the algorithms do not perform well for the
cross-view gait recognition (gallery 0◦ and probe 180◦, and
gallery 180◦ and probe 0◦), this is due to no cross-view
enhancement algorithms applied to the GEI model. Also, for
the cross-view performance, methods in the literature have
higher accuracies than the proposed methods. However,
they have several disadvantages in terms of practicality in
implementing them in real applications. Therefore, future
works can consider the cross-view algorithms to further
enhanced the proposed methods.

The gait recognition research was carried out in this
paper is based on front and back views with the normal
walking pattern. Other covariates such as carrying objects,
different types of clothing, shoes, and walking surfaces are
not considered. Other problems such as occlusion if two
people are walking together are also not experimented in
this research. These covariates and problems require a new
dataset and will also be considered in our future works
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