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Abstract: Script identification is an important task in document analysis and recognition systems, which involves determining the script 

or writing system of a given text. In many multilingual countries, such as India and Bangladesh, documents often contain text written in 

different scripts, including Bangla and Devanagari scripts. However, identifying the script of degraded text poses significant challenges 

due to factors such as noise, distortion, and degradation caused by various environmental conditions and scanning artifacts. Using the 

VGG16 and CNN (Convolutional Neural Network) architectures, we offer a novel method in this research for identifying degraded 

scripts in Bangla and Devanagari scripts. Convolutional layers are used in the neural network design known as the VGG16, which has 

demonstrated success in image recognition. On the other hand, convolutional neural networks (CNNs) are commonly utilized for text 

recognition tasks because they are skilled at identifying local features. The proposed approach leverages the power of both VGG16 

and CNN to effectively identify the script of degraded text. We conduct analyses on a standard dataset made up of erroneous Bangla 

and Devanagari scripted text samples. In order to increase the robustness of our model, we subjected samples from the dataset to 

different levels of degradation, such as blurring, noise, and distortion. To improve the model’s performance on the preprocessed dataset, 

we employed transfer learning methods by using a pre-trained VGG16 model as a feature extractor for the CNN model. This helped 

to enhance the performance of both models on the dataset. Our proposed approach yielded better results than existing methods for 

identifying degraded script in Bangla and Devanagari scripts, according to our experiments. Our approach also achieved state-of-the-art 

performance. The combined use of VGG16 and CNN significantly improves the accuracy of script identification compared to using 

only one of the architectures. In addition, the proposed technique has been demonstrated to be more effective than current methods 

in terms of its ability to handle degradation and maintain robustness. This means that the proposed approach can efficiently manage 

different types of degradation that are usually present in real-world situations. 

 

Keywords: Script identification, Degraded text, Bangla script, Devanagari script, Indian Language, CNN, Transfer learning, 

OCR  

 

1. INTRODUCTION 

Script identification is a fundamental step in many 
documents analysis and recognition systems, as it plays a 
crucial role in accurately processing documents containing 
text written in different scripts, especially in multilingual 
countries like India and Bangladesh. Documents in such 
regions often contain text written in Bangla and Devanagari 
scripts, which pose unique challenges due to their distinct 
character shapes and writing styles. For downstream tasks 
like optical character recognition (OCR), machine transla- 
tion, and information retrieval, accurate identification of 
the script is crucial, as it provides valuable information 
about the language and script of the text. However, script 
identification becomes particularly challenging when deal- 
ing with degraded text, which is commonly encountered in 
real-world scenarios. Factors such as noise, blur, distortion, 
uneven illumination, and scanning artifacts can significantly 
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degrade the quality of the text, making it difficult to ac- 
curately identify the script. Traditional rule-based methods 
or handcrafted feature-based approaches may struggle to 
handle the complex and variable nature of degraded text, as 
they often rely on specific rules or predefined features that 
may not generalize well to different types of degradation. 
Over the past few years, the utilization of convolutional 
neural networks (CNNs) has demonstrated encouraging 
results for a variety of image recognition tasks, including 
the recognition of scripts. 

2. RELATED WORKS 

The utilization of deep learning for computer vision 
tasks, including image recognition, object detection, and 
image generation, has gained popularity due to notable 
advancements in deep learning models and algorithms. 
This literature review highlights the important contributions 
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Figure 1. VGG-16 Model Architecture 

 

 

of research papers that have had a significant impact on 
this field. Abadi et al. [1] paper present TensorFlow, 
a well-known open-source deep learning framework 
created by Google. The paper describes the framework’s 
design, which includes a programming model based on 
a data flow graph, distributed computing features, and 
performance and scalability optimizations.TensorFlow has 
gained prominence in computer vision research due to its 
ability to support the development and implementation 
of sophisticated deep learning models at a larger scale.A 
technique called batch normalization has been suggested 
as a possible remedy for the internal covariate shift 
problem, which can impede the training of deep neural 
networks, as suggested by Ioffe Szegedy et al. [2]. The 
approach involves the normalization of the inputs for every 
layer within a deep neural network. It has been shown 
to speed up the training process, ultimately leading to 
more effective convergence and improved performance in 
terms of generalization. This paper has been widely cited 
and has become a standard technique in deep learning 
for computer vision tasks. King et al. [3], The paper 
proposes ISTA-Net, a deep neural network architecture 
for sparse representation-based image reconstruction. 
ISTA-Net combines iterative shrinkage-thresholding 
algorithms with deep neural networks, leveraging the 
strengths of both approaches. The effectiveness of ISTA- 
Net is illustrated by the authors through its application 
in several computer vision tasks including compressed 
sensing, picture super-resolution, and image denoising. 
The results achieved were of state-of-the-art quality. ISTA-
Net has paved the way for deep learning-based sparse 
representation techniques in computer vision. He et al.[4] 
introduced Residual Networks (ResNets), which include 
skip connections to address the issue of vanishing gradients 
and enable the training of deep neural networks. The 
incorporation of these skip connections in ResNets has 
mitigated the problem of vanishing gradients, which 
previously prevented the successful training of deep 
networks with numerous layers. As a result, ResNets have 
been shown to improve the accuracy and performance of 
image recognition tasks. The application of these networks 
has greatly advanced the domain of deep learning for 
recognizing images and has now become a fundamental 

framework in numerous sophisticated computer vision 
models. Szegedy et al. [5] (2014) presented the inception 
architecture, a convolutional neural network (CNN) version, 
in their work. To identify characteristics at various scales, 
this architecture simultaneously employs multiple filter 
sizes. The authors propose various modifications to the 
inception architecture, including factorized convolution and 
aggressive pooling, to further improve its efficiency and 
performance. Models based on Inception are frequently 
employed in a range of applications and have performed 
exceptionally well in several computer vision benchmarks. 
Huang and colleagues et al. [6], introduced DenseNet as a 
sort of CNN architecture that creates a dense feed-forward 
connection between all levels. DenseNet incorporates 
dense connections, where previous layer feature mappings 
are concatenated with the current layer input, to improve 
feature reuse and gradient flow. The use of this particular 
architecture has been shown to achieve better accuracy and 
efficiency when compared to conventional CNNs. It has 
also been successfully utilized for several computer vision 
tasks, including object recognition, image classification, and 
image segmentation. The Faster R-CNN object detection 
framework has been enhanced with a mask prediction 
branch to achieve pixel-level object instance segmentation 
in addition to bounding boxes and class labels. This updated 
framework is known as Mask R-CNN. This framework 
has gained widespread popularity in the computer vision 
community, particularly for segmentation tasks, due to 
its ability to accurately locate and segment objects in 
images. Goodfellow et al. [8] introduced GANs as a 
generative model that can generate realistic images. GANs 
use a discriminator network and a generator network in an 
adversarial training procedure. The field of computer vision 
has benefitted greatly from the use of GANs, particularly in 
tasks involving image synthesis, style transfer, and image 
generation from limited data. Researchers have found that 
GANs are capable of generating realistic images that are 
difficult to distinguish from authentic ones. There has been 
a significant research focus on GANs, which have emerged 
as a popular deep learning technique for addressing 
computer vision challenges. The U-Net architecture, which 
was designed by Ronneberger et al. [9] and colleagues, 
has been widely used in biomedical image segmentation 
tasks. This underscores the significance of U-Net in this 
area of research. In order to enable precise segmentation of 
structures in biomedical pictures, such as cells and organs, 
U-Net employs a U-shaped design with skip connections. 
U-Net has become a widely used architecture in biomedical 
image analysis and has been extended to other computer 
vision tasks that require accurate pixel-level segmentation. 
Shrivastava et al. [10], propose a one-shot object detection 
framework that uses a siamese network to learn similarity 
metrics between object instances. The framework enables 
object detection using only one or a few instances of each 
object category, making it highly effective and adaptable for 
object detection in real-world situations where annotated 
data is scarce. One-shot object detection has the potential 
to greatly reduce the need for extensive labeled data for 
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training object detection models, making it a promising 
approach for computer vision applications with limited 
data availability.Simonyan and Zisserman et al. introduced 
a CNN architecture named VGG (Visual Geometry Group), 
which has 16-19 weight layers and utilizes small 3x3 
convolutional filters.The VGG model emerged as the 
leading performer in the 2014 ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC), demonstrating 
the potency of deep neural network architectures in image 
recognition tasks. Due to its effectiveness and simplicity, 
VGG has been widely utilized as a backbone architecture in 
numerous computer vision tasks, thereby fueling research 
in deep CNNs. Szegedy et al. [12], introduce Inception-v4 
and Inception-ResNet, two deep CNN architectures that 
incorporate the concept of residual connections from the 
ResNet architecture. The authors demonstrate that residual 
connections can significantly improve the learning and 
convergence properties of deep CNNs, leading to improved 
performance on various image recognition tasks. Inception- 
v4 and Inception-ResNet have become popular choices 
for large-scale image recognition and have influenced the 
design of subsequent CNN architectures. 

 
3. METHODOLOGY ADOPTED 

A. Dataset 

We use a collection of document images that have 
been converted into binary format and contain both 
Bangla and Devanagari scripts. More than 21,000 images 
make up the dataset, which we evenly split into training, 
validation, and test sets to ensure that samples from both 
scripts are distributed equally. To simulate actual situations 
where documents could degrade, including noise, blur, and 
distortion, the dataset’s photos were binarized. Both Bangla 
and Devanagari datasets are split into training set having 
70 percent dataset images, validation set having 20 percent 
dataset images and testing set having 10 percent dataset 
images. This dataset is useful for training and assessing 
our proposed method for identifying scripts in low-quality 
text, using transfer learning techniques that utilize VGG16 
and CNN architectures. 

 
B. Feature Extraction 

In our approach for script identification in degraded 
text, we make use of the popular VGG16 pre-trained model 
as a feature extractor. VGG16 is widely recognized for 
its outstanding performance in image classification tasks, 
thanks to its deep architecture and learned features from 
large-scale datasets. The final completely connected layers 
that are in charge of the final classification are taken out in 
order to use VGG16 for feature extraction, and we retain 
the convolutional and pooling layers that capture local and 
global features from images. Utilizing a pre-trained model 
such as VGG16 comes with numerous benefits. Firstly, it 
allows us to leverage the knowledge and learned features 
from a vast amount of data, which can significantly enhance 
the performance of our script identification system. This 

is especially important in scenarios where the available 
dataset may be limited, such as in the case of degraded 
document images. Secondly, using a pre-trained model 
saves computational resources and training time, as the 
model has already learned meaningful representations from 
large-scale data, and we can utilize these representations 
for our task without starting from scratch. The VGG16 
model’s convolutional and pooling layers remain intact 
even after removing the final fully connected layers. 
These layers have the ability to extract both local and 
global features from the input images. These layers are 
made to recognise both high-level elements like scenes 
and object components and low-level features like edges 
and textures in hierarchical representations of images. 
The one-dimensional vector created from the features 
recovered from VGG16 is then used as the input for the 
succeeding CNN layers. The convolutional and pooling 
layers’ multi-dimensional feature maps are flattened into 
one-dimensional representations that can be conveniently 
input into the CNN for additional processing. This one-
dimensional vector retains the learned features from 
VGG16 and serves as a compact representation of the 
input image, which can be efficiently processed by the 
subsequent CNN layers. It’s important to note that we do 
not use the original weights for the last fully connected 
layers that were trained on the original image classification 
task. In place of doing this, we train our own fully linked 
layers on top of the flattened features to modify the model 
for the unique job of script identification. This fine-tuning 
process allows us to tailor the model to our specific task and 
ensure that our approach is not a direct copy of the original 
VGG16 model, addressing any concerns of plagiarism. 
We employ a feature extraction approach that involves 
utilizing the pre-existing VGG16 model. We discard the 
fully connected layers while retaining the convolutional 
and pooling layers. The extracted features are flattened 
and provided as input to the succeeding CNN layers. This 
approach allows us to leverage the power of VGG16 for 
capturing relevant features from degraded script images of 
Bangla and Devanagari scripts, while adapting the model 
for our specific task of script identification in degraded text. 

 
C. Image Segmentation 

A popular method for determining the shortest route 
between two points in a graph or grid is the A* (A-star) 
algorithm. It is more effective than other search algorithms 
because it makes use of heuristics to direct the search to- 
wards the desired state. In the specific context of document 
image processing for script identification, line segmentation 
is a critical pre-processing step. This involves extracting 
individual text lines from the document image and resizing 
them to a fixed height and width for further processing. 
There are various techniques that can be employed for line 
segmentation, such as connected component analysis, pro- 
jection profile analysis, or other suitable methods, depend- 
ing on the dataset’s characteristics. Connected component 
analysis entails identifying groups of connected pixels that 
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form a text line by analyzing their spatial relationships. 
Projection profile analysis involves computing vertical or 
horizontal projections of the image and analysing peaks and 
valleys in the projections to detect text lines. Other methods 
may also be utilized depending on factors such as lan- 
guage, font, and layout of the text. After line segmentation, 
the extracted text lines are resized to ensure consistency 
in further processing. This resizing step normalizes the 
text lines, making them suitable for subsequent analysis, 
such as feature extraction, pattern recognition, or machine 
learning algorithms for script identification. In summary, 

D. CNN-based Script Classification 

A segmented text line image, designated as X, serves as 
the CNN model’s input. The VGG16 model processes the 
segmented text line picture X, which results in a series of 
feature maps with the notation F = F1, F2,..., Fn, where each 
feature map Fi denotes a different level of abstraction of the 
input image. The input image’s regional patterns or features 
are then captured by passing the feature maps F through a 
number of convolutional layers. The equation denotes the 
representation of each convolutional layer: 

F′ = Conv2D(F , W, b) + a (1) 
line segmentation is a crucial step in the document image i i 

processing pipeline for script identification. It enables the 
extraction of individual text lines from the document image, 
which can then be resized to a fixed height and width for 
further processing using techniques such as the A* path 
planning algorithm or other relevant algorithms. 

where W stands for the convolutional weights, b for the 
bias, and a for the activation function applied element- 
wise to the resulting feature map Fi’. Conv2D stands for 
the convolution process. A pooling technique is used to 
downsample the feature maps and decrease their spatial 
dimensions while keeping crucial features after each con- 
volutional layer. This operation is denoted as: 

Fi′′ = Pooling (Fi′) (2) 

where Pooling represents the pooling operation. Following 
the convolutional and pooling layers, the feature maps 
undergo a transformation process, where they are converted 
into a vector. This vector is then fed through a sequence of 
fully connected layers that employ SoftMax activation func- 
tion. The equation below represents each fully connected 
layer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Pre-processing of input images 

 

 
Word Segmentation: Use a sliding window technique 

to separate the image’s words. The average word size 
of the script should be used to determine the window 
size. To find word boundaries, combine methods like 
connected component analysis, geometric analysis, and 
horizontal and vertical projections. Character Segmentation: 
Finally, segment each individual word into its constituent 
characters. Use techniques such as connected component 
analysis and contour analysis to detect individual characters. 

z = W f ∗ f + b f (3) 

where Wf represents the fully connected weights, f repre- 
sents the flattened feature vector, and bf represents the bias. 
After obtaining the logits z, a SoftMax activation function 
is applied to produce probability scores for different script 
classes. The SoftMax function is denoted as follows: 

P = S o f tMax(z) (4) 

where P stands for each script class’s expected probability 
scores. In the training phase, the model’s performance is 
assessed by comparing its predicted probabilities (P) against 
the real labels (Y) using the cross-entropy loss function as 
the optimization criterion. the following equation represents 
the loss function: 

L = − Y ∗ log (P) (5) 

The letter Y is used to represent the labels that match the 
actual values, while the term ”log” refers to the natural 
logarithm. Dropout and batch normalization are employed 
as regularization techniques in the CNN model during 
training.During the fully connected layers, the equation used 
to implement the dropout technique is utilized as below: 

f ′ = Dropout( f , p) (6) 

where Dropout denotes the dropout operation, p represents 
the dropout rate, and f’ represents the output after dropout. 
Each convolutional layer is followed by batch normalisa- 
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√
(Fvar + ε) 

tion, which is represented by the following equations: 

Fmean =   Mean(Fi′′) (7) 

Fvar = Variance(Fi′′) (8) 

Fi′′′ = 
(Fi′′ − Fmean)  

(9) 
 

Fi′′′′ = γ ∗ Fi′′′ + β (10) 

The equation above represents the batch normalization 
process, where Fi”” is the normalized feature map of the 
input batch. The mean and variance operations calculate 
the mean and variance of the input batch, respectively. 
To ensure numerical stability, a small constant epsilon () 
is added. The learnable parameters, gamma () and beta 
(), are used to scale and shift the normalized feature 
maps, respectively. During training, the CNN model is 
optimised using strategies such stochastic gradient descent 
(SGD) or Adam optimisation. The model’s weights and 
biases are updated by taking steps based on the gradient 
of the cross-entropy loss with respect to the parameters. 
The resulting CNN model is then utilized to carry out 
inference on the given input text line image X that has 
been segmented, and subsequently, the anticipated script 
class having the greatest probability score is selected as 
the ultimate prediction. 

 

 
 

 

 
Figure 3. Predicted Features obtained using CNN framework of 
Devanagari dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Predicted Features obtained using CNN framework of 
Bangla dataset 

 

 

E. VGG16 based fine-tuned Script classification 

The VGG16 model takes a segmented text line image, 
which is represented as X, as input. The input image X 
undergoes a series of convolutional layers that employ 
different filter sizes to identify specific local features or 
patterns in the image. These convolutional layers use a pre-
determined set of weights and biases to execute the 
convolution operation on the input image. Subsequently, 
an activation function is applied to each element of the 
extracted feature map. A pooling technique is used to 
downsample the feature maps and decrease their spatial 
dimensions while keeping crucial features after each 
convolutional layer. The feature maps resulting from the 
convolutional and pooling layers are converted into a vector 
by flattening them. This vector is then passed through 
a series of fully connected layers, which have SoftMax 
activation. The SoftMax activation function produces 
probability scores for different script classes. The logits, 
which are a combination of the flattened feature vector and 
a bias, are fed into the SoftMax activation function. During 
the training process, the VGG16 model uses regularisation 
techniques such as dropout and batch normalisation. Batch 
normalisation is utilised after each convolutional layer to 
normalise and scale the feature maps, and then shift them 
with learnable parameters. Dropout is applied during the 
fully connected layers to randomly remove some of the 
neurons with a predefined dropout rate. During the training 
of the VGG16 model, stochastic gradient descent (SGD) 
or Adam optimization is utilized to iteratively update the 
model’s weights and biases. The optimization process 
is based on the gradient of the cross-entropy loss with 
respect to the model parameters. Once trained, the VGG16 
model is used for inference on the input segmented text 
line image X, with the predicted script class selected as 
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the final prediction based on the highest probability score. 
During the training process for script classification and 
prediction of the script class of a segmented text line 
image, various regularization techniques are utilized. These 
techniques include convolutional layers, pooling layers, 
fully connected layers that utilize SoftMax activation, as 
well as dropout and batch normalization. 

 
4. RESULTS AND ANALYSIS 

The table offers details on the performance metrics of 
four deep learning models for a particular classification 
task: VGG-16, DenseNet, ResNet-50, and AlexNet. These 
metrics include Precision, Recall, F1-Score, Validation Ac- 
curacy, and Test Accuracy. The Precision metric measures 
how well the models identify true positives compared to 
all positive predictions made. Each model’s high Precision 
ratings, which range from 96 to 99, show that it can ac- 
curately identify positive situations while minimising false 
positives. The Recall metric measures how well the models 
identify true positives compared to all actual positive cases. 
Each model has a high Recall score, ranging from 96 
to 99, demonstrating their ability to correctly identify the 
majority of positive cases. The F1-Score is a metric that 
measures the equilibrium between Precision and Recall. 
The remarkable F1-Scores obtained by the models, which 
fall between 97 and 99, indicate their ability to accurately 
detect both positive and negative cases. The Validation Ac- 
curacy metric measures how well the models classify cases 
on a validation dataset. All models have high Validation 
Accuracy scores ranging from 92.56% to 96.03%, with 
VGG-16 achieving the highest score. The Test Accuracy 
metric measures how well the models classify cases on a 
test dataset. All models have high Test Accuracy scores 
ranging from 97.36% to 99.28%, with VGG-16 achieving 
the highest score. Overall, all four models perform well on 
the classification task. After comparing the performance of 
four different convolutional neural network models, namely 
VGG-16, DenseNet121, ResNet-50, and AlexNet, for a 
particular classification task, it was observed that the VGG- 
16 model had a slight advantage over the others in terms of 
validation and test accuracy. The evaluation was conducted 
with the aim of determining the effectiveness of these 
models in accurately identifying and classifying positive 
and negative cases. The authors assessed the effectiveness 
of the models by measuring different performance metrics 
including precision, recall, F1-score, validation accuracy, 
and test accuracy. 

Precision measures the accuracy of the models in identi- 
fying true positive cases compared to all positive predictions 
made. The models’ excellent precision scores, which ranged 
from 96 to 99 percent, show that they can reliably identify 
affirmative cases while reducing false positives. 

In comparison to the total number of actual positive 
cases, recall measures how well the models are able to iden- 
tify the majority of positive cases. All four models showed 

high recall rates between 96% and 99%, demonstrating their 
efficiency in detecting the majority of the positive cases. 

The F1-score evaluates how well precision and recall are 
balanced. All four models achieved high F1-scores ranging 
from 97% to 99%, indicating their capability to accurately 
identify both positive and negative cases while maintaining 
a balance between precision and recall. 

Validation accuracy measures the models’ generaliz- 
ability on a validation dataset. All models displayed high 
validation accuracy scores ranging from 92.56% to 96.03%, 
with VGG-16 performing the best. 

Test accuracy measures the models’ ability to perform 
well in real-world scenarios on a test dataset. All four 
models achieved high test accuracy scores ranging from 
97.36% to 99.28%, with VGG-16 recording the highest 
score. 

Overall, the evaluation concluded that all four models 
exhibited exceptional performance, with high precision, 
recall, and F1-scores, as well as high validation and test 
accuracy scores. However, VGG-16 outperformed the 
other models slightly in both validation and test accuracy, 
making it the best choice for this classification task. 

 
To train the Bangla and Devanagari character datasets, 

they were trained separately with different learning rates 
and using the Adam Optimizer. The Bangla dataset was 
trained with a learning rate of 1e-5, while the Devanagari 
dataset was trained with a learning rate of 1e-6. Both 
datasets were trained using the categorical cross-entropy 
loss function and a batch size of 32. This approach ensured 
that the two datasets were trained optimally and achieved 
the best possible accuracy. The dataset had a level of 
degradation under which both Devanagari characters and 
Bangla characters were classified very well using all the 
CNN frameworks, but VGG-16 proved to be the most 
accurate in classifying characters with a test accuracy of 
99.28%. The confusion matrices for VGG16 and AlexNet 
frameworks is shown below: - 
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Figure 7. AlexNet CNN model framework predictions for 

Devanagari script 

Figure 8. AlexNet CNN model framework predictions for Bangla 

script 

TABLE I. Results of CNN frameworks in classifying degraded Bangla Script. 
 

Model Name Precision validation accuracy Recall F1-Score Test Accuracy 

VGG-16 99 96.03 99 99 99.28 
DenseNet121 96 95.29 96 97 97.36 

ResNet-50 98 95.56 98 99 98.57 
AlexNet 99 92.56 99 98 98.67 

 

TABLE II. Results of CNN frameworks in classifying degraded Bangla Script. 

Model Name Precision validation accuracy Recall F1-Score Test Accuracy 

VGG-16 98 94.28 98 99 96.61 
DenseNet121 96 93.36 96 97 94.73 

ResNet-50 98 94.03 98 99 95.38 
AlexNet 95 89.91 95 96 91.18 

 
 

 

Figure 6. VGG-16 CNN model framework predictions for 

Bangla script 

Figure 5. VGG-16 CNN model framework predictions for 

Devanagari script 
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After evaluating the model using classification report and 
precision-recall curve, it can be concluded that the model 
performed exceptionally well on the test data. The model 
showed high precision, recall, and F1-score for every class, 
which indicates its capacity to accurately classify various 
characters in the Devanagari script. Furthermore, the 
precision-recall curve shows that the model can achieve high 
precision and recall simultaneously. In conclusion, the model 
has successfully learned to recognize characters in the 
Devanagari script and is performing well on the test data. 
Here is the epochs vs validation curve for both Bangla and 
Devanagari script obtained using VGG-16 evaluated model. 

 
Figure 9. Validation Loss of VGG-16 model during training of Bangla 

dataset 

Figure 10. Validation accuracy achieved by VGG-16 model during 
training of Bangla dataset 

 

 
 

 
 

Figure 11. Validation Loss of VGG-16 model during training of 
Devanagari dataset 

 

 

Figure 12. Validation accuracy achieved by VGG-16 model during 
training of Devanagari dataset
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5. CONCLUSION 

The authors of this research utilized the Keras platform 
to evaluate and contrast the effectiveness of VGG16 and 
CNN architectures for the purpose of image classification. 
Our results showed that both models achieved high accuracy 
in image classification, with VGG16 slightly outperform- 
ing CNN in our experiments. The findings highlight the 
importance of architecture design in deep learning and 
provide insights for choosing suitable models for image 
classification tasks. Further research can build upon these 
results to explore other architectures and datasets, and 
optimize hyperparameters for improved model performance. 
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