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Abstract: This research presents the segmentation of single-syllable sounds for speech recognition using an artificial neural network.
The network combines key features from speech signals in the time and frequency domains. The approach involves dividing speech
signals into frames using the short-time energy waveform. Pitch markers are then extracted from the frames and used as reference points
to split them into sections. The sections are further analyzed using window searching to identify positions, amplitudes, local minimum
and maximum values, and maximum slope values, which serve as key features in the time domain. In the frequency domain, cepstrum
coefficients on the Mel scale are used as additional key features. The two types of key features are combined for speech recognition
using the artificial neural network. The study also compares the performance of the combined and separated key features in the time
and frequency domains when fed into the neural network. The results demonstrate that using the artificial neural network with two
input layers (Mel frequency cepstral coefficient and time domain features) and the same hidden layers yields the highest recognition
accuracy of 96.97% and 88.43% for blind tests.

Keywords: Pitch detection, Time-Frequency domain, Feature extraction, Speech recognition, Syllable, Short-time energy waveform

1. Introduction
Nowadays, computerized speech processing has gained

significant importance in facilitating communication be-
tween humans and computers. The advancement of com-
puterized speech recognition is a direct outcome of the
continuous development in computer technology, encom-
passing both hardware and software components. Hardware
capabilities have been continuously improving, with faster
processing speeds, larger memory capacities, and reduced
power consumption per command. Moreover, software in-
novations in pattern recognition learning and artificial in-
telligence, which aim to mimic human recognition abil-
ities, have led to the widespread adoption of computers
for speech signal processing across various applications.
Speech recognition begins with an initial stage of signal
processing, wherein audio recordings are converted into
numerical signals to prepare the speech for further analysis.
These numerical signals then serve as the speech data for
subsequent processing steps. Typically, researchers employ
fundamental processing principles, including filtering, to
eliminate undesired frequencies using digital filters. An-
other crucial step is endpoint detection, which identifies
the beginning and end points of speech by segmenting it
into verbal and non-verbal sections, as well as individual
speech frames. Essentially, endpoint detection involves di-

viding the speech signal into shorter segments for more
focused analysis. The subsequent stage is a crucial step
known as feature extraction. It entails analyzing the feature
values present in the speech signals and deriving a set
of coefficients that effectively represent the speech. This
process is vital as it eliminates irrelevant components,
allowing for accurate representation of the speech. By
effectively extracting and deriving features, it becomes
possible to distinguish between different speech signals,
thereby achieving efficient outcomes in speech processing.
There are two approaches to extracting feature values, the
first of which involves extracting feature values in the time
domain. This approach has found applications in various
fields. For instance, in Dysarthria detection, researchers
have observed that the jitter and shimmer features in the
time domain of disordered voice samples tend to be higher
compared to those of healthy voice samples [1] . Similarly,
in speaker identification, time domain features have been
utilized by calculating various statistics for each window
size in the training set. These statistics include mean,
median, mode, standard deviation, variance, covariance,
zero cross rate, minimum, maximum, root mean square, and
distance. By incorporating these 11 features into a numeric
master feature vector, researchers achieved a remarkable
accuracy of 96.9% for gender identification using a ran-
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dom forest classifier [2]. Additionally, a technique called
time encoded signal processing and recognition (TESPAR)
has been applied to speaker identification. TESPAR is an
approximation method that analyzes and describes time-
varying signals in a computationally efficient manner [3].
Another intriguing and challenging study focuses on the
recognition of spoken English letters and leverages features
in the time domain. In this study, the researchers utilized
extracted features such as the number of threshold cross-
ings, peak-to-peak amplitude, minimum, maximum, and
average sampling. The results were promising, achieving
a commendable recognition rate of 92.2%. This outcome
serves as evidence for the potential of incorporating the
proposed solution principle into contemporary automatic
speech recognition systems[4]. As evident from the afore-
mentioned examples, feature extraction in the time domain
proves to be a valuable approach in speech recognition. It
offers advantages such as reduced computation time and
the ability to capture features that represent phase shifts in
speech signals. However, it is worth noting that the second
approach, which involves extracting feature values in the
frequency domain, has gained more popularity. In speech
recognition applications, feature extraction in the frequency
domain is commonly utilized. One widely adopted tech-
nique is the Mel frequency cepstral coefficient (MFCC).
In this technique, the Cepstrum is obtained by performing
an Inverse Fourier Transformation on the logarithm of the
sound signals’ spectra over a short period of time. The
MFCC approach enhances the cepstrum by adjusting the
scales of the spectrum to align more closely with human
hearing. As low-frequency speech signals tend to carry
more important information than high-frequency signals,
the spectrum scale is designed to capture finer details in
the low-frequency range. This scaling is achieved using the
Mel scale [5]. The feature extraction process, known for
its effective frequency analysis in the speech range, has
been widely implemented in various studies. For instance,
it has been utilized in controlling a five degree of freedom
robot arm with an Arduino microcontroller for tasks such
as object pick and place [6]. Moreover, the application
of principal component analysis to MFCC features has
been employed to extract the most significant components
for recognition in spoken word databases [7]. In another
study, MFCC was applied to recognize numbers 0–9 in
the Pashto language using the K-nearest neighbor algorithm
[8]. Additionally, when comparing the performance of text
dependent speaker recognition using MFCC features, linear
predictive coding (LPC), and discrete wavelet transform
(DWT), the results showed that MFCC outperformed LPC
and DWT [9]. While the MFCC feature offers advantages in
frequency-based analysis and finds applications in various
domains, it is important to note its limitations. One notable
weakness is observed when dividing the signal into fixed
frame segments of around 20–40 milliseconds. In this
approach, each frame may not align accurately with the
signal’s true periodicity. This discrepancy arises due to the
fixed frame size, which fails to consider the signal’s actual
period. Consequently, the resulting frame lengths may not

adequately represent periodic signals during the MFCC
extraction process. Another concern is the issue of DFT
leakage introduced during the initial step of calculating the
Discrete Fourier Transform (DFT). However, this concern
can be addressed by utilizing pitch-based segmentation
[10]. It is also worth mentioning that the feature extraction
using MFCC solely relies on the coefficients of the full
Fourier transform, resulting in the loss of phase information
in the signal. Unfortunately, the phase information of the
speech signal is not taken into consideration in this method.
Therefore, this research aims to showcase the utilization
of feature extraction in the time domain, which allows
for the inclusion of phase information through a simpler
calculation process. This approach is then combined with
spectral features obtained from MFCC, which provide spe-
cific frequency-related information about the signal. More-
over, a multilayer perceptron neural network is utilized as
a tool for speech recognition, enabling the assessment of
the effectiveness of incorporating significant features from
various speech patterns in the recognition process.

2. Methodology
This section illustrates the research methodology

adopted in the study, as depicted in Figure 1. The methodol-
ogy comprises four distinct steps, which will be elaborated
upon in the following sections.

Figure 1. Syllable-based speech recognition using pitch detection on
time–frequency domain feature extraction

A. Preparation of Speech Data
The speech audio data utilized in this study was obtained

from [10], encompassing a group of 50 speakers that
included both male and female participants. The training
dataset comprised 11 different pronunciations of common
words in the Thai language. These words were repeated
10 times by 20 male speakers and 20 female speakers,
resulting in a total of 4,400 words. To facilitate the training
process, the dataset was divided into 10 subsets, each
containing 440 words obtained from each speaking session.
For the blind test, a separate test dataset was created. This
dataset included the same words as those in the training
dataset and was repeated 10 times by 5 male speakers
and 5 female speakers who were not part of the training
dataset. This resulted in a total of 1,100 words for the
blind test. To capture the speech signals, a sound card
in a personal computer was utilized. The analog signals
received through a microphone were converted into a digital
format at a sampling rate of 22,050 samples per second with
a resolution of 16 bits per sample. The recorded speech

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10193-10203 (Oct-23) 10195

signals were then saved in .wav file format for further
analysis and processing.

B. Speech Signal Pre-processing Process
Preliminary speech signal processing is a crucial step

in preparing the speech audio data before extracting key
characteristics of the speech signal. In this research, two
important processes, namely endpoint segmentation and
pitch detection, are employed for speech signal processing.
Endpoint segmentation aims to identify the starting and
ending points of the speech signal in order to isolate
the speech area for further processing. The non-voice or
unvoiced regions are discarded by removing the parts with
lower energy values than a specified threshold. This helps
to focus on the speech-specific regions while filtering out
unwanted noise. The next step in pre-processing involves
noise reduction in the time domain, which can be achieved
using methods such as pre-emphasis or highpass filtering.
This helps to minimize background noise and enhance
the clarity of the speech signal. Pitch detection is another
crucial aspect of the pre-processing stage. Pitch refers to the
semi-repetitive pattern (quasi-periodic) that occurs in the
waveform of speech signals. It is related to the frequency
of speech and varies across different vowels and tones.
Pitch detection involves estimating the reference position
of the pitch marker, which represents the beginning of
pitch periods, as well as determining the length of the
pitch or the fundamental period of a periodic signal in
speech signal processing. Pitch detection plays a significant
role in various applications of speech signal processing,
including speech recognition [11], [12], emotion recognition
[13],[14], improving speech clarity [15],[16] and [17] and
speech synthesis [18],[19]. There are different methods
available for pitch detection, including the autocorrelation
function (ACF) [20], YIN estimator [21], and short-time
energy waveform (SEW) [22]. These methods are designed
to locate the pitch position or estimate the fundamental
frequency of the signal, and they can be applied in either
the time domain or the frequency domain. In this research,
the SEW method was selected for pitch detection due to its
ability to accurately detect pitch and determine the optimal
frame size for pitch detection in Figure 2.

Figure 2. Position of pitch marker and pitch duration on speech
signal.

After the endpoint segmentation process, which isolates
the voice segments, the resulting voice signals were divided

into fixed frame segments. Each frame had a duration of
approximately 20–40 milliseconds. Within each frame, the
voice signal was analyzed to determine the feature values.
In this research, a pitch-based segmentation approach was
employed to divide the speech signal frame into segments of
varying sizes. The rationale behind using this approach was
to mitigate the occurrence of Spectrum leakage problems
during the calculation of DFT, which is a crucial step in
determining the cepstrum coefficients on the Mel scale.
Pitch-based segmentation also facilitates the manipulation
of data in the time domain by utilizing the position of the
pitch marker as a reference point for selecting and dividing
the voice signal. Pitch detection using the SEW involves
analyzing signal segments of the input signal x(n) with a
length of N. It quantifies the energy of these signal segments
as a function of time:

E(n) =
n+W−1∑

i=n

x2(i) (1)

Where W is a window size and n = 0,. . . , N–W.

Figure 3. Pitch markers represent peak of energy signal, which
corresponds to references in the speech signal.

The SEW process involves extracting the energy value
of a speech signal, denoted as E(n), within a short time
period at a specific moment. This process is particularly
effective for pitch detection due to the characteristic wave-
form of the pitch, which alternates between low and high
energy levels. Consequently, the peak values in the energy
waveform can serve as reference points for identifying
pitch markers within the voice signal. Figure 3 illustrates
the derivation of the pitch marker and its utilization as a
reference point for segmenting the voice signal into frames.

C. Features of Speech Signals Determination
In order to determine the features of speech signals for

speech recognition, it is crucial to choose suitable data
sets that accurately represent the speech signals. In this
research, two approaches were employed to characterize the
speech signals and extract their features. The first approach
involved analyzing the signals in the time domain, while
the second approach focused on characterizing them in the
frequency domain.
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1) Features Extraction in Time Domain: This research
introduces an innovative method for extracting features from
voice signals in the time domain. The approach focuses on
capturing important information such as position, amplitude
values, local minimums, local maximums, and max slopes.
To achieve this, a window searching technique is employed,
where a variable is created to store a dataset of size N,
starting from the initial position of the voice signal. The
collected dataset, consisting of amplitude values, is then
analyzed to extract the relevant features. By examining
the data, local minimums and local maximums can be
identified as the lowest and highest values respectively,
along with their corresponding positions. The window is
then shifted progressively from left to right, one point at
a time, until it reaches the end of the voice signal. This
process enables the extraction of values for local minimums,
local maximums, and their associated positions on the time
axis (sample positions), as depicted in Figure 4. The size
of the searching window directly influences the number of
feature values obtained. A smaller searching window will
generate a higher number of key characteristics, whereas
a larger searching window will yield a lower number of
feature values. In this study, a 30-point searching window
was selected for analysis.

Figure 4. Positions of local minimum and local maximum using
window searching

Figure 5. Relationship between max slopes, local minimums, and
local maximums on the 1st derivative of the voice signal

Similarly, the max slope value can be obtained by
applying window searching to the first derivative of the
voice signal. By utilizing window searching on the first-
order derivative signal, the position of the maximum slope
in the voice signal can be determined. Window searching, as
a direct calculation method for extracting important features
in the time domain, allows for capturing phase change
information in the signal that cannot be achieved using
the frequency domain. Figure 5 (b) visually presents the
positions of local minimums and local maximums on the
first derivative of the voice signal in the time domain. It
highlights the existence of a significantly steep midpoint
located between the highest and lowest peaks of the voice
signal, as shown in Figure 5 (a).

Figure 6. Local minimum and local maximum and max slope
positions on the voice signal

Figure 6 depicts the positions of local minimums, local
maximums, and max slopes, which are vital key attributes
in the time domain. These features will be referred to as
important features in subsequent discussions, as shown in
Figure 7 (a). To provide a closer look at the time axis, Fig-
ure 7 (b) presents a magnified view ranging from 0 to 900 in
the time domain. It clearly demonstrates that the positions
of these features are distributed throughout one complete
signal period, offering a comprehensive representation of
the time domain.

Figure 7 (c) depicts the positions of features in the time
domain for each pitch. It is noticeable that the number of
points varies depending on the duration of each pitch. This
variation is a result of the voice audio signal’s periodic
nature, which changes over time. Specifically, at the begin-
ning of the voice, corresponding to the initial consonant
sound, the voice signal exhibits significant fluctuations.
In contrast, mid-tones and endings, which correspond to
vowels and similar signal periods, exhibit a more consistent
number of feature points. The discrepancy in the number of
features obtained for each pitch duration has implications
for defining the input in the neural network. Therefore, a
process is needed to ensure an equal number of features is
obtained for each pitch duration.

In this study, the positions of the three highest ampli-
tudes and the three lowest amplitudes were selected within
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each pitch duration. The analysis considered not only the
amplitude values but also the corresponding time values
in the time domain (represented on the y-axis) to capture
the changes in the signal period. This resulted in obtaining
two parameters at each selected point: the amplitude value
denoted as “A” and the time value denoted as “C”. By se-
lecting the three highest and three lowest amplitudes, a total
of six amplitudes were obtained within one pitch duration.
When combining these amplitudes with their respective time
domain values, a total of 12 data parameters were acquired
per pitch duration. Therefore, for a voice audio signal with
50 pitch durations and selecting six amplitude points per
duration, the utilization of features in the time domain
involves 600 parameters. These parameters consist of 300
“A” parameters (amplitude values) and 300 “C” parameters
(time values).

Figure 7. Positions of features in the time domain

a) Adjusting parameter C to the Same Range: One chal-
lenge in implementing parameter C (time axis value) is the
variability in voice among different individuals. Even when
speaking the same words, individuals have different funda-
mental frequencies, resulting in variations in the length of
their speech pitches. As a result, the sets of parameter C for
speech pitches with different fundamental frequencies may
appear similar, despite representing different durations. To
address this issue, it is necessary to scale parameter C in the
time domain. Scaling parameter C ensures that it falls within
a consistent range by utilizing a formula that estimates
C based on the length of the specific pitch. This scaling
approach takes into account the duration or fundamental
frequency of the speech signal and adjusts parameter C ac-
cordingly. By applying this scaling technique, the parameter
C values can be normalized across different individuals,
allowing for more accurate and reliable comparisons and
analysis of speech features.

CNormalized =
c

Pitch length
(2)

b) Parameter Formatting of Features in the Time Do-
main: To utilize the parameters A and C in the neural
network, they were arranged as N-dimensional vectors. In
one frame, there were five pitch durations, each consisting

of six parameters A and C. Therefore, one frame contained a
total of 30 parameters A and C. The frames were structured
to overlap with the previous frame for four pitch durations,
as depicted in Figure 8.

Figure 8. Parameter arrangement of features in the time domain as
vectors that can be fed to neural networks.

2) Features Extraction in Frequency Domain by MFCC:
The study on preventing DFT leakage [10] has shown
that can arise when dividing the signal into fixed frame
segments of the same size. To mitigate this problem, the
pitch-based segmentation method was applied in this study
for determining the cepstrum coefficients on the Mel scale
(MFCC). In this research, the speech signals were framed
using a frame size equivalent to 5 contiguous pitch dura-
tions, which approximates the typical framing duration of
20–40 milliseconds. Figure 9 illustrates the position of the
pitch markers, indicating how the speech signal was divided
into frames. Each frame overlapped with the previous frame
for 4 pitch durations, resulting in a total of 44 frames for
the analyzed speech signal.

Figure 9. Frame size based on pitch duration of five units, with
overlapping of four units.

In the process of creating the frames using a duration
of five pitch durations, each frame of the voice signal
was multiplied by the Hamming window function. This
windowing technique helps to achieve a smoother spectral
representation of the signal, reducing the effects of spectral
leakage. Figure 10a) depicts the voice signal frames after
applying the Hamming window. Once the voice signal
frames were obtained, the cepstrum coefficients on the
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Mel scale were calculated for each frame. This calculation
resulted in a set of cepstrum coefficients on the Mel
scale, representing the spectral characteristics of the frame.
Figure 10b) illustrates the cepstrum coefficients on the Mel
scale for one frame of the voice signal. For each frame of
the voice signal, there were M cepstrum coefficients on the
Mel scale. As a result, the voice signal produced a total of
44 voice signal frames, as shown in Figure 9. This leads
to a dataset of feature values in the frequency domain with
dimensions of 44 columns (corresponding to the frames)
and M rows (corresponding to the cepstrum coefficients),
as shown in Figure 11.

Figure 10. Outcome of frame sizing for the voice signal is 44 frames.
a) One frame per five pitch duration. b) Power spectra in each frame
signal.

Figure 11. Dataset of feature values in the frequency domain of one
voice signal.

As depicted in Figure 11, the data set consists of key
attribute values in the frequency domain, representing one
sound. In order to process all the sounds, each sound needed
to go through the process of identifying features in the
frequency domain.

D. Speech Recognition Method
The research employed a multilayer neural network for

speech recognition, which is a common approach in this
field. The input data for the neural network consisted of
two types of parameters: features in the time domain and
the cepstral coefficients on the Mel scale obtained from the
spectral analysis. The speech recognition performance of a
neural network generally depends on a number of factors,
such as the structure of the neural network, the datasets
used to teach neural networks and input data formats.

1) Determination of the Size of the Input Data: The size
of the input data, or the number of recognition parameters,
is a crucial factor that can impact the performance of
a neural network in speech recognition. It is generally
challenging to determine the optimal size of the input data
that yields the best recognition accuracy. To find the optimal
number of parameters, a gradual increase in the number of
parameters is performed, and the recognition efficiency of
the neural network is measured. The goal is to identify the
number of parameters that results in the highest recognition
accuracy. In this research, the number of parameters for the
features in the time domain and the size of the cepstral
coefficients on the Mel scale were adjusted and used as the
input data for the neural network to determine the optimal
size of the input data.

2) Input Data Set: The input data set for a neural
network consists of the data that is fed into the network
for training or recognition testing. In this research, various
feature values of speech signals were selected to create
input data sets. These feature values were arranged as input
vectors to be fed into the neural network. The format of
the feature values used to compose the input vectors has
a significant impact on the recognition performance of the
network. Different combinations of feature values, such as
using only parameters of feature values in the time domain,
using the cepstral coefficients on the Mel scale, or using
both time domain parameters and cepstral coefficients, were
employed to create input data sets. The speech recognition
performance was then tested using these different input
datasets.

3) Architecture of the Neural Network: Since the feature
values were extracted from both the time and frequency
domains, the formats of the input data inherently differed.
Therefore, it was crucial to design a neural network ar-
chitecture that could effectively accommodate input data
with diverse formats. In this research, two different neural
network architectures were utilized. The first architecture,
referred to as NN1, aimed to evaluate the integration of time
and frequency domain features. Its structure is illustrated in
Figure 12. The second architecture, known as NN2, was
designed to distinguish between feature sets in the time
and frequency domains. The structure of NN2 is depicted
in Figure 13.

Figure 12. Neural network architecture: NN1 type.
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The NN1 neural network architecture consisted of an
input layer that matched the number of feature inputs, 300
nodes in the hidden layers, and 50 nodes in the output layer.
This architecture was utilized in experiments involving
features from both the time domain and the frequency
domain. In the context of the architecture, F represented
speech signal frames, n represented the sequence of frames,
and M denoted the number of key feature parameters in
both the time and frequency domains. Figure 12 depicted
the NN1 architecture, which allowed for testing the per-
formance of two types of features. The first type involved
using only features in the time domain, while the second
type combined features from both the time and frequency
domains (as illustrated in Figure 13). The transfer function
employed in NN1 was as follows: a Sigmoid function was
applied to the input layer and hidden layers of each node,
while the output layer used a pure linear function.

Figure 13. Combination of the feature values sets into one data set.

Figure 14. Neural network architecture: NN2 type.

The research explored the combination of feature data
sets from the time domain and the frequency axis by
concatenating them while using the same NN1 architecture.

The assumption was that speech signals undergo continuous
changes over time and exhibit periodicity. However, existing
methods that utilize the cepstrum coefficient on the Mel
scale, obtained through Fourier transform theory, do not
account for changes in the signal’s period. The objective
of the research was to investigate whether incorporating
data that captures period changes, along with the cep-
strum coefficient on the Mel scale, could improve speech
recognition. To test this, the two data sets were merged
and employed in speech recognition experiments. In this
context, F represented speech signal frames, n denoted
the sequence of frames, M represented the number of
parameters for feature values in the time domain, and L
represented the number of parameters for feature values in
the frequency domain (as depicted in Figure 13).

The NN2 architecture consisted of a combination of
three neural networks. The concept behind this architecture
was as follows: the first neural network received input
data containing feature values from the time domain, while
the second neural network received input data containing
feature values from the frequency domain. The output of
the second neural network served as the input for the third
neural network, as illustrated in Figure 14

3. Experiments & Results
The speech recognition experiments aimed to assess the

performance of neural networks using two sets of feature
values. The first set comprised feature values in the time
domain, such as position, amplitude values of local mini-
mums and local maximums, and max slope. The second set
included feature values in the frequency domain obtained
from MFCC, which involved dividing the speech signal
into frames based on pitch length. To evaluate the speech
recognition performance, three data sets were utilized. The
first data set contained feature values from the time domain,
the second data set consisted of feature values from the
frequency domain, and the third data set combined both
types of feature values. These data sets were tested using
the NN1 type neural network, depicted in Figure 12 and
Figure 13. Furthermore, the second neural network was
evaluated using feature data sets from both the time domain
and the frequency domain, as shown in Figure 14.

A. Result of Using Feature Values in the Time Domain with
the NN1 Type
To optimize speech recognition performance, the num-

ber of parameters for feature values in the time domain was
varied and evaluated. Two parameters, A (signal amplitude)
and C (position in the time axis), were considered for each
frame. The choice of the number of parameters per frame
had an impact on the recognition performance, and it was
necessary to identify the optimal number of parameters.
In the experiment, the number of feature parameters was
adjusted from 4 to 40 points, with an increment of 4
points. Each point was represented by two parameters, A
and C. Multiple data sets were utilized for the training
process, including sets created solely from male volunteers’
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speeches, solely from female volunteers’ speeches, and
from speeches of both genders. The groups of volunteers
ranged from 10 people (5 males and 5 females) to 40
people (20 males and 20 females), resulting in four training
datasets: 10, 20, 30, and 40 individuals. In each group,
the parameters were adjusted as mentioned. The number
of parameters that yielded the best results in each group is
shown in Table I.

TABLE I. Percentage of Speech Recognition Accuracy of The NN1
Type by Using a and c Parameters of Time Domain Features, along
with the Number of Parameters Which Gave the Best Results in
Each Training Set (in Bold)

NN1 using parameter A and C features

training set from speech
of male and female

volunteer

Number of
parameter
A and C

Percentage of
speech recognition

accuracy
Traing Blind

10 32 36.86 11.89
20 32 42.09 22.91
30 32 64.43 43.99
40 36 77.32 63.62

The results presented in Table I show that the speech
recognition performance varied based on the parameters A
and C used. Among the training datasets, the one with 40
volunteers, including both males and females, and using 36
parameters of A and C, demonstrated the highest accuracy
in speech recognition. Specifically, setting the parameters
A and C at 32 resulted in the best performance. These
findings indicate a positive relationship between the number
of volunteers in the training dataset and the overall speech
recognition performance, suggesting that increasing the
number of volunteers leads to improved results.

B. Outcome of Utilizing Feature Values in the Frequency
Domain with MFCC on the NN1 Type
In this study, the speech signals were divided into frames

based on pitch, allowing for the extraction of MFCC val-
ues from these pitch-divided speech signals. These MFCC
values were then used as input data for the neural network
during the speech recognition process. Given this methodol-
ogy, it was essential to establish suitable criteria to optimize
the performance of speech recognition.

The experiments involved using various data sets for
the training process, including separate male speech data
sets, female volunteer speech data sets, and combined male
and female speech data sets. The groups of volunteers
ranged from 10 individuals (5 males and 5 females) to
40 individuals (20 males and 20 females). Additionally,
the MFCCs were adjusted and used as input data for the
neural network, which had a range of nodes from 4 to
40 (increasing by 4 nodes in each step). This resulted in
four groups of training data sets: 10, 20, 30, and 40. The
parameters were adjusted accordingly in each group. The
optimal number of parameters, yielding the best results, for
each group is presented in Table II.

TABLE II. Percentage of Speech Recognition Accuracy of the NN1
Type by Using MFCC Feature in Frequency Domain, along with the
Number of MFCC with Best Results in Each Training Set (in Bold)

NN1 using MFCC features

Training set from
speech of male and female

volunteers

Number of MFCC

Percentage of
speech recognition

accuracy
Train Blind

10 20 56.97 44.89
20 16 66.71 56.41
30 16 77.30 67.61
40 16 80.69 71.11

The speech recognition experiments utilizing MFCCs
as feature values revealed that the training data set com-
prising 40 volunteers, including both males and females,
and utilizing 16 cepstrum coefficients on the Mel scale,
achieved higher accuracy compared to the training data
sets with 30 and 20 volunteers. The best performance was
observed when utilizing 16 cepstrum coefficients on the
Mel scale. These results suggest that increasing the number
of volunteers, similar to incorporating feature values in
the time domain, leads to improved speech recognition
performance.

C. Results of Applying the A and C Parameters Combined
with the MFCC to the NN1 Type
The results presented in Tables I and II highlight

the significant influence of the number of feature values
on speech recognition accuracy. The experiments revealed
that utilizing 16 cepstrum coefficients on the Mel scale
resulted in the highest recognition accuracy, while using 36
feature values in the time domain also achieved the highest
accuracy. Building upon these findings, additional testing
was conducted to determine the optimal combination of
time domain feature values and cepstrum coefficients on the
Mel scale for speech recognition. Specifically, 16 cepstrum
coefficients were selected, while the number of time domain
feature values, represented by parameters A and C, varied
from 4 to 36, as presented in Table III.

TABLE III. Recognition Efficacy When Using Parameters A and C
of Time Domain Feature Combined with the MFCC as the Speech
Recognition Key Attribute Value in NN1 Type

NN1 type

MFCC+parameter A,C=Feature input size Result
Train Blind

16+4=20 91.38 85.29
16+8=24 91.56 85.34

16+12=28 91.71 85.42
16+16=32 91.79 85.63
16+20=36 92.00 85.71
16+24=40 92.21 86.21
16+36=52 92.88 83.57

As shown in Table III, the combination of cepstrum
coefficients on the Mel scale with parameters A and C
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yielded a notable improvement in the speech recognition
performance of the neural network.

During the testing phase with the training data sets, the
highest recognition accuracy of 92.88% was achieved by
using 16 cepstrum coefficients on the Mel scale and 36
parameters of A and C as feature values in the time domain.
However, in the blind test, the best recognition accuracy of
86.21% was obtained by utilizing 16 cepstrum coefficients
on the Mel scale and 24 parameters of A and C as feature
values.

It is noteworthy that the combination of 16 cepstrum
coefficients on the Mel scale and 36 parameters of A and
C did not yield the best results in the blind test, despite its
superior performance during testing with the training data
set. One possible explanation for this discrepancy is that a
higher number of parameters could make the learning pro-
cess more complex and time-consuming, thereby affecting
the recognition accuracy in real-world scenarios.

D. Results of Applying Feature Values in the Time Domain
and Frequency Domain to the NN2 Type
The experiment involved training three interconnected

neural networks using feature values from both the time
domain and the frequency domain. The first neural network,
N1, received input data of feature values in the time domain,
while the second neural network, N2, received input data
of feature values in the frequency domain. The outputs of
N1 and N2 were then used as inputs for the third neural
network, N3, as shown in Figure 15.

Figure 15. Defining neural network input data from two data sets.

Each neural network had specific configurations: N1 had
an input layer matching the size of the time domain feature
values, a hidden layer with 300 nodes, and an output layer
with 100 nodes. Similarly, N2 had an input layer matching
the size of the frequency domain feature values, a hidden
layer with 300 nodes, and an output layer with 100 nodes.
The outputs of both networks served as the hidden layer

for N3, which had 100 nodes, and the final output layer
consisted of 50 nodes. Figure 15 depicts the process of
feeding the data sets of feature values from the time and
frequency domains into individual neural networks.

Due to the distinct formats of feature values from
different domains, using a single neural network to ef-
fectively incorporate both domains can be challenging. To
address this, the proposed approach in this research involved
training separate neural networks for each type of feature
value. The outputs of these networks were then combined
and further trained in another neural network, allowing for
the integration of weighted values and adjustment of the
output based on the desired number of data groups.

TABLE IV. Speech Recognition Efficacy When Using Parameters
A and C of Feature Values in the Time Domain Combined with the
Mel Scale Cepstrum Coefficient for Importing to the Neural Network
Architecture: NN2

NN2 Type
feature input size Output by N3

number of MFCC
input to N2

Number of parameter A,C
input to N2 Train Blind

16

4 93.64 87.30
8 93.82 87.35

12 96.97 88.43
16 94.05 87.64
20 94.26 87.72
24 92.47 87.22
36 92.14 84.58

The results presented in Table IV highlight the no-
table enhancement in speech recognition performance by
incorporating cepstrum coefficients on the Mel scale and
A and C parameters of feature values in the time domain
into neural network architecture B. The best recognition
outcomes were achieved when utilizing 16 cepstrum co-
efficients on the Mel scale and 12 parameters of A and
C as feature values. The recognition accuracy percentage
reached 96.97 for the training data set test and 88.43 for
the blind test. These findings demonstrate the effectiveness
of this particular combination of feature values in improving
speech recognition performance.

4. Conclusion
In this research, the application of a multilayer neural

network for speech recognition was explored using different
types of feature values, including parameters A and C from
the time domain, cepstrum coefficients on the Mel scale
obtained through MFCC analysis of pitch-based speech seg-
ments, and a combination of MFCC pitch-based segments
with parameters A and C. Two neural network architectures,
NN1 and NN2, were evaluated. The highest recognition ac-
curacy of 88.43% (blind test) was achieved by NN2, which
employed 16 cepstrum coefficients on MFCC pitch-based
segments and 12 parameters A and C. NN1, utilizing MFCC
pitch-based segments along with parameters A and C,
attained the highest recognition accuracy of 86.21% (blind
test). Moreover, using only MFCC pitch-based segments or

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10202 Sopon Wiriyarattanakul, et al.: Speech Recognition Using Time–Frequency Domain Feature Extraction.

only parameters A and C resulted in recognition accuracies
of 71.11% and 63.62% (blind test), respectively. These
findings highlight the effectiveness of combining parameters
A and C from the time domain with cepstrum coefficients
on the Mel scale derived from pitch-based segments in
enhancing speech recognition performance.
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