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Abstract: In this paper, a Phonocardiography (PCG)- based comparative study for cardiovascular anomalies’ early detection system is 
proposed. Some of the main signal processing and deep learning methods applied in the literature to PCG signals are contrasted to differentiate 

normal heartbeats from abnormal ones and classify five of the most common murmurs, the "lub" and "dub" of "lub-dub" are formed by 

combining the typical heartbeat sound S1 and S2. The results of this comparative study show an average of 92.14 % for heart anomaly 

detection and 71.02 % for classification rates. This is achieved by using Deep Neural Network (DNN) classification with Hyperbolic Tangent 
(tanh) activation function, a 5-layer with 100 neurons in each layer. The Discrete Wavelet Transform (DWT) was found to be the best 
denoising algorithm and the Heart Sound Envelogram (HSE) was the best segmentation method for the PCG signal. Mel Frequency Cepstral 
Coefficients (MFCC) Features outperformed their Time and Frequency Domain counterparts. This work proved to be useful in the framework 
of intelligent and preventative health care systems, offering a convenient early warning home-care tool that should help to direct potentially 
ill individuals to cardiologists for more precise diagnoses. 
 
Keywords: Heart Anomalies, Phonocardiography (PCG), Biometric, Signal Processing, Deep Learning. 

 

1 INTRODUCTION 

   One of the main causes of death among people globally is 
cardiovascular disease, which has a significant impact on the 

expense of the global healthcare system [1]. Early 

identification of heart issues should significantly lower the 

risks of problems and exorbitant treatment expenses before 

they worsen [2].  

Even though the Electro-Cardiography (ECG) is more 

effective and accurate in the analysis of heart issues 

compared to the PCG, however, ECG requires special 

equipment and trained medical staff, necessitating the patient 

to be admitted to the hospital [3]. On the other hand, PCG is 

most dominant among medical staff due to its efficacy and 

simplicity. Hence, this comparative study intends to provide 
an efficient tool powered by Machine Learning (ML) 

techniques making it handy to use for untrained users, 

providing early detection for possible risks, and directing 

potentially-ill individuals to look for more precise diagnoses 

through cardiologists. This should establish a simple, fairly 

reliable, and handy home-care tool for intelligent and 

proactive public health systems.  

In the past few decades, several studies have been conducted 

to automatically differentiate between normal PCG and 

cardiac murmurs. Ismail et al. presented a thorough survey on 

the subject [4] including a summary of the many signal 
processing, segmentation, feature extraction, and machine 

learning approaches used to analyze PCG data to identify and 

categorize cardiac anomalies. The algorithms were separated 

into time, frequency, and hybrid techniques. Although time-

domain segmentation algorithms may accurately and directly 

localize heart sounds, they require a lot of signal 

preprocessing because of how sensitive they are to noise. And 
even though heart sounds may be more easily recognized in 

another domain than the temporal one, the majority of 

common techniques convert the PCG signal from the 

temporal domain into another domain, where heart sounds 

may be distinguished more readily. 

To denoize PCG data, a variety of signal processing 

techniques have been used. This comprises classical digital 

filters like the IIR [5], Butterworth [6] Chebyshev (CHV) [7], 

and Empirical Mode Decomposition (EMD) [8], in addition 

to the Discrete Wavelet Transform (DWT) [9]. 

N. Kouras [10] successfully applied segmentation to the PCG 

signal utilizing Daubechies db10 DWT and Shannon entropy, 
one of the primary segmentation approaches documented in 

the open literature. The Template Matching autocorrelation 

technique, on the other hand, was created by F. Agrafioti and 

D. Hatzinakos [3] and is a reliable and accurate biometric 

tool. It considerably improves the classification performance 

of the ECG signals while acting as an intruder detector. 

Varghees et al [11] promoted a new automated robust heart 

sound activity detection method that applied a Hilbert 

transform to the Shannon entropy envelope and reported an 

average sensitivity of 99.43% and positive predictivity of 

93.56% over clean and noisy pathological and non-
pathological PCG signals with a signal-to-noise ratio of 5 dB. 

With regards to the feature extraction, Fasil and Rajesh  

[12] categorized EEG signals using Time domain features 

and a proposed exponential energy feature with a 

classification accuracy of 89% and 99.5%, respectively, for 

the Ralph Andrzejak EEG dataset. This was done in order to 
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test the various feature extraction methods. Singh J. and 

Anand R. [13] conducted studies in both the time and 

frequency domains to find specific connections between the 

PCG representations in the two domains. The findings 

demonstrated that the time domain analysis offers 
information on different time intervals associated with the 

first and second heart sounds. The frequency domain analysis 

reveals the primary frequency components linked to different 

heart sounds. The study also demonstrates the relationship 

between time and frequency domain features, demonstrating 

that longer S1 and S2 durations result in much larger 

dominant frequencies in S1 and S2. To construct a strong 

feature extraction model, Iqtidar K. and Qamar U. [8] 

proposed 1D-Adaptive Local Ternary Patterns, fused them 

with the MFCC features, and attained classification accuracy 

of 98.3% and 97.2% mean by SVM classification. 
The literature reports that several techniques were used by 

people entrusted with classifying PCG signals. Basak H., and 

Roy A, [14] performed SVM and ANN classification using 

PCA and LDA features, with ANN classification using PCA 

features achieving the best classification performance of 

96.67%. A small sample of PCG signals was used by 

Pavlopoulos S [15] to assess the applicability and utility of 

several decision tree architectures. The findings indicated 

that differentiation between classes was highly successful. 

MFCC characteristics were retrieved by Arslan and Karhan 

M [16] who then examined how the modes derived by the 
Hilbert-Huang transform influenced the categorization. The 

KNN, MLP, SVM, and DNN were used as classifiers. Their 

recommended Hilbert-Huang transform-based feature 

extraction approach outperformed competing methods, 

achieving an overall accuracy of 98.9% when categorizing 

PCG signals with the DNN classifier. 

Safara et al. [17] suggested employing Hankel matrix-based 

classification with singular value decomposition to 

discriminate between normal cardiac sounds and murmurs in 

order to evaluate the discriminating capability of the obtained 

features. They used the discrete wavelet transform (DWT) for 

segmentation and the adaptive-neuro fuzzy inference system 
(ANFIS) to build a classifier that used Shannon entropy as a 

feature. This method does not reveal information on the 

accuracy of murmur classification, except for mitral and 

pulmonary stenosis. 

A novel technique for combining Heart Sounds into a single 

cardiac cycle was presented by Gupta et al. [18] utilizing K-

means clustering and homomorphic filtering. Systole and 

diastole energies, spectral coefficients, and cepstral 

coefficients were used to identify PCG signals as either 

normal or falling under the murmurs (systolic and diastolic) 

group. The coefficient eigenvectors of heart sounds were 
extracted using the Daubechies-2 wavelet decomposition, 

and they were subsequently employed as the input for neural 

networks. The classification results indicate an accuracy of 

90.29% when using K-means classification and 

homomorphic filtering. 

With the help of a support vector machine with a fifth-order 

polynomial kernel function, a wavelet packet with 8 levels of 

decomposition, and two energy characteristics that were 

retrieved via SLBS from selected nodes, Choi [19] introduced 

a technique for classifying valvular heart sounds as 

problematic. This method helped identify normal heart 

sounds. Nevertheless, Reed et al. [20] provided a computer-

aided diagnosis method based on a Coifman fourth-order 

wavelet kernel and a seven-level wavelet decomposition that 

could be applied to five distinct clinical scenarios. 

In this paper, we provide an extension to our preliminary 
study [21]  with detailed illustrations for the extensive testing 

and methods applied. The purpose of this work is to provide 

comparative research in order to integrate some of the major 

methodologies mentioned above in a system that is 

reasonably accurate, easy to use, and cost-effective. 

Therefore, for PCG denoising, the Discrete Wavelet 

Transform (DWT) is contrasted with a custom IIR filter, as 

well as traditional Chebyshev and Butterworth filters. Similar 

comparisons are made between Heart Sound Envelogram and 

Shannon Energy Segmentation utilizing Template Matching. 

Likewise, the Mel Frequency Cepstral Coefficients (MFCC) 
are in contrast to feature extraction based on the Frequency 

and Time Domains. Finally, to identify and categorize cardiac 

abnormalities, the Support Vector Machine, KNN, and 

Decision Tree are compared to Deep Neural Networks. 

The rest of this paper is structured as follows. A summary of 

PCG signals and data collection is given in Section 2. Section 

3 provides an overview of the comparative study phases. 

Main PCG signal processing techniques are compared in 

Section 4. Section 5 presents a comparison of some PCG 

signal segmentation methods. Sections 6 and 7 respectively 

provide a comparison of the main approaches used for PCG 
feature extraction and classification. The summary of the 

testing results and recommendations is provided in Section 8. 

Finally, Section 9 summarizes and concludes this work. 

 

2 PCG  SIGNALS AND DATA SET 

   PCG signals may include many heartbeat phases. Figure 1 

illustrates some of the main possible phases in a PCG signal 

[22]. The systole (S1) and diastole (S2) are the reference 

heartbeats considered for examining all other unusual signals, 

including the third & fourth heart sounds, clicks, knocks, 

ejection, opening, and snaps. Murmurs can be distinguished 

from normal heart sounds by mainly four features: timing 
(systolic or diastolic), duration (such as long or short), 

intensity (loud or soft), and pitch (low or high frequency). 

These anomalous noises are occasionally described by terms 

like "musical," "whoop," or "honk," all of which have 

considerably higher frequencies than trained medical 

personnel can hear using a stethoscope.  

Frequencies associated with heart murmurs range from 20 to 

500 Hz. Mitral Stenosis (MS), the third, as well as fourth 

heart, sounds, and other murmurs, can occur at low 

frequencies of less than 100 Hz (S3 and S4). However, some 

other murmurs like mitral valve prolapse (MVP) have higher 
pitch noises with prominent frequencies at around 400 Hz. 

However, in general, by setting the frequency measurement 

between 100 and 400 Hz [23]. 

Instead, a better quality digital stethoscope that costs more 

can be used for better measurement of the PCG signals. The 

objective of this work is to implement the best outcome of 

this comparative study on smartphones with a sensitive 

microphone, which will be easy to use for everyone.  
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Figure 1: Miscellaneous Heart Sounds [22] 

The PCG signal is tainted with the noise surrounding and 

artifacts all the time due to ambient sounds and stethoscope 

jitters, therefore, denoising the signal is essential before 

proceeding to the next phase (segmentation) where a single 

beat should be separated before extracting its features for the 
classification process. 

At the onset of this work, the intent was to collect heart 

sounds from people and those with various heart murmurs 

using a modified stethoscope at hospitals around Bahrain 

with the help of specialized medical professionals. However, 

access to patients in hospitals has been severely constrained 

during the Covid-19 outbreak. As a result, we turned to some 

recorded data mostly recorded by students on ordinary 

subjects, in addition to some data we were able to collect for 

healthy people using a straightforward modified classical 

stethoscope equipped with a typical computer microphone, as 
shown in Figure 2. 

 

 

Figure 2: Stethoscope Built for Data Recording 

As a result, we turned to some recorded data that was readily 

available online [24] [25]. The online data complemented our 

recorded data with approximately 1000 PCG signals. 

Nonetheless, integrating these signals into our study 

presented an additional challenge, as they originated from 
diverse sources and were recorded using different devices and 

frequencies. To address this, we developed an application 

capable of accommodating the varying data quality and 

frequencies. The total number of the dataset used in this study 

for the 6 classes is as follows: 

(a) Normal heartbeat (601 files) 

(b) Third heartbeat (S3) (76 files) 

(c) Aortic Stenosis (AS) (227 files) 

(d) Mitral Regurgitation (MR) (225 files) 

(e) Mitral Stenosis (MS) (222 files) 

(f) Mitral Valve Prolapse (MVP) (200 files) 

DWT Filter with 20 and 500 Hz selected bands and 

Daubechies 6 (db6) as a mother wavelet is designed to 
denoise the PCG signals. Although the ripples can be seen in 

the frequency domain version of the signal, their magnitude 

is negligible. The signal was greatly attenuated as shown in 

Figure 10, and the noise in the PCG signal was successfully 

filtered. From the clean data for each class, 10 samples were 

randomly chosen. The average MSE attribute was calculated 

for the DWT Filter comparing the base clean data to its data 

after adding White Gaussian Noise (WGN) and artifacts for 

various classes. The results provide 3.27% for normal, 2.57% 

for S3, 3.2% for AS, 2.81% for MR, 3.25% for MS, and 2.4% 

for MVP class.  

 

Figure 3: PCG Data Waveform for Different Classes 

It is significant to highlight that the data collected were 

extremely diverse concerning the signal-to-noise ratio (SNR) 

and sampling rate. While some were of acceptable quality, 

others (such as those made with the modified stethoscope) 
were very noisy. This has made the detector/classifier more 

challenging. 

3 COMPARATIVE STUDY OVERVIEW 

Figure 3 shows the overall process diagram of the main 

phases of the proposed system. Different techniques shall be 

performed in each phase in order to select the best method 

that provides the best performance as depicted in the 

comparative study block diagram of Figure 4.  

For the signal denoising phase, 5 methods of filtering 

methods were performed: 3 Band Pass Filters configured with 

a frequency between 20-500 Hz and order 4: Custom-IIR, 
Butterworth (BWT), and Chebyshev (CHV), as well as 

Empirical Mode Decomposition (EMD) (with 10 IMFs 

(Intrinsic Mode Function) with relative energy greater than 

25%), in addition to the Discrete Wavelet Transform (DWT) 

with 20 and 500 Hz selected bands and Daubechies 6 (db6) 

as a mother wavelet. The Mean Square Error (MSE) attribute 

was used as a performance measure of the filters and was 

evaluated by calculating the difference between the original 

clean data and after adding White Gaussian Noise (WGN) 

and artifacts across the PCG signals.  
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Figure 4: Overall System Diagram 

In the segmentation stage, 3 techniques were performed: 

Segmentation by Wavelet Decomposition using Shannon 

Energy with Template Correlation (SE-TC), Segmentation 

based on Heart Sound Envelogram (HSE), and Segmentation 

by Template Correlation using Correlation Coefficient (CC-

TC). To evaluate these techniques' use and compare their 

effectiveness, a visual comparison was conducted using a 

stacked comparison graph that was created for all available 

data to visualize the segmented portion with its reference to 

the original data, then carried out a visual assessment of all 
the data. 

Next, in the feature extraction phase, 3 different methods 

were applied to the segmented portions of the PCG signal: 

Time Domain Features (TDF), Frequency Domain Features 

(FDF), and Mel Frequency Cepstral Coefficients (MFCC). 

These features were injected into the training and verification 

process using 70% of the data for training and 30 % for 

testing conducted by 4 classification techniques: Support 

Vector Machine (SVM), Deep Neural Network (DNN), 

Decision Tree (DT), and K-Nearest Neighbor (KNN).  

As MFCC and DNN create the best results in detection and 
classification rates, an additional process of finetuning was 

conducted for the DNN parameters: the activation function 

(tanh, sigmoid, and ReLU), the number of hidden layers (3, 

5, and 10), as well as the number of neurons in each hidden 

layer (10, 50, and 100). The overall process of the detailed 

functions is shown in Figure 5. 

4 PCG  SIGNAL PROCESSING 

All applications that use noisy data must include signal 

processing. The PCG signal is recorded using a standard 

stethoscope that is connected to a computer, and the recorded 

PCG signal includes lots of noise. Five different types of 

filtering methods were used in the noise removal phase: In 
addition to Custom-IIR, Butterworth (BWT), and Chebyshev 

(CHV) bandpass filters, there is also discrete wavelet 

transform (DWT) and empirical mode decomposition (EMD) 

algorithms. To assess the effectiveness of the filters, the 

Mean Square Error (MSE) attribute was calculated between 

the clean original data and its noisy version following the 

addition of the identical White Gaussian Noise (WGN) and 

artifacts to all signals. 

 

Input PCG Signal

Compare and Select best Filter Method
(Discrete Wavelet Transform)

Select best Feature Extraction and Classification Method
(DNN using Cepstral Features)

Prediction  New PCG Signal

Compare and select best Segmentation method
(Segmentation Based on Heart Sound Envelogram)

Chebyshev 
Band Pass Filter

Empirical Mode 
Decomposition

Discrete Wavelet 
Transform

Simple Band 
Pass Filter

Butterworth 
Band Pass Filter

Frequency 
Features

Time Domain 
Features

Cepstral Domain 
Features

DNN SVM

KNN DT

DNN SVM

KNN DT

DNN SVM

KNN DT

MRASS3Normal MS MVP

Segmentation by Wavelet Decomposition using 
Shannon Energy With Template Correlation

Segmentation by Template Correlation using 
Correlation Coefficient

Segmentation Based on Heart Sound Envelogram

Optimize DNN 
Neurons

Configure DNN 
Activation Method

Optimize DNN 
Hidden Layers

Train and Verify Optimized Technique
(using Tanh Activation, 5 Hidden Layers, 100 Neurons in each Layer)

 

Figure 5: Comparative Study Summary 

4.1 Infinite Impulse Response Filter 

The current output of an IIR filter depends on the preceding 

one, hence the names feedback and recursive filters. IIR 

filters have the advantage of numerous prior outputs (or an 
infinite). In contrast to other feedback systems, IIR filters 

don't have a linear phase. IIR filters compute the current 

output sample utilizing the input sample history as well as the 

output sample history. The general form is shown in Eq.(1):  

New PCG Signal

Denoising

Segmentation

Feature Extraction

Classification 
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y(n) = − ∑ a(k). y(n − k)

N

k=1

+ ∑ b(k). x(m − k)

M

k=0

 (1) 

 
Where a(k) elements are the feedback coefficients and the 

y(n-k) element is the output. The b(k) elements are the feed-

forward elements where the x(m-k) element represents the 
input data stream. In many IIR filters, the number of feedback 

coefficients (N) and the number of feed-forward elements 

(M) are the same (N=M) [5] 

The PCG signals were denoised using a custom IIR with a 

bandwidth of 20-500 Hz and order 4. Figure 6 depicts the 

PCG signal before and after it has been denoised (filtered). 

The signal was greatly attenuated and the noise in the PCG 

signal was successfully filtered. From the clean data for each 

class, 10 samples were randomly chosen. The average MSE 

attribute was calculated for the IIR Filter comparing the base 
clean data to its data after adding White Gaussian Noise 

(WGN) and artifacts for various classes. The results provide 

5.63% for normal, 7.8% for S3, 8.23% for AS, 7.5% for MR, 

6.18% for MS, and 6.01% for MVP class.  

 

Figure 6: Denoised PCG using IIR Filter 

4.2 Wavelet Transform 

The most popular technique for converting from the time 

domain to the frequency domain is Fourier transform-based 

(FFT) spectral analysis. The Fourier theory states that a signal 

can be broken down into a variety of sines and cosines. Its 

disadvantage, though, is that it doesn't offer any time-related 

information. The wavelet transform, on the other hand, offers 

an analysis that is comparable to the FFT but uses a different 
merit function. The primary distinction is that the wavelet 

transform function, as opposed to the sines and cosines 

decomposition, is localized in both the time and frequency 

domains. [26] 

The essential idea behind the wavelet transform is to describe 

any function as a collection of wavelets that create the 

wavelet transform's basis function. Wavelets, which can be 

extended and moved to capture features that are confined in 

time and frequency, are tiny waves that are placed at various 

moments. The wavelets, also known as daughter wavelets, 

are scaled and graphically reproduced versions of a finite-

length oscillating waveform. The basis for the best wavelet 

selection is based on the features of the original [9] and the 

required analysis goal.  

The wavelet transform is regarded as a multi-resolution 

analysis since it offers a collection of time-frequency 

properties of the fundamental signal with various resolutions. 

Wavelet transform methods come in two varieties: 

Continuous Wavelet Transform (CWT) and Discrete Wavelet 
Transform (DWT). The DWT creates a mutually orthogonal 

set of wavelets; however, the discrete wavelet is more related 

to the mother wavelet [27] as shown in Eq (2). 
 

ψm,k(t) =
1

√S0
m

ψ (
t − kτ0S0

m

S0
m ) (2) 

 

where s0 is a fixed scaling parameter set for more than 1, m 

controls wavelet dilation, k controls wavelet translation, τ0 is 

the translation value, which must be greater than 0, and ψ is 

the mother wavelet. 

Figure 8 shows the structure of the DWT decomposition 

process which illustrates the approximation and detail 

coefficients for a decomposition level 2 where x(n) is the 

original input signal and the h(n) and g(n) are the high-pass 
and low-pass filters. The DWT provides a multilevel 

decomposition with an approximation of the decomposed 

signal and detail coefficients at each level of decomposition. 

The input PCG signal was decomposed into 10 levels. The 

Daubechies 6 (db6) wavelet template Figure 7 is selected as 

the mother wavelet because it morphologically resembles the 

PCG signal.  

 

Figure 7: Daubechies 6 Wavelet Function [28] 

After the decomposition of PCG up to 10 levels, 11 

signals/sub-bands (D1, D2, D3, D4, D5, D6, D7, D9, D10 

A10) were obtained, each containing different frequency 

ranges. Figure 8 illustrates the decomposition of a signal into 
various levels. among these sub-bands, only the detail 

coefficients D6, D7, D8, D9, and D10 were chosen since they 

contain the frequency range of a heart sound and the 

necessary frequencies for abnormal heartbeats fall between 

20 and 500 Hz. The selected bands were added to perform the 

wavelet reconstruction. The PCG signal was decomposed 

into 10 levels of wavelet Daubechies Figure 9.  

DWT Filter with 20 and 500 Hz selected bands and 

Daubechies 6 (db6) as a mother wavelet is designed to 

denoise the PCG signals. Although the ripples can be seen in 

the frequency domain version of the signal, their magnitude 
is negligible. The signal was greatly attenuated as shown in 

Figure 10, and the noise in the PCG signal was successfully 

filtered. From the clean data for each class, 10 samples were 

randomly chosen. The average MSE attribute was calculated 

for the DWT Filter comparing the base clean data to its data 

after adding White Gaussian Noise (WGN) and artifacts for 
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various classes. The results provide 3.27% for normal, 2.57% 

for S3, 3.2% for AS, 2.81% for MR, 3.25% for MS, and 2.4% 

for MVP class.  

 

Figure 8: DWT Decomposition for the PCG Signal 

 

Figure 9: 10 Level DWT Decomposition for the PCG Signal 

4.3 Empirical Mode Decomposition 

A signal is divided into several intrinsic mode functions 
(IMF) using the empirical mode decomposition (EMD) 

technique, coupled with a residue that represents the trend. 

The frequency information is derived using EMD from non-

stationary and non-linear data sets. The nonlinear signal 

characteristics are extracted using EMD. An IMF has a mean 

value of zero and only one extreme between zero-crossings 

[8]. The original PCG signal x(t) is decomposed as: 

 

x(t) =  ∑(ci) + rn

n

i=1

 (3) 

 

where ci represents the extracted IMFs, rn represents a 

residual signal, and several functions n in the set depend on 

the input signal.  

10 IMFs with relative energy greater than 25% were selected 

for reconstructing the denoised version of the PCG signal. 

The decomposed harmonics disturbance signal is shown in 

Figure 11. Although Figure 12 below shows that the EMD 

Filter performed badly with high noise data, it was shown to 

work effectively with low noise data. From the clean data for 

each class, 10 samples were randomly chosen. The average 

MSE attribute was calculated for the EMD Filter comparing 

the base clean data to its data after adding White Gaussian 

Noise (WGN) and artifacts for various classes. The results 
provide 5.98% for normal, 7.58% for S3, 8.69% for AS, 

7.42% for MR, 10.1% for MS, and 9.33% for MVP class. 

 

 

Figure 10: DWT Filter for the PCG Signal 

 

 

Figure 11: Intrinsic Mode Functions of Noisy PCG Signal 

4.4 Butterworth Filter BTW 

The Butterworth filter BTW, also known as a maximally flat 

magnitude filter, is made to have a passband frequency 

response that is as flat as feasible. Even though it does not 

produce a very crisp output, the BTW filter is widely 

employed in many applications that require signal processing 

to obtain an effectively flat response within the specified 

frequency limits. The BTW filter seeks to attain its roll-off 

rate more gradually when compared to other filters (such as 

Chebyshev), contending that behavior below cut-off 

PCG Signal

(44 KHz)

A1

A2

A3

A4

A5

A6
D6

(689 Hz)

D5

(1.38 Hz)

D4

(2.76 KHz)

D3

(5.5 KHz)

D2

(11 KHz)

D1

(22 KHz)
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frequency rates is more crucial than at any other frequency 

[6], [29].  

The higher order of the Butterworth filter provides a higher 

number of cascaded stages; however, the ideal frequency 

response of BTW is unattainable as it produces an excessive 

passband ripple. The general form representing the frequency 

response and the “nth” Order Butterworth filter is given in 

Eq.Error! Reference source not found.: 

H
(jω)=

1

√1+ε2(
ω

ωc
)

2n

 
(4) 

 

Where: n is the filter order, ω is equal to 2πƒ and ε is the 

maximum passband gain and ωc is the cutoff frequency [30]. 

 

 

 

Figure 12: Denoised PCG using EMD Filter 

[6], [29][30]

 

Figure 13: Denoised PCG using BTW Filter. 

BTW with a bandwidth of 20-500 Hz and order 4 was 

designed to denoise the PCG signals. The denoised (filtered) 

version of the PCG signal given in Figure 13 shows the signal 

attenuates significantly and the noise in the PCG signal was 

filtered effectively. From the clean data for each class, 10 

samples were randomly chosen. The average MSE attribute 

was calculated for the BTW Filter comparing the base clean 

data to its data after adding White Gaussian Noise (WGN) 
and artifacts for various classes. The results provide 5.63% 

for normal, 8.27% for S3, 8.29% for AS, 7.5% for MR, 7.43% 

for MS, and 6.01% for MVP class.  

 

4.5 Chebyshev Filter for PCG Signal Denoising 

Chebyshev filters have passband ripple (also known as 

"Chebyshev filters") or stopband ripple (also known as 

"inverse Chebyshev filters") that provide analog or digital 

filters with higher roll-off than BTW filters. Chebyshev 

minimizes the error between the actual filter with ripples and 

the idealized in the passband [7]. 

The gain response Gn(ω) in CHV Filter is calculated as 
described in Eq.(5) [31]: 

 

Gn(ω) = |Hn(jω)| =
1

√1 + ε2 Cn
2(ω ω0⁄ )

 (5) 

 

Where ω is the angular frequency of the nth-order low-pass 

filter is equal to the absolute value of the transfer function 

Hn(s) evaluated at s=jω, ε is the ripple factor, ω0 is the cutoff 

frequency and Cn is a Chebyshev polynomial of the nth order.  

 

Figure 14: Denoised PCG using Chebyshev 

CHV with a bandwidth of 20-500 Hz and order 4 is designed 

to denoise the PCG signals. The denoised (filtered) version of 

the PCG signal given in Figure 14 shows the signal attenuates 

significantly and the noise in the PCG signal was filtered 

effectively. From the clean data for each class, 10 samples 

were randomly chosen. The average MSE attribute was 

calculated for the CHV Filter comparing the base clean data 
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to its data after adding White Gaussian Noise (WGN) and 

artifacts for various classes. The results provide 5.11% for 

normal, 15.67% for S3, 7.01% for AS, 6.65% for MR, 

14.51% for MS, and 5.29% for MVP class.  

4.6 Filters Performance Comparison 

Using the identical White Gaussian Noise (WGN) and 
artifacts added to all of the signals, the mean square error 

(MSE) between the noisy data and its original clean data was 

calculated to evaluate the performance of the filters. Table 1 

lists the MSE for each of the used filters and demonstrates 

that the DWT produces the least MSE. 

 
Table 1. Mean Square Error results for all filter 

 Normal S3 AS MR MS MVP 
IIR 5.63% 7.80% 8.23% 7.50% 6.18% 6.01% 

DWT 3.28% 2.57% 3.20% 2.81% 3.25% 2.40% 

EMD 5.98% 7.58% 8.69% 7.42% 10.10% 9.33% 

BTW 5.63% 8.27% 8.29% 7.50% 7.43% 6.01% 

CHV 5.11% 15.67% 7.01% 6.65% 14.51% 5.29% 
 

5 PCG  SIGNAL SEGMENTATION 

Signal segmentation is a very crucial step in the signal 

processing performed on signals that include patterns. The 

objective of segmentation is to remove the unwanted 

segments of the signal and to extract only relevant portions 

from the PCG waveform.  

3 techniques were applied: Segmentation by Wavelet 

Decomposition using Shannon Energy with Template 
Correlation (SE-TC), Segmentation based on Heart Sound 

Envelogram (HSE), and Segmentation by Template 

Correlation using Correlation Coefficient (CC-TC).  

A stacked comparison graph is generated for all accessible 

data to show the segmented section referred to the original 

data, and then a visual of all data is undertaken to test the 

operation of these methods and evaluate their effectiveness. 

 

5.1 Segmentation by Wavelet Decomposition using Shannon 

Energy With Template Correlation  

This method uses the Discrete Wavelet Transform (DWT) in 

conjunction with Shannon entropy. The entropy of the 

detailed coefficients will be calculated at each level [10]. The 

algorithm applied initially decomposes the PCG signal into 
six wavelet filter levels (Daubechies (db)), where the best 

level of decomposition is set based on the Shannon entropy 

calculated values at each level of decomposition. Then the 

mean value of the Shannon entropy determines the boundary 

between the main components and the pathological murmur 

and divides the main signal into several segments. finally, all 

segments are matched with a template heartbeat signal 

(Figure 15) using the Sum of Squared Difference (SSD) 

algorithm [32] using Eq.(6):  

 

ssd =  
1

N
∑(xk − yk)2

N

k=1

 (6) 

 

Where xk is the feature of the registered template and yk is 

from the authentication template, N represents the total 

number of features. After calculating similarity, a threshold 
is used to decide whether either given template is matched or 

not. SSD is a simple method and gives better results as 

compared to the correlation used in template matching. 

5.2 Segmentation by Template Correlation using 

Correlation Coefficient 

This method uses feature selection based on Autocorrelation 

(AC) of PCG segments matched with the template signal [3]. 

The method consists of four stages: 

1. Windowing, where the preprocessed PCG signal is 

subjected to segmentation into nonoverlapping 

windows. 

2. Normalized autocorrelation computation for every 

window. 

3. Dimensionality reduction with the Discrete Cosine 

Transform (DCT) or Linear Discriminant Analysis 

(LDA). 

4. Classification based on features obtained from the DCT 

or LDA. 

 

Figure 15: Template used for Template Matching 

The PCG is a nonperiodic but highly repetitive signal. The 

motivation behind AC is that it embeds information about 

representative and highly distinctive characteristics of signals 

recorded from different individuals.  

Autocorrelation is applied to windowed PCG signals. 

Windowing can be performed if only the signal is longer than 

the average heartbeat length to include more than one pulse. 
On such PCG windows, autocorrelation provides a shift-

invariant perspective of similarity features over multiple 

heartbeat cycles. The normalized autocorrelation coefficients 

Rxx[m] can be computed by Eq.(7): 

 

R̂xx[m] =  
∑ x[i]x[i + m]N−|m|−1

i=0

R̂xx[0]
 (7) 

 

Where x[i] is the windowed PCG for i=0, 1... (N−|m|−1), 

x[i+m] is the time-shifted version of the windowed PCG with 

a time lag of m = 0, 1,...(M−1); M<<N, and N is the length 

of the windowed signal. The dimensionality of autocorrelated 

signals is considerably high and DCT or LDA are applied for 

reduction.  
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5.3 Segmentation based on Heart Sound Envelogram  

This method is based on a heart sound envelogram which 

divides the spectrum into several envelopes. In this method, 

cardiac sounds will be divided into four parts: the cardiac 

sound (S1), systolic period, cardiac sound (S2), and diastolic 

period. The PCG cycle will be segmented into systolic and 

diastolic parts using the carotid pulse, which provides high 

accuracy in the characterization and localization of murmurs. 

The pattern of energy distribution is crucial for the diagnosis 
of valvular and septal defects, which cause murmurs of 

characteristic envelope shapes in particular locations of the 

cycle [33]. The pattern of the energy distribution of the PCG 

signal is very important in the analysis of valvular and septal 

defects, which is the reason for murmurs and characteristic 

envelope shapes in particular locations of the cardiac cycle. 

We make use of a time-varying energy function calculated as 

described in Eq.(8) 

E(n) =  ∑ x2(n − k) w(k)

M

k=1

 (8) 

 

where x(n) is the signal and the weighting sequence  

w(k)= M+I-k with M=32 [34]. This function is computed for 

the systolic and diastolic segments separately. The presence 

of murmurs is indicated when significant energy appears after 

S1 in the systolic segment or after S2 in the diastolic segment. 

The murmur envelope E(n) is then calculated as given in 
Eq.5. 

5.4 Segmentation algorithms comparison 

A stacked comparison graph (Figure 16) is generated for all 

accessible data to display the segmented section referred to 

the original data, and then a visual rating for all data is 

undertaken to assess the operation of these algorithms and 

compare their performance. 

 

 

Figure 16: Segmentation stacked graph 

 
The criteria for measuring the segmentation's effectiveness are listed in 

Table 2. The rating outcomes are displayed in  

Table 3 after analyzing the segmentation findings for all data 
using the stacked graphs. 

 

Table 2. Segmentation evaluation criteria for Segmentation methods 

Rating  Grade Criteria 

3  Excellent detected S1 then S2 

2  Good detected S2 then S1 or long portion 

1  Poor detected short portion or very long 
portion 

0  Not detected 
 

Table 3. Segmentation Rating results 
 

Shannon Corr.Coef Envelogram 

Total 1548 1548 1548 

3 scored (Excellent) 61.0% 27.6% 74.6% 

2 scored (Good) 26.0% 66.1% 22.5% 

1 scored (Bad) 12.7% 6.2% 2.2% 

0 scored (Error) 0.3% 0.1% 0.8% 

Rate 3814 3390 4192 

 

As can be shown, when compared to other techniques, 

segmentation based on the heart sound envelogram algorithm 

produces the best results. 

6 PCG  SIGNAL FEATURE EXTRACTION 

Feature extraction is an essential part of every machine-

learning process. One type of feature is often insufficient to 

comprehensively represent the PCG signal of all categories, 

thus it makes the training more challenging. For the feature 

extraction phase, 3 methods were applied to the PCG signal: 

Time Domain Features (TDF), Frequency Domain Features 

(FDF), and Mel Frequency Cepstral Coefficients (MFCC) to 

evaluate each method and select the best-performing feature 

extraction method for the training process.  

 

6.1 Time-domain features 

The preprocessed signal's time domain properties, including 

mean, standard deviation, skewness, kurtosis, peak 
amplitude, root mean square, shape factor, impulse factor, 

and clearance factor, are computed to assess their capacity to 

identify the existence of murmur. Additionally, the relevance 

of their statistical significance is assessed [35].  

The standard deviation (SD) of the preprocessed PCG signal 

is given as: 

SD = √
1

N
∑(Xpt − μ(Xpt))2

N

t=1

 (9) 

 

 Where µ(Xpt) represents the mean value of the preprocessed 

signal Xpt. the Mean is calculated by, 

 

μ(Xpt) =
1

N
∑ Xpt

N

t=1

 (10) 

 

The Peak Amplitude (Xpeak) is calculated by: 

 

XPeak = Max(|Xpt|) (11) 

 

The Root Mean Square (RMS) value is calculated as 

described in Eq.(12) 
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RMS =  √
1

N
(∑(Xpt

2)

N

t=1

) (12) 

 

The crest factor (CRF) is calculated as described in Eq.(13) 

CRF =
YPeak

RMS
  (13) 

 

The Impulse Factor (IF) is calculated as described in Eq.(14) 

IF =  
YPeak

μ(Xpt)
 (14) 

 

The Shape Factor (SHF) is calculated as described in Eq.(15) 

SHF =
RMS

μ(Xpt)
 (15) 

 

The Clearance Factor (CLF) is calculated as described in 

Eq.(16) 

CLF =
XPeak

E
 (16) 

 

The Skewness (Sk) is calculated as described in Eq.(17) 

Sk =

1
N

∑ (Xpt − μ(Xpt))3N
t=1

[
1
N

∑ (Xpt − μ(Xpt))2N
t=1 ]

3/2 (17) 

 

The Kurtosis (Kurt) is calculated as described in Eq.(18) 

 

Kurt =

1
N

∑ (Xpt − μ(Xpt))4N
t=1

[
1
N

∑ (Xpt − μ(Xpt))2N
t=1 ]

2 − 3 (18) 

 

6.2 Frequency domain features 

Frequency domain (spectral-domain) features are used to 

extract the frequency-related relationship of the signals of 

various categories. These features are extracted by first 

transforming the time domain signal to the frequency domain 

using Fast Fourier Transform (FFT) algorithm. From the FFT 

spectrum, 10 features are extracted, such as Spectral Flux, 
Spectral Crest, Spectral Flatness, Spectral Skewness, Spectral 

Centroid, Spectral Kurtosis, Spectral Spread, Spectral Roll 

Off, Spectral Slope, and Spectral Decrease [13], [36].  

The spectral flux is calculated as described in Eq.(19) 

 

flux(t) =  ( ∑ |Sk(t) − Sk(t − 1)|P

b2

k=b1

)

1/P

 (19) 

 

Where Sk is the spectral value at bin k. b1 and b2 are the band 

edges, in bins.  

The spectral crest is calculated as described in Eq.(20)  
 

crest =
max (Sk ∈ [b1, b2])

1
b2 − b1

∑ Sk
b2
k=b1

 (20) 

 

The spectral flatness is calculated as described in Eq.(21)  

 

flatness =
(∏ Sk

b2
k=b1

)

1
b2−b1

1
b2 − b1

∑ Sk
b2
k=b1

 (21) 

 

The spectral skewness is calculated as shown in Eq.(22) 

skewness =
∑ (fk − μ1)3b2

k=b1
Sk

(μ2)3 ∑ Sk
b2
k=b1

 (22) 

 

Where fk is the frequency in Hz corresponding to bin k. μ1 is 

the spectral centroid, calculated as described by the spectral 

Centroid function. μ2 is the spectral spread, calculated as 

described by the spectral Spread function. 

The spectral centroid is calculated as described in Eq.(23)  

centroid =
∑ 𝑓𝑘𝑆𝑘

𝑏2
𝑘=𝑏1

∑ 𝑆𝑘
𝑏2
𝑘=𝑏1

 (23) 

 

The spectral kurtosis is calculated as described in Eq.(24)  

 

kurtosis =
∑ (fk − μ1)4b2

k=b1
Sk

(μ2)4 ∑ Sk
b2
k=b1

 (24) 

 

The spectral spread is calculated as described in Eq. (25) 

 

Spread = √
∑ (fk − μ1)2b2

k=b1
Sk

∑ Sk
b2
k=b1

 (25) 

 

The spectral roll-off point (i) is calculated as described in Eq. 

(26) 

∑ 𝑆𝑘

𝑖

𝑘=𝑏1

= 𝜅 ∑ 𝑆𝑘

𝑏2

𝑘=𝑏1

 (26) 

 

Where κ is the percentage of the total energy contained 

between b1 and i.  
The spectral slope is calculated as described in (27) 

 

𝑠𝑙𝑜𝑝𝑒 =
∑ (𝑓𝑘 − 𝜇𝑓)(𝑆𝑘 − 𝜇𝑆)𝑏2

𝑘=𝑏1

∑ (𝑓𝑘 − 𝜇𝑓)
2𝑏2

𝑘=𝑏1

 (27) 

 

Where μs is the mean spectral value.  

The spectral decrease is calculated as described in (28) 
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𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =
∑

𝑆𝑘 − 𝑆𝑏1

𝑘 − 1
𝑏2
𝑘=𝑏1+1

∑ 𝑆𝑘
𝑏2
𝑘=𝑏1+1

 
(28) 

 

6.3 Mel-frequency Cepstral Coefficients (MFCC) features 

A representation of a sound's short-term power spectrum used 

in sound processing is called a Mel-Frequency Cepstrum 

(MFC), which is based on a nonlinear Mel scale frequency 

log power spectrum linear cosine transform. 

An MFC is made up of a number of coefficients known as 

Mel-Frequency Cepstral Coefficients (MFCCs) [37]. They 

were created using an audio clip's cepstral representation (a 

nonlinear "spectrum-of-a-spectrum"). When used in audio 

compression, for instance, this frequency warping can 
improve the representation of sound and potentially lower the 

transmission bandwidth and storage needs of audio signals. 

MFCC is used extensively recently for feature extraction and 

classification of heart sounds [8], [38]. MEL frequency is 

related to linear frequency in Eq.(29). 

Mel(f) = 2595 log10 (1 +
f

700
) (29) 

 

As shown in Figure 17, the signal-to-noise ratio will be 

improved as the PCG signal is pre-weighted. The segmented 

PCG signals will be divided into frames using an overlapping 

window of around 30 ms considering 20 ms for the frame-

blocking stage. To avoid parasitic spectral leakage, a 

hamming window of the length of 1323 samples was chosen 

by setting the sampling frequency to 44.1 kHz.  

 

Figure 17: The process of MFCC feature extraction. 

Fast Fourier transform (FFT) is applied to the data to 

transform each segment to its frequency domain version. 

After the PCG signal is segmented, the selected best segment 

is transformed into the Mel inverse spectrum domain after 

being filtered by a set of band-pass Mel triangular filters. The 

higher band of the PCG signal is compressed then by the 

algorithm of the Mel spectrum coefficient extracted from 

each Mel triangular filter, then DCT transforms the 

logarithmic Mel spectrum coefficients as illustrated in 
Eq.(30) [38]. 

c[n] =  ∑ S[m]

N−1

M=0

cos (
τn

M
(m −

1

2
)) , n = 1,2, . . , M (30) 

 

Where C is the number of MFCCs, c[n] is the number of 
cepstral coefficients, and M is the filter bank. Typically, 8 
to 13 cepstral coefficients are used in conventional MFCC 
systems. Since the zeroth coefficient indicates the average 
log energy of the input signal, which conveys very little 
speaker-specific information, it is frequently removed. 13 
MFCCs were selected for this study. 

7 PCG  SIGNAL CLASSIFICATION 

The last stage of the process is the classification phase which 

categorizes the features extracted from the PCG signal into 6 

classes (Normal, third heart sound S3, Aortic valve stenosis 

AS, Mitral valve regurgitation MR, Mitral valve stenosis MS, 

Mitral valve prolapse MVP). The training and verification 

process uses a split of 70% for training and 30% for 

verification. This ratio was selected based on multiple studies 
that demonstrated optimal results for the training sets [8]. 3 

kinds of features were extracted from the PCG signal (Time 

Domain Features (TDF), Frequency Domain Features (FDF), 

and Mel Frequency Cepstral Coefficients (MFCC)). These 

were incorporated into the training and verification phase 

using the following classification techniques: Deep Neural 

Network (DNN), Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), and Decision Tree (DT) to measure their 

accuracy and select the best performing method.  

The accuracy of the classification is presented as confusion 

matrixes which is a performance evaluation method for the 
success of the machine learning classification. These 

measures are identified from the classifier’s true positive 

(TP), true negative (TN), false positive (FP), and false 

negative (FN) values as shown in Figure 18. 

 

Figure 18: Confusion matrix 

7.1 K-nearest neighbors 

The idea of the nearest neighbor algorithm is to trace the 

nearest predetermined parameter of the training samples to a 

new point end and estimate its label. A constant (k) can be 

defined in K-nearest neighbor learning KNN, or it can be 

related to its local density of points. 

KNN is a non-generalized machine learning which is 

calculated by a simple majority vote of the other nearest 

neighbors and points, where a query point is assigned the 
class with the most representative of the nearest neighbors. 

[39]. If the feature representation values go on vastly different 

scales, then the normalization of the training data improves 

its accuracy dramatically [16]. For optimum performance, a 

K value of 1 was selected. All other features extracted from 

beats were standardized. The result confusion matrices for 

time, frequency, and cepstral domains are shown in Figure 

19, Figure 20, And Figure 21 respectively.  

PCG Signal Pre-Emphasis STFT

Magnitude 
Squared

Mel Filterbank
Frequency 
Integration

Logarithm

DCT MFCC features
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Figure 19: KNN classification with Time domain features 

 

Figure 20: KNN classification with frequency domain features 

 

Figure 21: KNN classification with cepstral domain features 

7.2 Support vector machines 

Support Vector Machine (SVM) is considered one of the 

main methods used in myoelectric signals. The function of 

the SVM is to categorize an n-dimensional hyperplane and 

categorize a set of input features into classes. SVM works by 

data mapping to a high-dimensional feature space so that it 
categorizes the data points, even if the data is not linearly 

separable. The data will be changed if a separator between the 

categories is found so that the separator may be drawn as a 

hyperplane [14]. A linear kernel function was used in SVM 

to distinguish between multiple classes of beats extracted 

from PCG signals. One vs One technique for multiclass SVM 

was employed. The result confusion matrices for time, 

frequency, and cepstral domains are shown in Figure 22, 

Figure 23, and Figure 24 respectively.  

7.3 Decision Tree 

A Decision Tree (DT) is a method for supervised machine 

learning that is used for both regression and classification. It 
divides the dataset into smaller subsets while associated DT 

is incrementally developed. 

 

 

Figure 22: SVM classification with Time domain features 

 

Figure 23: SVM classification with frequency domain features 
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Figure 24: SVM classification with cepstral domain features 

In the construction of the decision tree algorithm, we used the 

features extracted from the training dataset, which we know 

their feature attributes (independent variables) and the 

classifying attribute (dependent variable). The best attribute 

and condition for splitting the dataset are determined, taking 

into consideration the classifying attribute to get the highest 

classification accuracy [15]. The maximum number of splits 

was set to 100 while developing the decision trees. The result 
confusion matrices for time, frequency, and cepstral domains 

are shown in Figure 25, Figure 26, and Figure 27 

respectively.  

7.4 Deep Neural Network 

Deep Neural Network (DNN) learns by communicating with 

other nodes (neurons) in multi-layered structures. We can 

categorize the data, spot trends, and predict upcoming events 

thanks to DNN. DNN separates the input data into layers of 

abstraction with several levels and varying weights for each 

element. These weights can be automatically changed 

throughout training until the DNN successfully completes the 

required aim [14].  
A nonlinear mapping is carried out by the neurons in the 

neural network's layers one after the other. With the use of 

backpropagation algorithms and a weighted sum of neurons, 

this mapping enables network learning [25]. 

Activation functions are used to learn non-linear and complex 

functional mappings between the inputs and the response 

variable in an artificial neural network. activation function 

should be differentiable so that backpropagation optimization 

can be performed in the network while computing gradients 

of error (loss) concerning weights, to optimize weights and 

reduce errors. [40] 

Many types of activation functions are available in the DNN, 
however, in this work, we consider three of the most popular 

non-linear activation functions that are Sigmoid, Tangent 

Hyperbolic (tanh), and Rectified Linear Units (ReLU).  

The DNN was configured to 5 layers considering 100 

Neurons within each layer, and the activation function of 

Tanh was employed. The total number of iterations limit is 

set to 1000, and features were standardized before processing. 

The result confusion matrices for time, frequency, and 

cepstral domains are shown in Figure 28, Figure 29, and 

Figure 30 respectively.  

 

 

Figure 25: Decision Tree with Time domain features 

 

Figure 26: Decision Tree with frequency domain features 

 

Figure 27: Decision Tree with cepstral domain features 
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Figure 28: ANN classification with Time domain features 

 

Figure 29: ANN classification with frequency domain features 

 

Figure 30: ANN classification with cepstral domain features 

7.5 Classification Results 

There are two objectives for this work:  

1. To detect anomalies (differentiate normal from 

abnormal heartbeat) 

2. To classify the anomalies 

Considering these objectives, on the one hand, the accuracy 

of anomaly detection can be calculated by averaging the true 

positive and false negative results for the normal class. On the 

other hand, anomaly classification accuracy can be calculated 

by averaging the true positive and false negative for other 

classes.  

The summary table (Table 4) shows that the anomaly 

detection accuracy and the anomaly classification accuracy 

for the DNN using Cepstral features are the highest, with 

93.2% accuracy for anomaly detection and 71.07% accuracy 

for anomaly classification.  

 

Figure 31: DNN Architecture 

The findings indicate that, when compared to alternative 

classification and feature methods, DNN employing Cepstral 

features provides the highest accuracy for anomaly detection 

and anomaly classification. The DNN's following parameters 
were adjusted further by changing them: The activation 

function, the number of hidden layers (3, 5, and 10), the 

number of neurons in each hidden layer (10, 50, and 100), 

and (tanh, sigmoid, and ReLU). Figure 32 illustrates the 

process of the proposed system. 

7 RESULTS SUMMARY 

To evaluate the system's effectiveness, extensive system 

testing and training were carried out, using 70% of the data 

for training and 30% for testing. The DNN was modified as 

indicated below: 

 

 

New PCG Signal

Denoising using (Discrete Wavelet Transform)

Segmentation Based on (Heart Sound Envelogram)

Feature Extraction using (Cepstral Features)

Classification using  (DNN Classifier) 

Classification Parameters Finetuning
(Tanh activation, 5 Layers, and 100 Neurons in each layer) 

MRASS3Normal MS MVP
 

Figure 32: Final Proposed Methodology 

Stage 1: Select the ideal activation function from (Sigmoid, 

Tanh, and ReLU) using preset parameters for the number of 

DNN hidden layers and neurons in each layer (5 layers and 
100 neurons within each layer) 
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Stage 2: Select the number of neurons with fixed activation 

functions that work well (Tanh performed best in stage 1). 

In stage 3, pick the number of hidden layers using the stage 1 

and stage 2 parameters that perform best. (100 Neurons and 

Tanh's activation function) 

The Tanh activation function, 5 hidden layers, and 100 

Neurons within each layer are the DNN settings that gave the 

greatest performance for anomaly detection and classification 
as given in Table 6. Additionally, 10 simulations were run 

with this arrangement, and the results of the multiple tests 

were averaged for better accuracy as given in  

Table 5. In terms of anomaly detection and classification 

rates, the results showed average performances of over 

92.14% and 71.02%, respectively. 

8 CONCLUSION 

Five common heart murmurs, the third heart sound (S3), 

aortic stenosis (AS), mitral regurgitation (MR), mitral 

stenosis (MS), and mitral valve prolapse (MVP), were the 

focus of an efficient Phonocardiography (PCG) based system 

that was designed and tested for the early detection and 
classification of cardiovascular anomalies. 

The preliminary findings point to average rates for detection 

and classification of heart anomalies of approximately 92% 

and 71%, respectively. This was accomplished by utilizing a 

variety of filtering, segmentation, feature extraction, and 

deep learning approaches in comparison to the PCG signals.  

It was found that better outcomes were obtained utilizing a 5-

layer Deep Neural Network (DNN) with 100 neurons per 

 

 layer and the Hyperbolic Tangent (tanh) as the activation 

function. 

The best methods for segmenting and denoising the PCG 

signal, respectively, were the Discrete Wavelet Transform 

(DWT) and Heart Sound Envelogram (HSE). The Mel 

Frequency Cepstral Coefficients (MFCC) Features were 

utilized to train and execute the DNN since they performed 

better than their Frequency and Time Domain equivalents. 
While a more expensive option, such as high-quality 

cellphones or digital electronics stethoscopes, can be utilized 

to provide higher-quality PCG signals, a low-cost but noisy 

modified conventional stethoscope was employed as the 

input device in this study. As the COVID limits are altered, 

more data about a larger variety of heart murmurs could be 

collected thanks to easier access to heart patients in hospitals. 

The suggested system is anticipated to perform better with 

extra data and further modification of the DNN parameters, 

to classify more heart murmurs with higher accuracy. 

The proposed system's success in creating early warnings and 

preliminary indications to potentially ill people and directing 
them to specialized cardiologists for more precise 

diagnostics—despite the fact that it was not intended to be a 

primary tool for the diagnosis—was demonstrated by its 

relatively high detection rate. In the context of preventive 

public health systems, this should be a useful home-care tool. 

 

 

 

Table 4. Classification Results Summary 

 

 

Table 5. Multiple Testing using Best-Performing DNN Parameters 

 

Normal S3 AS MR MS MVP Normal S3 AS MR MS MVP

Anomaly 

Detection 

Accuracy

Anomaly 

Classification 

Accuracy

KNN Time 83.1 72.7 73.5 61.8 54.7 56.7 82.7 72.7 69.4 57.5 57.4 64.2 82.90 64.06

KNN Frequency 82.0 50.0 63.8 56.7 56.9 64.4 80.2 64.7 63.8 61.3 62.7 53.5 81.10 59.78

KNN Cepstral 88.2 50.0 69.1 67.6 71.9 66.7 93.5 78.6 62.7 65.7 70.8 58.8 90.85 66.19

SVM Time 83.8 38.1 34.8 37.3 37.5 38.3 64.4 88.9 53.3 44.6 42.9 37.7 74.10 45.34

SVM Frequency 94.9 57.1 59.4 45.6 40.6 20.0 76.1 44.4 71.9 48.4 59.1 26.1 85.50 47.26

SVM Cepstral 93.3 52.4 37.7 60.3 50.0 41.7 81.0 50.0 68.4 51.2 65.3 37.9 87.15 51.49

DT Time 75.8 47.6 72.5 69.1 48.4 50.0 79.4 37.0 69.4 63.5 60.8 45.5 77.60 56.38

DT Frequency 84.8 47.6 72.5 51.5 64.6 61.0 91.0 45.5 65.8 50.0 60.0 64.3 87.90 58.28

DT Cepstral 88.8 63.6 48.5 61.8 69.2 59.3 92.4 56.0 46.5 54.5 68.2 70.0 90.60 59.76

DNN Time 88.8 76.2 67.6 75.0 73.8 71.7 89.8 64.0 73.0 69.9 69.6 79.6 89.30 72.04

DNN Frequency 89.4 54.5 69.1 70.1 64.1 71.7 90.4 80.0 62.7 69.1 68.3 66.2 89.90 67.58

DNN Cepstral 95.0 68.2 69.6 65.7 71.9 76.3 91.4 65.2 72.7 67.7 85.2 68.2 93.20 71.07

True Positive True Negative

Anomaly 

Detection 

Accuracy

Anomaly 

Classification 

Accuracy

Normal S3 AS MR MS MVP Normal S3 AS MR MS MVP

Layers 5 Test 01 92.30% 72.32% 93.3% 52.4% 76.5% 63.2% 84.6% 64.4% 91.3% 100.0% 68.4% 70.5% 75.3% 67.9%

Neurons 100 Test 02 92.30% 70.95% 91.0% 77.3% 70.6% 59.7% 80.0% 73.3% 93.6% 65.4% 69.6% 70.2% 67.5% 75.9%

Activation Tanh Test 03 93.30% 72.14% 93.3% 59.1% 69.6% 70.1% 83.1% 72.9% 93.3% 76.5% 71.6% 69.1% 74.0% 75.4%

Features Cepstral Test 04 91.75% 71.46% 90.4% 81.8% 72.1% 61.2% 83.1% 66.7% 93.1% 62.1% 68.1% 82.0% 74.0% 63.5%

Test 05 93.20% 71.07% 95.0% 68.2% 69.6% 65.7% 71.9% 76.3% 91.4% 65.2% 72.7% 67.7% 85.2% 68.2%

Test 06 91.15% 70.61% 93.9% 68.2% 65.2% 67.2% 78.1% 62.7% 88.4% 83.3% 66.2% 72.6% 71.4% 71.2%

Test 07 91.80% 69.36% 90.5% 52.4% 72.1% 67.6% 81.5% 74.6% 93.1% 57.9% 71.0% 68.7% 76.8% 71.0%

Test 08 93.25% 71.15% 92.7% 76.2% 60.3% 63.2% 84.6% 76.7% 93.8% 66.7% 68.3% 69.4% 76.4% 69.7%

Test 09 91.20% 70.51% 92.7% 63.6% 66.7% 76.1% 73.4% 67.8% 89.7% 66.7% 67.6% 70.8% 79.7% 72.7%

Test 10 91.10% 70.62% 92.1% 63.6% 62.3% 74.6% 73.8% 71.2% 90.1% 77.8% 61.4% 73.5% 71.6% 76.4%

Average 92.14% 71.02% 92.5% 66.3% 68.5% 66.9% 79.4% 70.7% 91.8% 72.2% 68.5% 71.5% 75.2% 71.2%

True Positive True Negative
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Table 6. DNN Parameters Selection Test Results 

 

 

Testing Different Activation Methods 

Layers 5

Neurons 100

Training 

Time  (s)
Normal S3 AS MR MS MVP Normal S3 AS MR MS MVP

Anomaly 

Detection 

Accuracy

Anomaly 

Classificati

on 

Accuracy

Relu 112 92.2% 63.6% 58.8% 65.7% 71.9% 60.0% 92.7% 56.0% 58.0% 62.9% 69.7% 69.2% 92.45% 63.58%

Sigmoid 155 90.5% 66.7% 60.9% 70.1% 75.0% 70.0% 89.5% 60.9% 72.4% 58.0% 77.4% 76.4% 90.00% 68.78%

Tanh 83 93.3% 59.1% 69.6% 70.1% 83.1% 72.9% 93.3% 76.5% 71.6% 69.1% 74.0% 75.4% 93.30% 72.14%

Testing Different Number of Neurons

Layers 5

Activation Tanh

Training 

Time  (s)
Normal S3 AS MR MS MVP Normal S3 AS MR MS MVP

Anomaly 

Detection 

Accuracy

Anomaly 

Classificati

on 

Accuracy

10 Neurons 35 92.1% 63.6% 73.5% 73.5% 75.4% 66.1% 94.8% 60.9% 60.2% 68.5% 86.0% 76.5% 93.45% 70.42%

50 Neurons 52 90.5% 54.5% 72.1% 68.7% 68.8% 58.3% 92.0% 52.2% 61.3% 63.9% 72.1% 72.9% 91.25% 64.48%

100 Neurons 83 93.3% 59.1% 69.6% 70.1% 83.1% 72.9% 93.3% 76.5% 71.6% 69.1% 74.0% 75.4% 93.30% 72.14%

Testing Different Number of Hidden Layers with 100 Neurons

Neurons 100

Activation Tanh

Training 

Time  (s)
Normal S3 AS MR MS MVP Normal S3 AS MR MS MVP

Anomaly 

Detection 

Accuracy

Anomaly 

Classificati

on 

Accuracy

3 Layers 43 91.0% 50.0% 69.6% 54.4% 73.4% 69.5% 87.6% 52.4% 58.5% 71.2% 75.8% 70.7% 89.30% 64.55%

5 Layers 83 93.3% 59.1% 69.6% 70.1% 83.1% 72.9% 93.3% 76.5% 71.6% 69.1% 74.0% 75.4% 93.30% 72.14%

10 Layers 244 89.3% 61.9% 63.2% 72.1% 81.5% 65.0% 88.8% 81.2% 68.3% 64.5% 71.6% 75.0% 89.05% 70.43%

True Positive True Negative

True Positive True Negative

True Positive True Negative
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