
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No. 1 (Dec-23)

http://dx.doi.org/10.12785/ijcds/1401120

Resource Allocation in Cloud Computing with Economical
Strategic Setting

Anjan Bandyopadhyay1, Sujata Swain1, Dipti Dash1 and Arup Roy2

1School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India
2Budge Budge Institute of Technology, Kolkata, India

Received 29 June 2023, Revised 18 Sep. 2023, Accepted 31 Oct. 2023, Published 28 Dec. 2023

Abstract:Resource allocation and pricing techniques in cloud computing is a challenging task for every researcher. Everyone try to find
out a good solutions of resource allocation and pricing in a dynamic way. Every user give their demands for taking the cloud resources
for a particular time period. If the request is not fulfilled within the time period then the user ask for extra time for completion his
task. The cloud computing automatically generate a reverse auction strategy for implementing the task and the task will be performed
in the other cloud which have been participated in the auction. Here we have proposed Resource Allocation with Economical Strategy
(RAES) as an efficient and cost-effective framework for resource allocation with pricing . We have compared our algorithm with ECON
and Greedy algorithm. For simulation purpose, we keep number of users and capacity of the system constant and vary average number
of CPU required by the users. We observe that number of allocations made by our algorithm is significantly good perform than the
basic ECON scheduling algorithm and Greedy algorithm.

Keywords: Resource Allocation, Auction Theory, Pricing Technique, Capacity conflict

1. INTRODUCTION
A new computer paradigm called cloud computing en-

ables users to share on-demand computing resources like
CPU and RAM. Services like Dropbox and Google Docs,
as well as apps like Flikr, leverage cloud computing to store
documents. Because cloud computing is an infrastructure-
less service, we must share a significant amount of virtual
infrastructure with the users rather than installing physical
equipment at their end. When sharing these resources, users
confront two main challenges: the first is how to distribute
system infrastructures like CPU, RAM, and other hardware
across several users; the second is how to reimburse service
providers for the pricey infrastructures they offer. Allocating
infrastructure to users that require services has involved a
lot of work. Server sharing and task scheduling across a
time horizon are the two main concerns that infrastructure
allocation primarily addresses. [1].

Virtual machines and container-based technology are
used to share servers among users who are concerned about
security [1], [2], [3]. Scheduling tasks that arrive over a time
horizon is primarily driven by two goals. The first is service
level objectives, or SLOs, which are addressed in [1], [4],
[5], [6] (for example, meeting the deadline of the tasks
under consideration). Utilizing clusters is the second goal,
which is well-discussed in the literature [7], [8], [9]. Both
public and private clouds have implemented the theories

concerning system level problems that have developed in
the literature [10], [11]. This is a strong indicator that
allocation perspective has developed to some extent [1]. It
is vital to design effective pricing systems (that is, how
much money should be required based on the service being
delivered) together with suitable allocation methods when
infrastructure-less service demand from individuals (may
be a person, an organisation, etc.) grows [1]. There haven’t
been many recent efforts in this regard, where the main
emphasis is on economically viable solutions [1], [12], [13],
[14], [15].
In the current cloud computing environment, the following
pricing models are in use:

• Prepaid fixed prices with a certain volume of services
guaranteed [1], [16], [17].

• Unit costs based on the demand for the resources
being used [1], [9], [10], [11].

• Based on the spot instance price, an interesting pric-
ing scheme is there, where an individual can bid
according to his maximum willingness to pay [1],
[17].

In contrast to the current pricing schemes utilised in the
current deployment of cloud computing, the major challenge

E-mail address: anjan.bandyopadhyayfcs@kiit.ac.in, sujata.swainfcs@kiit.ac.in, dipti.dashfcs@kiit.ac.in https:// journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/1401120
https://journal.uob.edu.bh

10544 Anjan Bandyopadhyay, et al.: Resource Allocation in Cloud Computing.

is to establish an efficient price scheme paired with resource
allocation. A paradigm [1] has been put out in this regard,
where a value-based efficiency is produced while develop-
ing an effective economic system. This efficiency maximize
social welfare.

The research questions are:

• How can we allocate cloud resources within a stipu-
lated time period?

• How can we allocate the resources so that it will give
better efficiency and also avoid deadlock?

• How can we calculate the dynamic pricing technique?

In this setting we have addressed two other constraints
namely capacity conflict and a base price issue that are
slightly different than [1]. Now we can summarize our
contributions as follows:

• Providing users with flexibility if they are unable to
accomplish their duties within the designated time
range.

• Taking care of the capacity conflict in this framework
to ensure better efficiency of the system.

• Improving the number of transaction by carefully
considering a base price when demand may be less
than the supply.

This gives an opportunity to devise a well-designed algo-
rithm which accepts or rejects a given bid based on the
valuation given by the user, calculating minimum price that
involves base price which allocates user within the time-
window when demand is less than the supply, takes care of
capacity conflict and giving a second chance to the request
providing the flexibility if the user is unable to complete its
job within the prescribed time. There is a guarantee from
the service provider that if a certain request is accepted then
it is for sure that the charged price will always be less than
the valuation given by the user. This makes the mechanism
incentive compatible. Since, in real-world applications of
cloud, a system or a machine cannot have infinite capacity,
therefore after sufficient allocation of resources, there may
arise the problem of capacity conflict(discussed broadly
in section 6.4 of this paper), our paper also deals with
it under our current setting. Since, it also gives the user
an opportunity to violate the prescribed deadlines, thus
more flexible. In this paper, we have discussed an efficient
solution to deal with the violation of deadlines made by
the user based on the second-price auction and preferably
they will be allocated to a lower priority cloud (which will
ensure that they may at least complete their tasks by using
the cloud structures.

2. RelatedWork
The research community has shown a great deal of

interest in the creation of market mechanisms for cloud

computing, especially auction mechanisms for selling cloud
resources. In the recent years, many auction mechanisms
have been created. Resource allocation in cloud computing
with the aid of the marketing plan is a difficult task for
any researcher. Particularly, the academic community is
becoming increasingly interested in auction systems for
exchanging cloud resources [18], [19], [20].

Early virtual machine auctions are straightforward be-
cause they are one-round auctions that assume that the cloud
only offers a single type of virtual machine or that virtual
machine configurations are identical up to linear scaling.
Additionally, they consider the case of static virtual machine
provisioning, in which the quantity and kind of virtual
machines to be offered are decided upon in advance of the
auction’s beginning.

In the last decade, dynamic virtual machine provisioning
has been investigated, in which the cloud provider decides
which virtual machines to construct and how many based
on demand learnt from user bid during the auction. A
convex decomposition technique is used in [21] to develop
a randomised auction for dynamic resource provisioning in
the cloud that is accurate and ensures a low approximation
ratio for social welfare. In [18], a follow-up investigation on
dynamic resource provisioning is done, and online auctions
are designed in which decision-making is linked in time due
to set user budgets.

Cloud auctions conducted online take place after their one-
round equivalents. It was built in [21] to be the first to
research online cloud auction. Online auctions are designed
in the [18] work, however the temporal correlation in
decision-making due to projects spanning numerous time
slots is not taken into account. The research in [21] ex-
amines online cloud auctions in which a user places a bid
during a predetermined window of time for job execution;
as a result, the scheduling dimension is absent from their
solution space.

In [22], a multi-objective scheduling algorithm (OWPSO)
is proposed for task scheduling in cloud computing. A
strategy-proof mechanism for the resource allocation to a
buyer is proposed in [23]. In Combinatorial auctions (CA)
which has been widely studied problem by the researchers
[24], [25], [26], [27], [28] allow service providers to sell
bundle of items rather than individual item and the users
(buyers) to bid on any combination of items or services.
Whenever multiple buyers and multiple sellers present in the
economic market a double auction mechanism is appropri-
ate for cloud resource allocation. However, when multiple
buyers and multiple sellers are present in the market a
double auction mechanism is visible [18], [29], [30], [31].
The double auction mechanism is extended into the online
double auction environment in [32], [33]. In [34], [35], [21]
an efficient online auction mechanism was proposed where
cloud user gives their bids for future cloud resources to
execute its job. While studying mechanism design in cloud

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No. 1, 10543-10551 (Dec-23) 10545

computing there are literature that have worked on the batch
jobs with deadlines. [21] [36], [37]. In these papers they
analyze and find out the competitive ratio for non committed
scheduling which does not require to finish executing a job
that has started execution in the earlier phase. In [38], [37]
design a truthful allocation and pricing mechanism for job
scheduling with soft dead lines.

3. SystemModel and Problem Formulation
In this section, we formulate the problem discussed

in this paper. In this model there is a service provider
represented as S having the cloud infrastructure. The service
provider have, say k different types of resources that he/she
wants to sell. The set of k different resources is given as
r = {r1, r2, ..., rk}. On the other hand, we have n users
represented as U = {U1,U2, ...,Un}. Each user Ui ∈ U
requests a set of resources represented as Ri ⊆ r. The set of
requests of all the n users is given as R = {R1,R2, ...,Rn}.
Each user will have a some request based on time-window,
time requirement, resource type, and their valuation. The
time-window will be preferable interval of time of the user
which may be greater than the time required. The system
will try to allocate the resources within the time-window.
Each request from the user will be associated with a bid
which is a collective information for the system using which
it will decide whether to reject the request or accept it. The
bidding mechanism is discussed in later sections of this
paper. The system will extract the bids whose start time is
at time is t. Let Bt be the set of bids at time t, then Bti will
be the bid of ith user at time t.Let n′ be the requests at time
t then Bt will be:

Bt = {Bt1, Bt2, Bt3,, Btn′ } (1)

Now, we need to schedule these requests within their prefer-
ence time with required amount of resources. A request may
be rejected if it does not satisfy the criteria of the service
provider and if accepted a price (Pmin) will be charged.
There is a guarantee from the service provider that Pmin
will always be lesser than the valuation of the accepted
request’s user. This was the first aspect of our model in
which only allocation is being done.
In the second aspect of our model, there is one more
challenge after successful allocation of the resources to a
user say Ui. If the user Ui is unable to complete his/her
task with the resources supplies in the allocated time. Then,
he/she will ask for some extra time to complete his task. A
possible solution for this aspect is also given in this paper.

4. Solution for the problem
The service provider will collect bundle of request R

from the users U. Each request Ri have the following
characteristics:-

• Quantity and type of resources.

• Time required by the user to complete his job.

• Time slot in which the user wants the resources to be
allocated.

• Their valuation.

There will be n number of bids at time t and a bid will be
selected by bid selection mechanism discussed in Proposed
Mechanism section of this paper and will be processed.
Now, we have found solutions of the two aspects of our
model as discussed below,

• In the first aspect, our model dynamically sets a
minimum price Pmin that can be charged to the user
ui. A set of Prices Pt will be calculated in every
possible time ti within the requested time window
T . For each price Pi ∈ P, we have considered the
resources that are already promised to some user
and predicting demand d at each time based on the
previous history of allocations. If the Pmin is greater
than the given valuation V by the user then our
model automatically rejects that request. Otherwise,
it allocates the required resources at time ti for which
pmin was calculated. If there is a capacity conflict
at the cheapest time ti of the allocation, then our
model deletes that slot from the time window T and
then again calculates the minimum price Pmin from
the remaining time window. If there is a capacity ck
conflict then it rejects the request and tells the user
to give some other time window.

• In the second aspect of our model, the resources are
successfully allocated to the user ui. If the user ui
is unable to complete his/her task with the resources
supplied in the allocated time. Then, he/she will ask
for some extra time to complete its task. Seeing the
busy schedule of the main cloud, our model will
automatically generate a reverse auction between the
low priority clouds and allocates to them without
telling the user. The user may think that he/she is
getting resources from the main cloud. If the winning
cloud charges cw amount for the resources then total
expenditure of the user will be Pmin + cw for the
resources.

5. ProposedMechanism
A. Bidding Mechanism
1) Bid of the ith user at time t and its consequences:

A bid of the user can be defined as follows:

Bti = {n, ty, start, end,T,V} (2)

n = number of resources
ty = type of resources
start = start time
end = end time
T = required time
V = valuation given by the user
A bid from the ith user ui will be given to the system. Then
the system will decide whether to accept it or not. Let us
consider a basic allocation without considering the capacity
conflict (which will be discussed later in this paper). If V
is greater than or equal to Pmin then accept it. Otherwise V

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

10546 Anjan Bandyopadhyay, et al.: Resource Allocation in Cloud Computing.

is less than Pmin then reject it. where Pmin is the minimum
cost calculated by the system based on preliminaries factors
discussed in the previous section.

B. Bid Selection Mechanism
At the time of allocation, all the bids having common

time-window will be extracted from Bt, then all the bids
will be sorted in decreasing order of their V ∗n value. Now,
all the bids will be processed in the system until one bid
gets accepted and gets an allocation from the system. All
the remaining bids at time t will now be treated as the bids
of time t + 1 including the bids coming at time t + 1. A
request once rejected, the user have to request again with
an improved bid.

1) An illustrative example
Suppose there are 5 requests comes at time t,

Bt1 = {5,CPU, 10am, 5pm, 3hrs,Rs10000} (3)

Bt2 = {7,CPU, 10am, 3pm, 2hrs,Rs5000} (4)

Bt3 = {8,CPU, 10am, 5pm, 3hrs,Rs7000} (5)

Bt4 = {4,CPU, 10am, 5pm, 3hrs,Rs4000} (6)

Bt5 = {25,CPU, 10am, 5pm, 3hrs,Rs3000} (7)

Now, let the system generated price Pmin be Rs35000. Now,
there are two sets of bids having same time window,

S 1 = {Bt1, Bt3, Bt4, Bt5} (8)

S 2 = {Bt2} (9)

Allocations for S 1 and S 2 will be done independently. For
S 1, sorting the bids based on their V ∗ n value we get:

S 1 = {Bt5, Bt3, Bt1, Bt4} (10)

Now, Bt5 will be processed first. Since the valuation of Bt5
is less than Pmin, the request gets rejected and the user
will have to bid once again. Then Bt3 will be processed,
assuming there is no capacity conflict this request gets
accepted since V >= Pmin. Now, remaining bids will be
added in the set Bt+1 and will be processed similarly. In the
same way bids in S 2 will be processed in parallel with S 1.

C. Unit price and Pmin calculation mechanism
Suppose a request comes ‘I need n CPU’s for T

hours somewhere between a time-window {start, end}. Our
algorithm will think of it as a request for each time and each
resource and will set a price for the same using an auction
among the prices. It means that there will be auction
between the prices for n ∗ (end − start)(resource*secs)
times. The winning price will be the allocated price for
that time for that resource. Let wi be the winning price
for time t and ith resource. This is called the unit price.
Calculation of this unit price will be as follows:
A demand prediction mechanism will be there which will
be dependent on current time and prices. A snapshot at

some time t is represented as follows in the form of table:-

Demand: d1 d2 d3 —— dn
Prices: p1 p2 p3 —— pn

Now a condition should be formulised in such a way that
it takes care of future externilities imposed on the system
after accepting this job. This condition is the backbone of
unit price calculation.The condition is:

A : demandt(p) + AP[t] + i > Capacity (11)

where, demandt(p): Demand of resource ‘p’ at particular
time ‘t’
AP[t]: At particular time frame “t”, required resource is
given by user.
i: cost of the resource ‘p’
Capacity: Maximum resource capacity

For a time t, AP[t] will be fixed and i will be increasing
for each resource allocation. Now, the maximum price
among the set of prices that would qualify the condition
A will be called the winning price for ith price resource at
time t that is wi If there is no winning price , then wi will
be the base price.
Then the total price obtained for time t for n resources will
be:

ct′ =

n∑
i=1

wi (12)

Similarly, there will be a price calculation at each time of
the requested window. Now, to calculate the total price of
allocation for T hours will be:

Pt =

end−T∑
t=start

T∑
t′=t

ct′ (13)

The above equation will give a price for allocation at each
possible time. The minimum price among all t’s will be
the Pmin.

1) Need of base price
The auction done here may result into no winning price.

In such a case base price which is fixed will be the value
of wi at that iteration. The auction done here is based of
earlier promised resources and demand of that resource at
that time. Therefore, this auction will ensure that highest
demand price should be charged. But in case if there was no
demand of that resource at that time, and earlier promised
resources are sufficiently less than the capacity, then no
price will win in that case. Therefore, the system will charge
a minimum base price with fixed profit margin.

D. Decision Method
In this section, we will discuss how the system decides

whether to accept a given request or to reject it. Suppose
a request Bt arrives at time t, and say Btm is the selected

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No. 1, 10543-10551 (Dec-23) 10547

bid for allocation. Now, the system generated price Pmin will
now be compared by corresponding valuation V of the user.
If V >= Pmin then the given bid has passed the first stage of
allocation process. Now, the system will check for capacity
conflict. If there is no capacity conflict in the system then
user’s request will be accepted and the user will be told
the allocated time. But if, there is a capacity conflict then,
the conflicted time-slot will be deleted from the user’s time
window and the system will apply the same process in the
remaining time-window, and accept if there is no capacity
conflict, otherwise reject the request.

E. Flexibility for the user
Suppose, the user has been succesfully allocated to the

user. Now, the user is unable to complete its task with the
resources supplied in the allocated time. Then, he might
ask for some extra hours for completion of its task. Seeing
the busy schedule of the main cloud, system will automati-
cally generate a second price reverse auction between low-
priority clouds and allocates to them without telling the user.
The user may think he is getting resources from the main
cloud. This mechanism will increase flexibility for the user
that if he is unable to complete his job in the allocated time,
he will not have to request again by measuring the amount
of resources required and a new time-window. He will be
supplied the same set of resources for extra time but from
low-priority clouds not with the main cloud. Let’s say if
winning price for the auction done is cw then it will be the
extra charge which the user have to pay for the extension
of time. This solution will be better than penalty system in
which there was a fixed charge based on degree of violation
of deadlines.

F. Proposed scheduling and pricing algorithm:
In this section we have proposed RAES algorithm for

pricing and scheduling of cloud resources for the framework
discussed in the earlier sections. The algorithm is terms as
Resource Allocation with Economic Strategy (RAES). The
RAES algorithm has four major components:

• Main Routine

• Bid Selection Mechanism

• Basic Reservation Mechanism

• Execute Function

The S electBid() returns a qualified bid from a set of
available bids at some time t (i.e Bt). Now, the selected bid
goes for the reservation process through Reserve() function
in the Basic Reservation Mechanism part of the algorithm.
If Reserve() returns False, then it signifies that the given bid
is rejected mid-where by the system. Therefore, this bid will
be added in the rejected list. If Reserve() function returns
True, then it signifies that the valuation given by the user
is greater than Pmin and there is no capacity conflict at the
time of scheduling. Therefore, this bid gets allocated at the
time t∗ and charged a price Pmin. Now, after this allocation,

the remaining requests in the list Bt will be added in Bt+t′

where t′ is the time consumed in the reservation of the just
reserved request.

Algorithm 1 Main Routine

1: for each t where R! = NULL do
2: Extract Bt from R
3: while S electBid(Bt)! = NULL do
4: Btm ← S electBid(Bt)
5: if Reserve(Btm) == True then
6: execute(Btm, t∗, Pmin)
7: Bt+t′ .add(Bt − Btm − re jected)
8: break
9: else

10: re jected.add(Btm)
11: end if
12: end while
13: end for

Algorithm 2 Bid Selection Mechanism

1: S electBid(Bt)
2: S .sort()
3: //sorting based on their V*n value
4: Btm ← S . f irst()
5: S .pop()
6: return Btm

G. Illustrative Example of algorithm 3
Suppose a request comes “I require 4 CPU’s for 3 hrs

somewhere between 10am to 3pm. Now, for time 10 am
and for 1st resource, a snapshot of the demand function at
some time t is represented as follows in the form of table:

Demand: 8 5 6 3 4
Prices: 1 2 3 4 5

Also, AP[10am] = 4

demand10(1) + AP[10am] + i = 8 + 4 + 1 = 12 > Capacity
(14)

demand10(2) + AP[10am] + i = 5 + 4 + 1 = 10 = Capacity
(15)

demand10(3) + AP[10am] + i = 6 + 4 + 1 = 11 > Capacity
(16)

demand10(4)+AP[10am]+i = 3+4+1 = 8 < Capacity (17)

demand10(5)+AP[10am]+i = 4+4+1 = 9 < Capacity (18)

The prices which satisfy the condition are 1 and 3.
the highest price = 3 or wi is 3.

Also, to show the existance of base price, we see an
example of 11am. Now, For 11am and for 2nd resource:
Let AP[11] = 0
Let snapshot of the demand function be:

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

10548 Anjan Bandyopadhyay, et al.: Resource Allocation in Cloud Computing.

Demand: 8 5 6 3 4
Prices: 1 2 3 4 5

demand11(1) + AP[11am] + i = 8 + 0 + 2 = 10 = Capacity
(19)

demand11(2)+AP[11am]+i = 5+0+2 = 7 < Capacity (20)

demand11(3)+AP[11am]+i = 6+0+2 = 8 < Capacity (21)

demand11(4)+AP[11am]+i = 3+0+2 = 5 < Capacity (22)

demand11(5)+AP[11am]+i = 4+0+2 = 6 < Capacity (23)

No prices will satisfy the condition therefore wi will be the
base price.

Algorithm 3 Basic Reservation Mechanism

1: Reserve(Btm)
2: for each t in [start, end] do
3: demandt() ← the demand estimate function at t
4: for each i in [1, n] do
5: the highest price wi such that demandt(p) +

AP[t] + i > Capacity
6: if no highest price then
7: wi ← base price
8: end if
9: end for

10: for each i in [1, n] do
11: ct ← ct +wi
12: end for
13: end for
14: for each t in [start, end − T] do
15: for i in [t,T] do
16: Pt ← Pt+ci
17: end for
18: end for
19: Pmin ← min(Pt)
20: t∗ ← argmin(Pt)
21: if V >= Pmin and len(time window) > T then
22: if CC[t∗] = 0 then
23: return True with t∗ and Pmin
24: else
25: Btnew={n, ty, startnew, endnew,T,V}
26: Reserve(Btnew)
27: end if
28: else
29: return False
30: end if

H. Execute function
Execute() function is responsible for identifying the

user with the bid Btm and then scheduling at time t∗ for
the required time T at the minimum price Pmin. After
scheduling, if the user is unable to complete his/her task
within the stipulated time, then while the user requests for
further allocation of the same resources for updated required
time T ′, there will be an auction among low priority clouds
and extra price cw will be charged to the user for further
allocation to the winning cloud k.

Algorithm 4 Execute Function

1: Execute(Btm, t∗, Pmin)
2: u ← user with bid Btm
3: u.S chedule(t∗, t∗ + T)
4: u.price() ← Pmin
5: if u.task()! = completed and t >= (t∗ + T) then
6: while u. f urther request() == True do
7: k ← lpcloud.auction()
8: cw ← k.price()
9: Btm.required time() ← T ′

10: Execute(Btm, t∗ + T, cw)
11: end while
12: end if

6. Simulation and experimental results
We have conducted the experiments through the help

of python language in VS code. We have simulated the
proposed algorithms and the parameters are demand of the
resource capacity, supply of the cloud resource, pricing
techniques of the cloud resources and scheduling of the
cloud resources (in a particular time frame).

We have compared the econ scheduling and
our algorithm. We have taken the data from
http://gwa.ewi.tudelft.nl/datasets/gwa−t−12−bitbrains
data set. If we keep number of users and capacity of
the system constant and vary average number of CPU
required by the users on x-axis, we observe that number
of allocations made by our algorithm is significantly high
than the basic econ scheduling. In the graph shown in
the figure, for simulation we have taken requests of 4000
users. There were 800 users who required 10 CPU’s, 800
users who required 20 CPU’s and so on. It can be observed
that our algorithm performs much better than the basic
econ scheduling algorithm. The decrement of number of
allocations with the increase of number of CPU’s is due
to limited capacity of the system. Our algorithm performs
much better than the econ scheduling because it takes care
of the capacity conflict and gives a second chance to the
request for allocation. On the other hand econ scheduling
algorithm gives only one chance to the request. Now, a
question may arise that what if there is a rejection in the
second chance given by the system to the request and still
there is a possibility of allocation in the remaining time
window. We have restricted the number of chances for a
request to two. This is because giving more chances and
scheduling because the system will then be biased towards
the users who have given a large time window and also
consume the time of the system which may have worked
for allocation of other requests. Although, in our algorithm
if a user has given a large time window he will have
chances that he will be charged less than the user who
has given a small time window. But, that is not called as
biasing because both the requests have been given equal
number of chances but as the first user has provided a large
time window, he has parallelly provided a large number

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No. 1, 10543-10551 (Dec-23) 10549

of slots from which the system will allocate the request.
Thus, there is only possibility that it may have to pay
less and not an assurance from the system. But, if we use
recursion rather than fixed number of chances given to the
request then it will increase the number of chances for a
user who has given more time window hence biasing.On
the other hand, it will also increase the time complexity of
the system. Thus, it leads to a conclusion that there must
be a restriction on number of chances given to the request.

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50

N
u
m

b
e
r

o
f
a
llo

c
a
ti
o
n
s

Number of CPU required

Comparison between ERA and RAES

ERA
RAES

Next, we have compared the total money obtained in
our algorithm, greedy and econ scheduling. The greedy
algorithm that allocates the request which fits in the system
first (First-Fit). It charges a fixed discounted price for each
resource. It is observed that our algorithm performs much
better than both of the greedy and econ scheduling. This is
because of the two factors: (1) Number of allocations and
(2) Base Price. As the number of allocations made by our
algorithm is high it consequently increases the total money
gained in the system. The base price is the discounted price
that was given in greedy algorithm. If greedy has given x%
fixed discount to each resource then our algorithm will give
at most x% discount. The discount will be based on dynamic
calculation and will not be fixed and have a range from 0 to
x% discount. This is the reason why base price becomes a
factor of increased price in our system. As econ scheduling
has also not used the concept of base price therefore our
algorithm makes more money than it. The money obtained
shown on y-axis of the plot is obtained due the accepted
requests from the n requests from the users varied on x-
axis. For instance, the money obtained is due to accepted
requests from the 100 requests from the users assuming one
request from each user.
From the two plots, it can be concluded that our algorithm
performs much better in terms of allocation and money
gained due to allocation of those requests.

 0

 500

 1000

 1500

 2000

 2500

 3000

100 200 300 400 500

M
o
n
e
y
 i
n
 t
e
rm

s
 o

f
th

o
u
s
a
n
d
s

Number Of Users

Comparison between ERA, RAES and greedy

ERA
RAES

greedy

Discussion: In this research, the proposed mechanism
is verified through theoretically. We have proposed four
algorithms for the system. We have simulated the algo-
rithms and compared with greedy algorithm and ECON
algorithm. When the system works on the real world
environments, the result may not be same as the simulated
environment because the real world environment has several
constraints like, system scalability, heterogeneity of infras-
tructure, workload variations, and customer behavior. We
have discussed one case study through the examples. So
the proposed mechanism will provide the satisfactory results
when it will deploy on the real world environment.

7. Conclusion and future works
In this paper, we have proposed Resource Allocation

with Economical Strategy (RAES) to allocate the cloud
resources. In this mechanism, we have considered dynamic
pricing technique. This mechanism is an efficient and cost-
effective framework for resource allocation. Let us say, a
user has requested resources for certain amount of long
time window. Every user give their demands for taking
the cloud resources for a particular time period. If the
request is not fulfilled within the time period then the
user ask for extra time for completion his task. The cloud
computing automatically generate a reverse auction strategy
for implementing the task and the task will be performed
in the other cloud which have been participated in the
auction. We have compared our algorithm with ECON and
Greedy algorithm. The system should set a limit for the
user for providing time window. Whether this limit be
static or dynamic. Should it be told to the user or not. In
our future work we are trying to implement combinatorial
auction mechanism for multiple resource allocation with in
particular time frame.

8. Data Availability
In this paper, we have taken data from

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains data-set

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

10550 Anjan Bandyopadhyay, et al.: Resource Allocation in Cloud Computing.

which are available in the Internet. In this data set we have
taken the details of CPU and access time of the CPU.

References
[1] M. Babaioff, Y. Mansour, N. Nisan, G. Noti, C. Curino, N. Gana-

pathy, I. Menache, O. Reingold, M. Tennenholtz, and E. Timnat,
“Era: A framework for economic resource allocation for the cloud,”
in Proceedings of the 26th International Conference on World Wide
Web Companion, 2017, pp. 635–642.

[2] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: a state-of-the-art review,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, pp. 677–692, 2017.

[3] J. Park, D. Kim, and K. Yeom, “An approach for reconstructing
applications to develop container-based microservices,” Mobile In-
formation Systems, vol. 2020, pp. 1–23, 2020.

[4] J. Ding, R. Cao, I. Saravanan, N. Morris, and C. Stewart, “Charac-
terizing service level objectives for cloud services: Realities and
myths,” in 2019 IEEE International Conference on Autonomic
Computing (ICAC). IEEE, 2019, pp. 200–206.

[5] M. Kaminski, E. Truyen, E. H. Beni, B. Lagaisse, and W. Joosen,
“A framework for black-box slo tuning of multi-tenant applications
in kubernetes,” in Proceedings of the 5th International Workshop
on Container Technologies and Container Clouds, 2019, pp. 7–12.

[6] H. Hamzeh, S. Meacham, K. Khan, K. Phalp, and A. Stefani-
dis, “Ffmra: a fully fair multi-resource allocation algorithm in
cloud environments,” in 2019 IEEE SmartWorld, Ubiquitous In-
telligence & Computing, Advanced & Trusted Computing, Scal-
able Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019, pp.
279–286.

[7] O.-M. Ungureanu, C. Vlădeanu, and R. Kooij, “Kubernetes cluster
optimization using hybrid shared-state scheduling framework,” in
Proceedings of the 3rd International Conference on Future Networks
and Distributed Systems, 2019, pp. 1–12.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Towards understanding heterogeneous clouds at scale:
Google trace analysis,” Intel Science and Technology Center for
Cloud Computing, Tech. Rep, vol. 84, pp. 1–21, 2012.

[9] S. Machiraju, S. Gaurav, S. Machiraju, and S. Gaurav, “Intro-
ducing the cloud computing platform,” Hardening Azure Applica-
tions: Techniques and Principles for Building Large-Scale, Mission-
Critical Applications, pp. 1–41, 2019.

[10] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng,
J. Xu, and C. Li, “Performance-aware speculative resource over-
subscription for large-scale clusters,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 7, pp. 1499–1517, 2020.

[11] S. Chawla, J. B. Miller, and Y. Teng, “Pricing for online resource
allocation: Intervals and paths,” in Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2019, pp. 1962–1981.

[12] I. Lee, “Pricing schemes and profit-maximizing pricing for cloud
services,” Journal of Revenue and Pricing Management, vol. 18,
pp. 112–122, 2019.

[13] S.-H. Chun, “Cloud services and pricing strategies for sustainable
business models: analytical and numerical approaches,” Sustainabil-
ity, vol. 12, no. 1, p. 49, 2019.

[14] R. Bhan, A. Singh, R. Pamula, and P. Faruki, “Auction based scheme
for resource allotment in cloud computing,” Digital Business: Busi-
ness Algorithms, Cloud Computing and Data Engineering, pp. 119–
141, 2019.

[15] T. Ni, Z. Chen, L. Chen, S. Zhang, Y. Xu, and H. Zhong, “Differ-
entially private combinatorial cloud auction,” IEEE Transactions on
Cloud Computing, 2021.

[16] G. George, R. Wolski, C. Krintz, and J. Brevik, “Analyzing aws
spot instance pricing,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2019, pp. 222–228.

[17] G. Portella, E. Nakano, G. N. Rodrigues, and A. C. Melo, “Utility-
based strategy for balanced cost and availability at the cloud spot
market,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 214–218.

[18] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,”
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1,
pp. 71–83, 2014.

[19] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. Lau, “Online auctions
in iaas clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Transactions On Networking, vol. 25, no. 2, pp. 1034–
1047, 2016.

[20] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards
effective pricing for cloud computing,” in 2012 Proceedings IEEE
INFOCOM. IEEE, 2012, pp. 936–944.

[21] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 805–818, 2015.

[22] A. Chhabra, K.-C. Huang, N. Bacanin, and T. A. Rashid, “Opti-
mizing bag-of-tasks scheduling on cloud data centers using hybrid
swarm-intelligence meta-heuristic,” The Journal of Supercomputing,
pp. 1–63, 2022.

[23] Y. M. Teo and M. Mihailescu, “A strategy-proof pricing scheme for
multiple resource type allocations,” in 2009 International Confer-
ence on Parallel Processing. IEEE, 2009, pp. 172–179.

[24] L. Mashayekhy and D. Grosu, “Strategy-proof mechanisms for
resource management in clouds,” in 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing. IEEE,
2014, pp. 554–557.

[25] P. R. Milgrom, Putting auction theory to work. Cambridge
University Press, 2004.

[26] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorith-
mic game theory. Cambridge University Press, 2007.

[27] G. Baranwal and D. P. Vidyarthi, “A fair multi-attribute com-
binatorial double auction model for resource allocation in cloud
computing,” Journal of systems and software, vol. 108, pp. 60–76,
2015.

[28] I. Fujiwara, K. Aida, and I. Ono, “Applying double-sided combina-

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 14, No. 1, 10543-10551 (Dec-23) 10551

tional auctions to resource allocation in cloud computing,” in 2010
10th IEEE/IPSJ International Symposium on Applications and the
Internet. IEEE, 2010, pp. 7–14.

[29] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth revelation
in approximately efficient combinatorial auctions,” Journal of the
ACM (JACM), vol. 49, no. 5, pp. 577–602, 2002.

[30] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos, “An ap-
proximate truthful mechanism for combinatorial auctions with single
parameter agents,” Internet Mathematics, vol. 1, no. 2, pp. 129–150,
2004.

[31] A. Mu’Alem and N. Nisan, “Truthful approximation mechanisms for
restricted combinatorial auctions,” Games and Economic Behavior,
vol. 64, no. 2, pp. 612–631, 2008.

[32] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud
computing,” in 2011 IEEE International Conference on Services
Computing. IEEE, 2011, pp. 370–377.

[33] Y. Bartal, R. Gonen, and N. Nisan, “Incentive compatible multi unit
combinatorial auctions,” in Proceedings of the 9th conference on
Theoretical aspects of rationality and knowledge, 2003, pp. 72–87.

[34] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic
vm provisioning and allocation in clouds,” in 2011 IEEE Third
International Conference on Cloud Computing Technology and
Science. IEEE, 2011, pp. 107–114.

[35] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 805–818, 2015.

[36] B. Lucier, I. Menache, J. Naor, and J. Yaniv, “Efficient online
scheduling for deadline-sensitive jobs,” in Proceedings of the twenty-
fifth annual ACM symposium on Parallelism in algorithms and
architectures, 2013, pp. 305–314.

[37] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market
mechanism for computing jobs with soft deadlines,” IEEE/ACM
Transactions on networking, vol. 25, no. 2, pp. 793–805, 2016.

[38] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and
J. Yaniv, “Truthful online scheduling with commitments,” in Pro-
ceedings of the Sixteenth ACM Conference on Economics and
Computation, 2015, pp. 715–732.

Dr. Anjan Bandyopadhyay is an Assis-
tant Professor of Kalinga Institute of In-
dustrial Technology, Bhubaneswar, Odisha,
India. He has completed his Ph.D. from NIT,
Durgapur, West Bengal, India in Vishvesh-
warya Ph.D. Fellowship under MHRD. He
has completed his M. Tech in Information
Security from the Department of Informa-
tion Technology, NIT, Durgapur, West Ben-
gal, India. He is broadly interested in Al-

gorithmic Game Theory (Mechanism Design). He has published
many Conference and Journal papers in esteemed Conferences and
Journals. His current research interests include Cloud Computing,
Fog Computing, Metaverse, IoT, Healthcare and Crowd Sourcing.
He bags a number of best paper awards in many conferences like
3PGCIC.

Dr. Sujata Swain received her B.Tech. de-
gree in Computer Science and Engineer-
ing from BPUT University India. She also
received her M.Tech. and Ph.D. degree in
Computer Science and Engineering from In-
dian Institute of Technology Roorkee, India.
She is currently an Assistant Professor in the
School of Computer Science and Engineer-
ing, Kalinga Institute of Industrial Technol-
ogy, Deemed to be University, Bhubaneswar.

She has published many Conference and Journal papers in es-
teemed Conferences and Journals. Her research interests include,
Service Oriented Computing, Cloud Computing, Game Theory,
Metaverse, Medical Imaging, and Health-Care System.

Dr. Dipti Dash has done her MCA from
BPUT University , India . She has done her
M.Tech in Comp.Sc. from Utkal university,
India and done her PhD in Comp.Sc. From
KIIT university, India. She has done many
research on Mobile Computing. Her new
research interests are Cloud Computing and
Machine learning. She has 8years of teach-
ing experiences.Currently She is an Asst.
Professor in KIIT University.

Arup Roy received his PhD in Com-
puter Science and Engineering from Birla
Institute of Technology, India. He is cur-
rently working as an Associate Professor
at Budge Budge Institute of Technology,
Kolkata, India. Previously, he worked as
an assistant Professor at Amity University,
Manipal University. His research interests
include Recommendation Systems, Artificial
Intelligence, Machine Learning etc.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

	INTRODUCTION
	Related Work
	System Model and Problem Formulation
	Solution for the problem
	Proposed Mechanism
	Bidding Mechanism
	Bid of the ith user at time t and its consequences:

	Bid Selection Mechanism
	An illustrative example

	Unit price and Pmin calculation mechanism
	Need of base price

	Decision Method
	Flexibility for the user
	Proposed scheduling and pricing algorithm:
	Illustrative Example of algorithm 3
	Execute function

	Simulation and experimental results
	Conclusion and future works
	Data Availability
	References
	Biographies
	Dr. Anjan Bandyopadhyay
	Dr. Sujata Swain
	Dr. Dipti Dash
	Arup Roy

