
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.14, No.1 (Oct-23)

http://dx.doi.org/10.12785/ijcds/140195

Towards a Scalable and Efficient ETL

El Yazid Gueddoudj1* and Azeddine Chikh1

1Computer Science Department, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria
1Laboratoire LRIT, University of Tlemcen

Received 23 Dec. 2022, Revised 28 May. 2023, Accepted 15 Sep. 2023, Published 1 Oct. 2023

Abstract: Extract, transform, and load (ETL) processes are crucial for building repositories of data from a variety of self-contained
sources. Despite their complexity and cost, ETL processes have demonstrated some maturity for traditional, XML, and graph data
sources. However the main challenge for ETL processes is double: (1) they do not scale when brought down to managing large and
highly varied data sources, involving web-data. (2) the deployment of the target data warehouse in a polystore. The paper reviews various
research efforts along this line of research. The paper then proposes a conceptual modeling of these processes using BPMN (Business
Process Modeling Notation). These processes are automatically converted to scripts to be implemented within Spark framework. The
solution is packaged according a new distributed architecture (Open ETL) that supports both batch and stream processing. To make our
new approach more concrete and evaluable, a real case study using the LUBM benchmark, which involves heterogeneous data sources
is considered.

Keywords: ETL, Scalability, Data Warehouse, Spark, Design, BPMN, Polystore.

1. INTRODUCTION
Today, all companies have data, which can be in

any form: csv files, flat files, XML, relational or graph
databases, etc. These data are captured, aggregated, cleaned,
and loaded into a dimensional data warehouse that is
denormalized. All of the processes related to the prepara-
tion of data for future analysis are called ETL (Extract-
Transform-Load), which is widely used in business in-
telligence projects. Since the volume of data is rapidly
increasing in enterprise systems, the ETL processes takes
more time. Furthermore, the appearance of new storage
platforms such as the polystore, has led to a heterogeneous
ecosystem that has become difficult to manage and opti-
mize. Accordingly, new large-scale data processing systems
(e.g., Spark [1] or MapReduce (MR) [2]) have emerged.
One of the difficulties of building a data warehouse appli-
cation is managing the heterogeneity of information sources
and storage platforms, because of the complex the design
of ETL processes. Therefore, this research work aims at
facilitating and optimizing the design and implementation
of ETL processes.

A considerable amount of literature has been published
ETL processes modeling. [3], propose a logical modeling
for ETL processes using extended relational algebra with
update operations. ETL tasks are expressed in XML. More-
over, [4] separates four types of models: ontology, UML,

graph, and BPMN. A variety of approaches have been
discussed to optimize ETL processes. In [5] the authors
propose a conceptual model entity mapping diagram (EMD)
in order to implement the ETL processes. The authors in [6],
have developed an ETL based framework with deployment
on the cloud platform. In [7] the author proposes a cloud-
based architecture for a big data ETL. They use a general
cluster-size optimization algorithm. In [8], the authors pro-
pose an ETL model in which applying the CDC (Change
Data Capture) method in the Spark framework can reduce
the amount of data in the ETL process. An ETL architecture
for processing IoT streams with three components (the
data collector, the ETL streaming engine, and the OLAP
component) has been proposed by [9]. When it comes to
storing and analyzing heterogeneous data, traditional data
warehouses fail because they rely on RDBMS [10]. Few
works that have addressed the association of the ETL with
the polystore. In [9], the authors implemented the new
Streaming ETL architecture for use in a relational context,
they considered an ETL deployment on Intel’s BigDAWG
polystore. An ETL as a Service (ETLaaS) and Polystore as
a Service (PaaS) deployment solution has been proposed by
[11].

We argue that for modern generation data warehouses,
in which we must take into account the problems of the
heterogeneity of storage platforms, as well as the variety

E-mail: yazid.gueddoudj@univ-tlemcen.dz*, azeddine.chikh@univ-tlemcen.dz http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140195
http://journals.uob.edu.bh


10224 El Yazid Gueddoudj, et al.: Towards a Scalable and Efficient ETL

and volume of data sources, linked to the VS of big data,
a new ETL architecture should be designed. This paper
aims to build a new architecture for robust, flexible, and
cost-effective Spark-based ETL to optimize and make more
efficient ETL processes by scaling them.

There is a substantial amount of published literature on
models and architectures for optimizing ETL processes, but
these models are still incomplete and deal with specific
areas. Hence we propose in this paper :

• a new approach for designing ETL processes, which
is based on Business Process Modeling Notation
(BPMN). The former is a standard that provides a
conceptual and implementation-independent specifi-
cation of these processes, which is converted to ex-
ecutable specifications for ETL tools. This approach
minimizes the development efforts because of the eas-
iest detection of inconsistencies between the different
elements of ETL processes. This helps in turn the
designer estimating the development feasibility.

• a new solution for implementing robust and opti-
mized ETL processes using the Spark framework.
The former gives the possibility to extract and collect
data from all types of sources, databases (RDBMS,
NoSQL, Graph RDF); flat files; big data technologies
(Hadoop, Spark); data generated by sensors, etc. This
solution offers a deployment of the data warehouse on
the Spark SQL polystore [12], depending on the target
either the graph using Neo4j DBMS or the relational
using Oracle DBMS.

From what we know, this work is the fist to describe how
to conceptualize and optimize ETL processes using a set of
BPMN notations for ETL operators capable of modeling
ETL activities, as well as how to transform models into
Scala scripts that are automatically converted into scripts to
be implemented in the Spark framework.

The remainder of this paper is organized as follows.
In section 2, we present a literature review on modeling
and optimizing ETL processes. Our main contribution is
presented in section 3, which is the main section of the
paper. Section 4 a case study. Section 5 presents the
experimental and the results. Section 6 concludes the paper
and suggests future directions for this research.

2. RELATED WORK
We discuss in this section the state of the art on ETL

processes design and optimization, which we classified in
two categories : (1) conceptual modeling and (2) optimiza-
tion.

Conceptual modeling works. Asma Dhaouadi et al.
[13], provide an overview of pertinent studies concerning
the modeling of data warehousing methods, encompassing
traditional ETL processes as well as contemporary ELT
design approaches. This work identifies the key obstacles

and concerns associated with the development of Big Data
warehousing systems. Some works have considered on-
tologies as resources intended to facilitate and automate
the design of the ETL process. Authors in [14] detail the
formal concepts of a conceptual model for the ETL process.
The required design standards and methodologies, however,
were not covered. Using a set of steps, the authors of
[15] have established an approach to build a conceptual
model for ETL that may be customized. The issue of
semantic and structural heterogeneity is addressed in [16].
The authors uses an ontology to automatically derive ETL
transformations. In [17],the authors address the issue of
selecting appropriate transformations and defining inter-
schema mappings for both structured and semi-structured
data. In order to identify pertinent data sources and specify
the conceptual ETL processes for integrating the data in
the target warehouse, an ETL algorithm is proposed, this
approach is an informal description of the ETL process.
A semantic ETL framework is proposed by the authors in
[18], which makes use of semantic technologies to combine
and make available data from many sources as linked open
data. To offer more abstraction, the conceptual modeling of
ETL processus using BPMN notation is suggested by the
authors. By using Business Process Modeling Notation, the
authors of [19] propose a conceptual ETL process modeling.
The issue of updating slowly changing dimensions (SCD)
with dependencies, or the situation where the update of
one SCD table has an effect on the connected SCD tables,
is addressed in this work. In the context of multi-model
data warehousing and and to improve the ETL performance,
various options arise for representing dimensions and facts
logically. Sandro Bimonte et al. [20], propose guidelines for
multimodel multidimensional design in MMDBMS-based
data warehouses, validated through intra-model and inter-
model comparisons, and illustrated with a case study. In
[21], the authors consider the variety of data sources and the
variety of data warehouse storage platforms and their impact
on the efficiency and performance of the ETL process. A
new approach to the design of ETL processes using models
and meta-models is described. Furthermore, a new approach
to modeling the ETL process using the modeling language
(SysML) is proposed by authors in [22]. A simulation of
an expected case study of e-commerce is presented. In [23],
the authors describe a semantic ETL process, where the ten
existing operators are specified on graphs from the data
sources to the data warehouse.

Optimization works. To improve the efficiency of ETL
processes, the authors in [24] and [25], proposed a state-
space based search method that models an ETL process
as a state, to achieve the goal of optimizing execution.
Algorithms for minimizing the cost of running the ETL
process are presented. They have been implemented in
C++ and tested for variations in time and the volume of
visited states. The authors in [26] propose an optimization
framework using partitioning and parallelization of ETL
processes to minimize the time and resources required for
data streams ETL as part of their work on the parallelism

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10223-10231 (Oct-23) 10225

of ETL streams. For data integration, the framework is
built on the open source ETL tool Talend Open Studio.
An on-demand incremental ETL solution based on the
query-fetch-transform-load paradigm is presented by the
authors in a recent paper [27]. The authors propose that
the extraction phase of the ETL process be optimized
along with data reuse. The authors of [28], explore how
MapReduce systems and database systems differ in their
architectural choices, they concluded that the MR use case
is similar to an ETL system. The authors in [29], present
the ETLMR framework, which uses MapReduce to achieve
scalability. Therefore, it easily creates dimensional ETL
processes based on MapReduce to load data into the data
warehouse. The user can implement parallel ETL programs
with a few lines of code declaring target tables and transfor-
mation functions. A cloud-based ETL solution, as well as a
new Spark-based ETL framework, are presented in [6]. The
authors in [30] propose a new approach that dynamically
combines the ETL process and the selection of material-
ized views, within the framework of a near real-time data
warehouse design and considers semantic data sources. The
authors present a view selection methodology with three
components: the main memory and cache management; the
dynamic selection of MV (materialized views); and a stream
ETL process: starts by extracting the instances from the
RDF data sources and saving them temporarily in the buffer
of inputs. In [31], the authors present a new distributed
ETL architecture, Striim developed to collect datasets from
different sources and transform them to aggregate without
considering the same or different timestamps. The ETL en-
gine runs in a scalable and fault-tolerant cluster of compute
nodes. It extracts real-time data from sources, transforms it,
and produces result events that are loaded or broadcast into
targets. ETL processes are created by authors in [32] by
writing Python code. By utilizing built-in functionality and
data access for fact and dimension tables, developers could
handle data efficiently. PostgreSQL, MySQL, and Oracle
databases are all supported. There is no cost model provided
by the authors’ solutions to quantify the performance gain.
Mehmood and Anees in [33], propose a real time ETL
architecture for unstructured big data during the transfor-
mation phase, focusing on accelerating stream disk joins
and mitigating disk overhead and data loss. Finally in order
to improve the performance of the ETL process in the era of
big data and by pre-processing the data beforehand, Monika
Patel and Dhiren B. [34], propose an ETL framework for
data warehousing utilizing and leveraging NoSQL databases
technologies.

3. OUR CONTRIBUTION AN OPEN ETL
APPROACH
In this section, we present the main features and princi-

ples of our Open ETL approach shown in figure 1. First, we
present how to create a BPMN ETL design. Second, how
to adapted the traditional ETL process in order to distribute
it and allow its execution in parallel on a Spark cluster. We
highlight the importance of data partitioning, in a distributed
environment and then present the types of data partitioning

provided in our approach. Our approach to optimizing
ETL processes is to parallelize ETL processes using the
Spark framework, which supports in-memory data sharing
between multiple tasks. We translate the BPMN model
directly into scripts written in Scala language, following the
Spark execution model illustrated in figure 2. Scala scripts
are automatically parallelized and run on a three-machine
cluster (one Namenode and two Datanodes). The execution
system takes care of the details of the partitioning of the
input data; the planning of the execution of the program on
a set of machines, the management of; and inter-machine
communication. Since traditional data warehouses are not
optimized enough to store huge and diverse amounts of
data [35], in our approach we use a new data warehousing
architecture such as polystore.

A. The New Architecture
The architecture of the proposed approach is illustrated

in figure 1. The proposed approach consists in: Designing an
ETL process coded in Scala scripts involving heterogeneous
data sources in order to ensure scalability and reduce time
latency between a data warehouse and its sources. The
warehouse is deployed on the Spark SQL polystore. The
proposed method consists in five steps:

1) Extraction and transfer of stream data: it consists in
is an update from the data sources to the distributed
file system HDFS (Hadoop Distributed File System).
We used the capture technique that we coded in
Scala;

2) Modeling: it consists in producing a ”pivot” UML
model from the models of the different data sources;

3) Mapping : it consists in transforming each BPMN
object into its equivalent in the Scala script;

4) Transformation : it consists in making the appropri-
ate transformations with Scala scripts using both the
traditional ETL operators and the ETL operators for
the management of graph representations defined in
[23];

5) ETL deployment on the Spark SQL polystore.

The Spark ETL engine. Apache Spark is a cluster com-
puting platform with built-in libraries and simple Python,
Java, Scala, and SQL APIs that is intended to be quick
and all-purpose. The MapReduce concept is extended by
Spark to effectively handle additional computing types,
such as interactive queries and streaming processing. For
complex applications operating on disk [36], Spark is more
effective than MapReduce because it allows calculations
to be performed in memory. Spark’s Resilient Distributed
Dataset serves as its foundation (RDD).

Parallel Processing in Spark. Spark applications run
as independent processes that reside on clusters and are
coordinated by SparkContext in the main program. The
first step in running a Spark program is to submit the job
to a cluster using spark-submit. Sparkcontext routes the
program to the modules, such as the Cluster Master Node,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10226 El Yazid Gueddoudj, et al.: Towards a Scalable and Efficient ETL

Figure 1. General Architecture of our Approach.

as well as the RDDs are created by these Sparkcontext
driver programs. The program is then transmitted to the
cluster master node. Each cluster has a master node that
does all the necessary processing. It then transmits the
program to the worker nodes. The working node is the
problem solver. Master nodes contain executors that run
with the Sparkcontext driver.

RDD vs ETL process. A great deal of correspondence
and similarity exists between the ETL and RDD processes.
RDDs are immutable, distributed collections of objects of
any type. As the name suggests, these are resilient (fault-
tolerant) records of data that reside on multiple nodes.
Intuitively, an ETL process can be thought of as a directed
acyclic graph (DAG), with the activities and record sets
being the nodes of the graph and the input-output relations
between the nodes being the edges of the graph [37].
In RDD, when the computation set is created, forming a
DAG, it does not perform any execution, but it prepares
for execution at the end. After the extraction, the ETL
process performs two types of transformations on the data:
standardization of data (cleaning, filtering, conversion, ...)
and allows the second to merge, aggregate. Thus, the ETL
process fits well with Spark’s RDD execution model.

Dataset and DataFrame. A dataset is a distributed
collection of data. A DataFrame is a dataset organized in
columns that bear names, like the tables of a database. It is
possible to apply to the dataFrame actions, which produce
values; and transformations, which produce new dataFrames
or datasets, as well as other functions.

Figure 2. Spark Execution Model. [38]

A Pivot model. Integrating heterogeneous data with

heterogeneous data models into data warehouse applications
leads to various complexities, such as semantic and struc-
tural heterogeneity, data redundancy, and the maintenance
of different data models. To minimize this complexity, we
adapt the pivot model introduced in [39]. It provides a
generic illustration of various data source formalisms; in
our case, we chose alignment to the RDF data model.
With n sources of data involved in the integration, each
source has its formalism. One has to perform (n∗ (n−1)/2)
different mappings. We can, however, reduce the number of
mappings by using a pivot model.

B. ETL process meta-model
This section’s goal is to provide a meta-model of the

ETL process that supports generic modeling of the activities
in the ETL environment. An ETL process can be considered
a special type of business process. An ETL process is a
special type of business process, but there is no standard
model to define this process. As with any process, the
ETL environment must first be modeled before any of its
components can be used. A significant number of research
focused mostly on modeling ETL activities to produce the
ETL process [4], [40], [14] and [41].

Definition. An ETL process is made up of many activ-
ities and transitions between them. A transition determines
the order in which activities are executed to provide a data
flow from sources to destination stores, and an activity
corresponds to one ETL scenario. Elements from data
sources, stores, and ETL operators are all used in an activity
to define expressions that describe the semantics of the data
pushed to the target schema. Each activity is either simple,
impossible to break down, or complex. In order to contribute
to the generalization of the entire ETL environment, we
provide a meta model of the ETL process that allows a
generic modeling of the ETL environment’s activities. In
(figures 3 and 4), we describe the constructions composing
the proposed ETL palette. These constructions are grouped
into four categories: operators [17], activity objects, and
workflow objects. For the other objects (artifacts, connec-
tions, control, and flow), we use the constructions proposed
by the Camunda modeler tool [42].

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10223-10231 (Oct-23) 10227

Figure 3. ETL Activity.

C. Model To Script Template
To translate the ETL conceptual model, we do the work

of designers, similar to what happens when translating
conceptual models, such as the Entity-Association model,
into logical models. Additionally, the designer should break
down each high-level activity into a detailed sub-process
and repeat the process until the implementable ETL opera-
tors are reached. Then comes the mapping, which consists
in transforming each BPMN object into its equivalent in the
Scala script.

Figure 4. ETL Operators.

D. Polystore Deployment
[43] divides existing solutions for multi-model data

management into four groups: federated systems, polyglot
systems, multi-store systems, and polystore systems. A
polystore system is a database system with many hetero-
geneous data stores and various query interfaces, according
to [44]. In our solution, we choose to deploy the target
data warehouse on the Spark SQL hybrid polystore whose
architecture is shown in figure 5, Spark SQL polystore
architecture, based on [12], p.29. This architecture runs as
a library on top of Spark. According to the target, (i) in a
vertical representation using the DBMS Neo4j, in which one
can represent instances and graphs, and (ii) in a relational
representation using the Oracle DBMS.

We applied our Scala script-based ETL program to
populate the target data warehouse schema. We assume that
with n data sources we can deploy the final data warehouse
according to the requirements announced beforehand by the
designer of the warehouse. Spark SQL is a hybrid polystore
system with loosely coupled external data sources and
tightly coupled Spark/HDFS. On top of Spark, it functions
as a library. The Spark Java interface provides direct access
to the Spark engine for the query processor, while using

wrappers to access external data sources via the common
Spark SQL interface (such as a relational DBMS or a Neo4j
store).

Figure 5. Spark SQL polystore architecture. [45]

4. CASE STUDY
We illustrate an example of scenario through a data

warehouse. The training department of the Ministry of
Higher Education and Research wants to build a data
warehouse that consists in collecting decisional information
on students performance, namely their performance.

A. Data-Sets
The schema of the data warehouse is shown

in figure 6, taken from the LUBM benchmark
(http://swat.cse.lehigh.edu/projects/lubm/) (figure 7)
related to the university’s domain. along with the overall
process of loading data from sources (we present the
example of an RDF file, figure 8) to the target data
warehouse.

Figure 6. Data Warehouse Schema Design.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10228 El Yazid Gueddoudj, et al.: Towards a Scalable and Efficient ETL

A tool named UBA is provided by LUBM to generate
data on the Univ-Bench ontology. We used these datasets
to simulate graphs based on external data sources. We also
considered CSV data sources and a relational database as
internal sources. (i) Source 1 two Neo4j graph database
populated using the Lehigh University Benchmark (LUBM)
ontology; (ii) Source 2 is a CSV file; and (iii) Source 3 is
an Oracle database. In our case, the destination tables are
initially empty and then filled with new data. To do this,
a pivot model (RDF schema) is designed. This data model
provides a basis for integration.

B. Measures
We evaluate the performance of the proposed system

through a set of experiments by considering three criteria:
(i) the scalability, (ii) the response time of our approach
compared to an ETL tool PDI (Pentaho data integration
tool) [46], and (iii) the time spent loading the changes that
affected the data sources.

C. ETL Process
ETL script code imports data from an RDF file to

multiple nodes with Spark. Spark changes the transforma-
tions from RDD to DAG (Directed Acyclic Graph) and
starts execution. DAG converts a logical execution plan into
a physical execution plan. When an activity is invoked,
the DAG is submitted to the DAG scheduler. It divides
operations into steps, and each step consists in a unit of
work called a task. These tasks are then transmitted to the
task manager via a cluster manager, which makes it possible
to launch the application on different machines. Figure 8
depicts the entire ETL process applied to the RDF file.

Figure 7. Schema of the LUBM ontology.

Figure 8. Partitioning and distribution in Spark.

After applying our Open ETL algorithm, the ETL pro-
cess in BPMN is shown in Figure 9, the resulting data
warehouse has two stores: a Neo4j graph database and

an Oracle database. The processing is done in the Spark
framework from a distribution perspective.

Figure 9. The Open ETL Process.

5. EXPERIMENT AND RESULTS
This section presents the evaluation of the proposed

system, which is based on the aforementioned case study.
We conducted three separate experiments. The initial exper-
iment examined the scalability of the proposed solution by
varying the size of the data source. The second experiment
focused on evaluating and comparing the response time of
the proposed system with the PDI tool. The third experiment
focused on evaluating the loading time of the ETL process
after a change in the sources.

Our experiments were conducted on a PC with an
Intel(R) Core(TM) i5-8365U processor (1.9 GHz, 1.6 GHz),
8 GB of main memory on a 256 GB SSD running Windows
10x64, Oracle DBMS, Neo4J desktop database, Apache
Spark 3.0, and Scala 2.12 were required to run the tests.
All of the chosen software tools were installed on the local
machine for evaluation purposes.

In Experiment 1. In this experiment, we considered the
scalability of our approach by varying the size of the data
sources and, therefore, the number of tasks that run in
parallel on the cluster to process the data. The translation of
the BPMN conceptual model of ETL processes into Scala
scripts allows for the populating of the target schema of the
data warehouse. We measure the time spent in integrating
heterogeneous data sources of different sizes. Figure 10 il-
lustrates the results obtained. We can remark that increasing
the size of the sources improves the processing time.

In Experiment 2. In this experiment, we aim to show
that modeling the ETL process with BPMN and translating
it into scripts coded in Scala and running on Spark results
in more efficient processes than those resulting from trans-
lating BPMN into ETL tools. We evaluate the response time
of our proposal compared to the PDI tool. The results are
shown in figure 11. We note that our approach considerably
increases the response time of the ETL process.

In Experiment 3. In this experiment we evaluate the
loading time of the ETL process after a change in the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10223-10231 (Oct-23) 10229

Figure 10. Scalability of the proposed approach.

Figure 11. Performance of the proposed ETL.

sources. Figure 12 depicts our discovery that the loading
time increases after an update. The loading via our approach
is superior to that implemented on the PDI tool.

Figure 12. Load Time Comparison.

6. CONCLUSIONS AND FUTURE WORK
This paper introduced a new method that includes

both methods of modeling and optimization of the ETL
processes, respecting the importance of the issue and the
challenges in this area. We presented a new approach
for optimizing ETL processes through a new distributed
architecture (Open ETL) that supports both batch and
stream processing. We presented a new approach to design

ETL processes using a set of notations in BPMN for ETL
operators capable of modeling ETL activities as well as
model transformations into Scala scripts which are auto-
matically converted into scripts to be implemented in the
Spark framework. A hybrid polystore deployment solution
based on Spark SQL is given. We validated the concrete
steps in using the proposed Open ETL approach to load
data into a data warehouse schema. The important results
are related to the performance time of the proposed system
compared to other ETL alternatives. In addition, we have
also presented the scalability of the proposed method on
large data sets. Thus, future work may focus to design a
unified code-based ETL framework involving time-series
data management support. Also, in our future research we
plan comparing the performance of our approach with other
ETL alternatives.

References
[1] A. Inc. (2018) Apache spark. [Online]. Available: http://spark.

apache.org/

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[3] J. Awiti, “Algorithms and architecture for managing evolving etl
workflows,” in European Conference on Advances in Databases and
Information Systems. Springer, 2019, pp. 539–545.

[4] S. M. F. Ali and R. Wrembel, “From conceptual design to perfor-
mance optimization of etl workflows: current state of research and
open problems,” The VLDB Journal, vol. 26, no. 6, pp. 777–801,
2017.

[5] S. H. A. El-Sappagh, A. M. A. Hendawi, and A. H. El Bastawissy,
“A proposed model for data warehouse etl processes,” Journal of
King Saud University-Computer and Information Sciences, vol. 23,
no. 2, pp. 91–104, 2011.

[6] N. Biswas and K. C. Mondal, “Integration of etl in cloud using
spark for streaming data,” in International Conference on Emerging
Applications of Information Technology. Springer, 2021, pp. 172–
182.

[7] E. Zdravevski, P. Lameski, A. Dimitrievski, M. Grzegorowski, and
C. Apanowicz, “Cluster-size optimization within a cloud-based etl
framework for big data,” in 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 2019, pp. 3754–3763.

[8] I. P. M. Atmaja, A. Saptawijaya, S. Aminah et al., “Implementation
of change data capture in etl process for data warehouse using hdfs
and apache spark,” in 2017 International Workshop on Big Data
and Information Security (IWBIS). IEEE, 2017, pp. 49–55.

[9] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and J. Du, “Data
ingestion for the connected world.”

[10] S. Bimonte, E. Gallinucci, P. Marcel, and S. Rizzi, “Data variety,
come as you are in multi-model data warehouses,” Information
Systems, vol. 104, p. 101734, 2022.

[11] N. Berkani and L. Bellatreche, “Streaming etl in polystore era,”
in International Conference on Algorithms and Architectures for
Parallel Processing. Springer, 2018, pp. 560–574.

http:// journals.uob.edu.bh

http://spark. apache.org/
http://spark. apache.org/
http://journals.uob.edu.bh


10230 El Yazid Gueddoudj, et al.: Towards a Scalable and Efficient ETL

[12] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015
ACM SIGMOD international conference on management of data,
2015, pp. 1383–1394.

[13] A. Dhaouadi, K. Bousselmi, M. M. Gammoudi, S. Monnet, and
S. Hammoudi, “Data warehousing process modeling from classical
approaches to new trends: Main features and comparisons,” Data,
vol. 7, no. 8, p. 113, 2022.

[14] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual mod-
eling for etl processes,” in Proceedings of the 5th ACM international
workshop on Data Warehousing and OLAP, 2002, pp. 14–21.

[15] P. Vassiliadis, A. Simitsis, P. Georgantas, and M. Terrovitis, “A
methodology for the conceptual modeling of etl processes,” in
CAiSE Workshop on Decision Systems Engineering, 2003.

[16] D. Skoutas and A. Simitsis, “Designing etl processes using semantic
web technologies,” in Proceedings of the 9th ACM international
workshop on Data warehousing and OLAP, 2006, pp. 67–74.

[17] ——, “Ontology-based conceptual design of etl processes for both
structured and semi-structured data,” International Journal on Se-
mantic Web and Information Systems (IJSWIS), vol. 3, no. 4, pp.
1–24, 2007.

[18] N. Berkani, L. Bellatreche, and S. Khouri, “Towards a conceptual-
ization of etl and physical storage of semantic data warehouses as
a service,” Cluster computing, vol. 16, no. 4, pp. 915–931, 2013.

[19] J. Awiti, A. A. Vaisman, and E. Zimányi, “Design and implemen-
tation of etl processes using bpmn and relational algebra,” Data &
Knowledge Engineering, vol. 129, p. 101837, 2020.

[20] S. Bimonte, E. Gallinucci, P. Marcel, and S. Rizzi, “Logical de-
sign of multi-model data warehouses,” Knowledge and Information
Systems, vol. 65, no. 3, pp. 1067–1103, 2023.

[21] N. Berkani, L. Bellatreche, and L. Guittet, “Etl processes in the era
of variety,” in Transactions on Large-Scale Data-and Knowledge-
Centered Systems XXXIX. Springer, 2018, pp. 98–129.

[22] N. Biswas, S. Chattapadhyay, G. Mahapatra, S. Chatterjee, and K. C.
Mondal, “A new approach for conceptual extraction-transformation-
loading process modeling,” International Journal of Ambient Com-
puting and Intelligence (IJACI), vol. 10, no. 1, pp. 30–45, 2019.

[23] N. Berkani, L. Bellatreche, and B. Benatallah, “A value-added
approach to design bi applications,” in International Conference on
Big Data Analytics and Knowledge Discovery. Springer, 2016, pp.
361–375.

[24] A. Simitsis, P. Vassiliadis, and T. Sellis, “State-space optimization
of etl workflows,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 10, pp. 1404–1419, 2005.

[25] ——, “Optimizing etl processes in data warehouses,” in 21st Inter-
national Conference on Data Engineering (ICDE’05). Ieee, 2005,
pp. 564–575.

[26] X. Liu and N. Iftikhar, “An etl optimization framework using
partitioning and parallelization,” in Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015, pp. 1015–1022.

[27] L. Baldacci, M. Golfarelli, S. Graziani, and S. Rizzi, “Qetl: An

approach to on-demand etl from non-owned data sources,” Data &
Knowledge Engineering, vol. 112, pp. 17–37, 2017.

[28] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends
or foes?” Communications of the ACM, vol. 53, no. 1, pp. 64–71,
2010.

[29] X. Liu, C. Thomsen, and T. B. Pedersen, “Mapreduce-based dimen-
sional etl made easy,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1882–1885, 2012.

[30] N. Berkani, L. Bellatreche, and C. Ordonez, “Etl-aware materialized
view selection in semantic data stream warehouses,” in 2018 12th
International Conference on Research Challenges in Information
Science (RCIS). IEEE, 2018, pp. 1–11.

[31] A. Pareek, B. Khaladkar, R. Sen, B. Onat, V. Nadimpalli, and
M. Lakshminarayanan, “Real-time etl in striim,” in Proceedings of
the International Workshop on Real-Time Business Intelligence and
Analytics, 2018, pp. 1–10.

[32] C. Thomsen and T. B. Pedersen, “Easy and effective parallel
programmable etl,” in Proceedings of the ACM 14th international
workshop on Data Warehousing and OLAP, 2011, pp. 37–44.

[33] E. Mehmood and T. Anees, “Distributed real-time etl architecture for
unstructured big data,” Knowledge and Information Systems, vol. 64,
no. 12, pp. 3419–3445, 2022.

[34] M. Patel and D. B. Patel, “Data warehouse modernization using
document-oriented etl framework for real time analytics,” in Rising
Threats in Expert Applications and Solutions: Proceedings of FICR-
TEAS 2022. Springer, 2022, pp. 33–41.

[35] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The
bigdawg polystore system,” ACM Sigmod Record, vol. 44, no. 2, pp.
11–16, 2015.

[36] C. R. Valêncio, M. H. Marioto, G. F. D. Zafalon, J. M. Machado,
and J. C. Momente, “Real time delta extraction based on triggers
to support data warehousing,” in 2013 International Conference on
Parallel and Distributed Computing, Applications and Technologies.
Ieee, 2013, pp. 293–297.

[37] P. Vassiliadis and A. Simitsis, “Extraction, transformation, and
loading.” Encyclopedia of Database Systems, vol. 10, 2009.

[38] H. Nazeer, W. Iqbal, F. Bokhari, F. Bukhari, and S. U. R. Baig,
“Real-time text analytics pipeline using open-source big data tools,”
arXiv preprint arXiv:1712.04344, 2017.

[39] I. Boukhari, L. Bellatreche, and S. Jean, “An ontological pivot model
to interoperate heterogeneous user requirements,” in International
Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Springer, 2012, pp. 344–358.

[40] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Ski-
adopoulos, “A generic and customizable framework for the design
of etl scenarios,” Information Systems, vol. 30, no. 7, pp. 492–525,
2005.

[41] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Modeling etl
activities as graphs.” in DMDW, vol. 58, 2002, pp. 52–61.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10223-10231 (Oct-23) 10231

[42] C. Inc. (2020) Camunda modeler. [Online]. Available: https:
//camunda.com/platform/modeler/

[43] R. Tan, R. Chirkova, V. Gadepally, and T. G. Mattson, “Enabling
query processing across heterogeneous data models: A survey,”
in 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 2017, pp. 3211–3220.

[44] P. Chen, V. Gadepally, and M. Stonebraker, “The bigdawg mon-
itoring framework,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2016, pp. 1–6.

[45] C. Bondiombouy and P. Valduriez, “Query processing in multistore
systems: an overview,” International Journal of Cloud Computing,
vol. 5, no. 4, pp. 309–346, 2016.

[46] H. Inc. (2018) Pentaho data integration. [Online].
Available: https://help.hitachivantara.com/Documentation/Pentaho/
8.3/Products/Pentaho Data Integration

El Yazid Gueddoudj is PhD student in
Computer Science, attached to LRIT Lab-
oratory, University of Tlemcen, Algeria.
He holds a Master in Intelligent models
and decision from Tlemcen University, En-
gineering degree Computer Science from
University of Setif, Algeria. His current
research interests include Data Integration
Systems, Data Warehouse Design, Big data
and Ontology-based Modeling. He had more

than 16 years of multi-functional experience achievements, es-
pecially as a teacher, computer engineer, product data specialist,
project coordinator and headmaster in administration.

Pr. Azeddine Chikh is Professor in Com-
puter Science and Director of Research Lab-
oratory (LRIT) at University of Tlemcen,
Algeria. He is also head of PHD program
committee and the Mathematics-Informatics
Domain at the same university. He worked
before as Associate Professor at King Saud
University-Saudi Arabia. He holds a PhD in
Information Systems from National Institute
of Computer Science in Algeria and Paul

Sabatier University in France, a Master in e-learning from Switzer-
land, and a graduate certificate in Systems Engineering from the
University of Missoury Rolla, USA. His research interests include
Software Requirements Engineering; Communities of Practice;
and Semantic Web.

http:// journals.uob.edu.bh

https://camunda.com/platform/modeler/
https://camunda.com/platform/modeler/
https://help.hitachivantara.com/Documentation/Pentaho/8.3/Products/Pentaho_Data_Integration
https://help.hitachivantara.com/Documentation/Pentaho/8.3/Products/Pentaho_Data_Integration
http://journals.uob.edu.bh

	INTRODUCTION
	RELATED WORK
	OUR CONTRIBUTION AN OPEN ETL APPROACH
	The New Architecture
	ETL process meta-model
	Model To Script Template
	Polystore Deployment

	CASE STUDY
	Data-Sets
	Measures
	ETL Process

	EXPERIMENT AND RESULTS
	CONCLUSIONS AND FUTURE WORK
	References
	Biographies
	El Yazid Gueddoudj
	Pr. Azeddine Chikh


