
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

DEGRADED DEVANAGARI AND BANGLA

SCRIPT CLASSIFICATION USING MODIFIED

CNN FRAMEWORKS
Akshat Banga1, Naman Jain2, Chahat Pal3 and M.K. Shukla4

1Amity School of Engineering and Technology, Noida, Uttar Pradesh, India
2Amity School of Engineering and Technology, Noida, Uttar Pradesh, India
3Amity School of Engineering and Technology, Noida, Uttar Pradesh, India
4Amity School of Engineering and Technology, Noida, Uttar Pradesh, India

Abstract: Script identification is an important task in document analysis and recognition systems, which involves determining the script

or writing system of a given text. In many multilingual countries, such as India and Bangladesh, documents often contain text written in

different scripts, including Bangla and Devanagari scripts. However, identifying the script of degraded text poses significant challenges

due to factors such as noise, distortion, and degradation caused by various environmental conditions and scanning artifacts. Using the

VGG16 and CNN (Convolutional Neural Network) architectures, we offer a novel method in this research for identifying degraded

scripts in Bangla and Devanagari scripts. Convolutional layers are used in the neural network design known as the VGG16, which has

demonstrated success in image recognition. On the other hand, convolutional neural networks (CNNs) are commonly utilized for text

recognition tasks because they are skilled at identifying local features. The proposed approach leverages the power of both VGG16

and CNN to effectively identify the script of degraded text. We conduct analyses on a standard dataset made up of erroneous Bangla

and Devanagari scripted text samples. In order to increase the robustness of our model, we subjected samples from the dataset to

different levels of degradation, such as blurring, noise, and distortion. To improve the model’s performance on the preprocessed dataset,

we employed transfer learning methods by using a pre-trained VGG16 model as a feature extractor for the CNN model. This helped

to enhance the performance of both models on the dataset. Our proposed approach yielded better results than existing methods for

identifying degraded script in Bangla and Devanagari scripts, according to our experiments. Our approach also achieved state-of-the-art

performance. The combined use of VGG16 and CNN significantly improves the accuracy of script identification compared to using

only one of the architectures. In addition, the proposed technique has been demonstrated to be more effective than current methods

in terms of its ability to handle degradation and maintain robustness. This means that the proposed approach can efficiently manage

different types of degradation that are usually present in real-world situations.

Keywords: Script identification, Degraded text, Bangla script, Devanagari script, Indian Language, CNN, Transfer learning,

OCR

1. INTRODUCTION

Script identification is a fundamental step in many
documents analysis and recognition systems, as it plays a
crucial role in accurately processing documents containing
text written in different scripts, especially in multilingual
countries like India and Bangladesh. Documents in such
regions often contain text written in Bangla and Devanagari
scripts, which pose unique challenges due to their distinct
character shapes and writing styles. For downstream tasks
like optical character recognition (OCR), machine transla-
tion, and information retrieval, accurate identification of
the script is crucial, as it provides valuable information
about the language and script of the text. However, script
identification becomes particularly challenging when deal-
ing with degraded text, which is commonly encountered in
real-world scenarios. Factors such as noise, blur, distortion,
uneven illumination, and scanning artifacts can significantly

1

degrade the quality of the text, making it difficult to ac-
curately identify the script. Traditional rule-based methods
or handcrafted feature-based approaches may struggle to
handle the complex and variable nature of degraded text, as
they often rely on specific rules or predefined features that
may not generalize well to different types of degradation.
Over the past few years, the utilization of convolutional
neural networks (CNNs) has demonstrated encouraging
results for a variety of image recognition tasks, including
the recognition of scripts.

2. RELATED WORKS

The utilization of deep learning for computer vision
tasks, including image recognition, object detection, and
image generation, has gained popularity due to notable
advancements in deep learning models and algorithms.
This literature review highlights the important contributions

IJCDS 1570912456

1

Figure 1. VGG-16 Model Architecture

of research papers that have had a significant impact on
this field. Abadi et al. [1] paper present TensorFlow,
a well-known open-source deep learning framework
created by Google. The paper describes the framework’s
design, which includes a programming model based on
a data flow graph, distributed computing features, and
performance and scalability optimizations.TensorFlow has
gained prominence in computer vision research due to its
ability to support the development and implementation
of sophisticated deep learning models at a larger scale.A
technique called batch normalization has been suggested
as a possible remedy for the internal covariate shift
problem, which can impede the training of deep neural
networks, as suggested by Ioffe Szegedy et al. [2]. The
approach involves the normalization of the inputs for every
layer within a deep neural network. It has been shown
to speed up the training process, ultimately leading to
more effective convergence and improved performance in
terms of generalization. This paper has been widely cited
and has become a standard technique in deep learning
for computer vision tasks. King et al. [3], The paper
proposes ISTA-Net, a deep neural network architecture
for sparse representation-based image reconstruction.
ISTA-Net combines iterative shrinkage-thresholding
algorithms with deep neural networks, leveraging the
strengths of both approaches. The effectiveness of ISTA-
Net is illustrated by the authors through its application
in several computer vision tasks including compressed
sensing, picture super-resolution, and image denoising.
The results achieved were of state-of-the-art quality. ISTA-
Net has paved the way for deep learning-based sparse
representation techniques in computer vision. He et al.[4]
introduced Residual Networks (ResNets), which include
skip connections to address the issue of vanishing gradients
and enable the training of deep neural networks. The
incorporation of these skip connections in ResNets has
mitigated the problem of vanishing gradients, which
previously prevented the successful training of deep
networks with numerous layers. As a result, ResNets have
been shown to improve the accuracy and performance of
image recognition tasks. The application of these networks
has greatly advanced the domain of deep learning for
recognizing images and has now become a fundamental

framework in numerous sophisticated computer vision
models. Szegedy et al. [5] (2014) presented the inception
architecture, a convolutional neural network (CNN) version,
in their work. To identify characteristics at various scales,
this architecture simultaneously employs multiple filter
sizes. The authors propose various modifications to the
inception architecture, including factorized convolution and
aggressive pooling, to further improve its efficiency and
performance. Models based on Inception are frequently
employed in a range of applications and have performed
exceptionally well in several computer vision benchmarks.
Huang and colleagues et al. [6], introduced DenseNet as a
sort of CNN architecture that creates a dense feed-forward
connection between all levels. DenseNet incorporates
dense connections, where previous layer feature mappings
are concatenated with the current layer input, to improve
feature reuse and gradient flow. The use of this particular
architecture has been shown to achieve better accuracy and
efficiency when compared to conventional CNNs. It has
also been successfully utilized for several computer vision
tasks, including object recognition, image classification, and
image segmentation. The Faster R-CNN object detection
framework has been enhanced with a mask prediction
branch to achieve pixel-level object instance segmentation
in addition to bounding boxes and class labels. This updated
framework is known as Mask R-CNN. This framework
has gained widespread popularity in the computer vision
community, particularly for segmentation tasks, due to
its ability to accurately locate and segment objects in
images. Goodfellow et al. [8] introduced GANs as a
generative model that can generate realistic images. GANs
use a discriminator network and a generator network in an
adversarial training procedure. The field of computer vision
has benefitted greatly from the use of GANs, particularly in
tasks involving image synthesis, style transfer, and image
generation from limited data. Researchers have found that
GANs are capable of generating realistic images that are
difficult to distinguish from authentic ones. There has been
a significant research focus on GANs, which have emerged
as a popular deep learning technique for addressing
computer vision challenges. The U-Net architecture, which
was designed by Ronneberger et al. [9] and colleagues,
has been widely used in biomedical image segmentation
tasks. This underscores the significance of U-Net in this
area of research. In order to enable precise segmentation of
structures in biomedical pictures, such as cells and organs,
U-Net employs a U-shaped design with skip connections.
U-Net has become a widely used architecture in biomedical
image analysis and has been extended to other computer
vision tasks that require accurate pixel-level segmentation.
Shrivastava et al. [10], propose a one-shot object detection
framework that uses a siamese network to learn similarity
metrics between object instances. The framework enables
object detection using only one or a few instances of each
object category, making it highly effective and adaptable for
object detection in real-world situations where annotated
data is scarce. One-shot object detection has the potential
to greatly reduce the need for extensive labeled data for

2

3

training object detection models, making it a promising
approach for computer vision applications with limited
data availability.Simonyan and Zisserman et al. introduced
a CNN architecture named VGG (Visual Geometry Group),
which has 16-19 weight layers and utilizes small 3x3
convolutional filters.The VGG model emerged as the
leading performer in the 2014 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), demonstrating
the potency of deep neural network architectures in image
recognition tasks. Due to its effectiveness and simplicity,
VGG has been widely utilized as a backbone architecture in
numerous computer vision tasks, thereby fueling research
in deep CNNs. Szegedy et al. [12], introduce Inception-v4
and Inception-ResNet, two deep CNN architectures that
incorporate the concept of residual connections from the
ResNet architecture. The authors demonstrate that residual
connections can significantly improve the learning and
convergence properties of deep CNNs, leading to improved
performance on various image recognition tasks. Inception-
v4 and Inception-ResNet have become popular choices
for large-scale image recognition and have influenced the
design of subsequent CNN architectures.

3. METHODOLOGY ADOPTED

A. Dataset

We use a collection of document images that have
been converted into binary format and contain both
Bangla and Devanagari scripts. More than 21,000 images
make up the dataset, which we evenly split into training,
validation, and test sets to ensure that samples from both
scripts are distributed equally. To simulate actual situations
where documents could degrade, including noise, blur, and
distortion, the dataset’s photos were binarized. Both Bangla
and Devanagari datasets are split into training set having
70 percent dataset images, validation set having 20 percent
dataset images and testing set having 10 percent dataset
images. This dataset is useful for training and assessing
our proposed method for identifying scripts in low-quality
text, using transfer learning techniques that utilize VGG16
and CNN architectures.

B. Feature Extraction

In our approach for script identification in degraded
text, we make use of the popular VGG16 pre-trained model
as a feature extractor. VGG16 is widely recognized for
its outstanding performance in image classification tasks,
thanks to its deep architecture and learned features from
large-scale datasets. The final completely connected layers
that are in charge of the final classification are taken out in
order to use VGG16 for feature extraction, and we retain
the convolutional and pooling layers that capture local and
global features from images. Utilizing a pre-trained model
such as VGG16 comes with numerous benefits. Firstly, it
allows us to leverage the knowledge and learned features
from a vast amount of data, which can significantly enhance
the performance of our script identification system. This

is especially important in scenarios where the available
dataset may be limited, such as in the case of degraded
document images. Secondly, using a pre-trained model
saves computational resources and training time, as the
model has already learned meaningful representations from
large-scale data, and we can utilize these representations
for our task without starting from scratch. The VGG16
model’s convolutional and pooling layers remain intact
even after removing the final fully connected layers.
These layers have the ability to extract both local and
global features from the input images. These layers are
made to recognise both high-level elements like scenes
and object components and low-level features like edges
and textures in hierarchical representations of images.
The one-dimensional vector created from the features
recovered from VGG16 is then used as the input for the
succeeding CNN layers. The convolutional and pooling
layers’ multi-dimensional feature maps are flattened into
one-dimensional representations that can be conveniently
input into the CNN for additional processing. This one-
dimensional vector retains the learned features from
VGG16 and serves as a compact representation of the
input image, which can be efficiently processed by the
subsequent CNN layers. It’s important to note that we do
not use the original weights for the last fully connected
layers that were trained on the original image classification
task. In place of doing this, we train our own fully linked
layers on top of the flattened features to modify the model
for the unique job of script identification. This fine-tuning
process allows us to tailor the model to our specific task and
ensure that our approach is not a direct copy of the original
VGG16 model, addressing any concerns of plagiarism.
We employ a feature extraction approach that involves
utilizing the pre-existing VGG16 model. We discard the
fully connected layers while retaining the convolutional
and pooling layers. The extracted features are flattened
and provided as input to the succeeding CNN layers. This
approach allows us to leverage the power of VGG16 for
capturing relevant features from degraded script images of
Bangla and Devanagari scripts, while adapting the model
for our specific task of script identification in degraded text.

C. Image Segmentation

A popular method for determining the shortest route
between two points in a graph or grid is the A* (A-star)
algorithm. It is more effective than other search algorithms
because it makes use of heuristics to direct the search to-
wards the desired state. In the specific context of document
image processing for script identification, line segmentation
is a critical pre-processing step. This involves extracting
individual text lines from the document image and resizing
them to a fixed height and width for further processing.
There are various techniques that can be employed for line
segmentation, such as connected component analysis, pro-
jection profile analysis, or other suitable methods, depend-
ing on the dataset’s characteristics. Connected component
analysis entails identifying groups of connected pixels that

3

X .

form a text line by analyzing their spatial relationships.
Projection profile analysis involves computing vertical or
horizontal projections of the image and analysing peaks and
valleys in the projections to detect text lines. Other methods
may also be utilized depending on factors such as lan-
guage, font, and layout of the text. After line segmentation,
the extracted text lines are resized to ensure consistency
in further processing. This resizing step normalizes the
text lines, making them suitable for subsequent analysis,
such as feature extraction, pattern recognition, or machine
learning algorithms for script identification. In summary,

D. CNN-based Script Classification

A segmented text line image, designated as X, serves as
the CNN model’s input. The VGG16 model processes the
segmented text line picture X, which results in a series of
feature maps with the notation F = F1, F2,..., Fn, where each
feature map Fi denotes a different level of abstraction of the
input image. The input image’s regional patterns or features
are then captured by passing the feature maps F through a
number of convolutional layers. The equation denotes the
representation of each convolutional layer:

F′ = Conv2D(F , W, b) + a (1)
line segmentation is a crucial step in the document image i i

processing pipeline for script identification. It enables the
extraction of individual text lines from the document image,
which can then be resized to a fixed height and width for
further processing using techniques such as the A* path
planning algorithm or other relevant algorithms.

where W stands for the convolutional weights, b for the
bias, and a for the activation function applied element-
wise to the resulting feature map Fi’. Conv2D stands for
the convolution process. A pooling technique is used to
downsample the feature maps and decrease their spatial
dimensions while keeping crucial features after each con-
volutional layer. This operation is denoted as:

Fi′′ = Pooling (Fi′) (2)

where Pooling represents the pooling operation. Following
the convolutional and pooling layers, the feature maps
undergo a transformation process, where they are converted
into a vector. This vector is then fed through a sequence of
fully connected layers that employ SoftMax activation func-
tion. The equation below represents each fully connected
layer:

Figure 2. Pre-processing of input images

Word Segmentation: Use a sliding window technique

to separate the image’s words. The average word size
of the script should be used to determine the window
size. To find word boundaries, combine methods like
connected component analysis, geometric analysis, and
horizontal and vertical projections. Character Segmentation:
Finally, segment each individual word into its constituent
characters. Use techniques such as connected component
analysis and contour analysis to detect individual characters.

z = W f ∗ f + b f (3)

where Wf represents the fully connected weights, f repre-
sents the flattened feature vector, and bf represents the bias.
After obtaining the logits z, a SoftMax activation function
is applied to produce probability scores for different script
classes. The SoftMax function is denoted as follows:

P = S o f tMax(z) (4)

where P stands for each script class’s expected probability
scores. In the training phase, the model’s performance is
assessed by comparing its predicted probabilities (P) against
the real labels (Y) using the cross-entropy loss function as
the optimization criterion. the following equation represents
the loss function:

L = − Y ∗ log (P) (5)

The letter Y is used to represent the labels that match the
actual values, while the term ”log” refers to the natural
logarithm. Dropout and batch normalization are employed
as regularization techniques in the CNN model during
training.During the fully connected layers, the equation used
to implement the dropout technique is utilized as below:

f ′ = Dropout(f , p) (6)

where Dropout denotes the dropout operation, p represents
the dropout rate, and f’ represents the output after dropout.
Each convolutional layer is followed by batch normalisa-

4

3

√
(Fvar + ε)

tion, which is represented by the following equations:

Fmean = Mean(Fi′′) (7)

Fvar = Variance(Fi′′) (8)

Fi′′′ =
(Fi′′ − Fmean)

(9)

Fi′′′′ = γ ∗ Fi′′′ + β (10)

The equation above represents the batch normalization
process, where Fi”” is the normalized feature map of the
input batch. The mean and variance operations calculate
the mean and variance of the input batch, respectively.
To ensure numerical stability, a small constant epsilon ()
is added. The learnable parameters, gamma () and beta
(), are used to scale and shift the normalized feature
maps, respectively. During training, the CNN model is
optimised using strategies such stochastic gradient descent
(SGD) or Adam optimisation. The model’s weights and
biases are updated by taking steps based on the gradient
of the cross-entropy loss with respect to the parameters.
The resulting CNN model is then utilized to carry out
inference on the given input text line image X that has
been segmented, and subsequently, the anticipated script
class having the greatest probability score is selected as
the ultimate prediction.

Figure 3. Predicted Features obtained using CNN framework of
Devanagari dataset

Figure 4. Predicted Features obtained using CNN framework of
Bangla dataset

E. VGG16 based fine-tuned Script classification

The VGG16 model takes a segmented text line image,
which is represented as X, as input. The input image X
undergoes a series of convolutional layers that employ
different filter sizes to identify specific local features or
patterns in the image. These convolutional layers use a pre-
determined set of weights and biases to execute the
convolution operation on the input image. Subsequently,
an activation function is applied to each element of the
extracted feature map. A pooling technique is used to
downsample the feature maps and decrease their spatial
dimensions while keeping crucial features after each
convolutional layer. The feature maps resulting from the
convolutional and pooling layers are converted into a vector
by flattening them. This vector is then passed through
a series of fully connected layers, which have SoftMax
activation. The SoftMax activation function produces
probability scores for different script classes. The logits,
which are a combination of the flattened feature vector and
a bias, are fed into the SoftMax activation function. During
the training process, the VGG16 model uses regularisation
techniques such as dropout and batch normalisation. Batch
normalisation is utilised after each convolutional layer to
normalise and scale the feature maps, and then shift them
with learnable parameters. Dropout is applied during the
fully connected layers to randomly remove some of the
neurons with a predefined dropout rate. During the training
of the VGG16 model, stochastic gradient descent (SGD)
or Adam optimization is utilized to iteratively update the
model’s weights and biases. The optimization process
is based on the gradient of the cross-entropy loss with
respect to the model parameters. Once trained, the VGG16
model is used for inference on the input segmented text
line image X, with the predicted script class selected as

5

the final prediction based on the highest probability score.
During the training process for script classification and
prediction of the script class of a segmented text line
image, various regularization techniques are utilized. These
techniques include convolutional layers, pooling layers,
fully connected layers that utilize SoftMax activation, as
well as dropout and batch normalization.

4. RESULTS AND ANALYSIS

The table offers details on the performance metrics of
four deep learning models for a particular classification
task: VGG-16, DenseNet, ResNet-50, and AlexNet. These
metrics include Precision, Recall, F1-Score, Validation Ac-
curacy, and Test Accuracy. The Precision metric measures
how well the models identify true positives compared to
all positive predictions made. Each model’s high Precision
ratings, which range from 96 to 99, show that it can ac-
curately identify positive situations while minimising false
positives. The Recall metric measures how well the models
identify true positives compared to all actual positive cases.
Each model has a high Recall score, ranging from 96
to 99, demonstrating their ability to correctly identify the
majority of positive cases. The F1-Score is a metric that
measures the equilibrium between Precision and Recall.
The remarkable F1-Scores obtained by the models, which
fall between 97 and 99, indicate their ability to accurately
detect both positive and negative cases. The Validation Ac-
curacy metric measures how well the models classify cases
on a validation dataset. All models have high Validation
Accuracy scores ranging from 92.56% to 96.03%, with
VGG-16 achieving the highest score. The Test Accuracy
metric measures how well the models classify cases on a
test dataset. All models have high Test Accuracy scores
ranging from 97.36% to 99.28%, with VGG-16 achieving
the highest score. Overall, all four models perform well on
the classification task. After comparing the performance of
four different convolutional neural network models, namely
VGG-16, DenseNet121, ResNet-50, and AlexNet, for a
particular classification task, it was observed that the VGG-
16 model had a slight advantage over the others in terms of
validation and test accuracy. The evaluation was conducted
with the aim of determining the effectiveness of these
models in accurately identifying and classifying positive
and negative cases. The authors assessed the effectiveness
of the models by measuring different performance metrics
including precision, recall, F1-score, validation accuracy,
and test accuracy.

Precision measures the accuracy of the models in identi-
fying true positive cases compared to all positive predictions
made. The models’ excellent precision scores, which ranged
from 96 to 99 percent, show that they can reliably identify
affirmative cases while reducing false positives.

In comparison to the total number of actual positive
cases, recall measures how well the models are able to iden-
tify the majority of positive cases. All four models showed

high recall rates between 96% and 99%, demonstrating their
efficiency in detecting the majority of the positive cases.

The F1-score evaluates how well precision and recall are
balanced. All four models achieved high F1-scores ranging
from 97% to 99%, indicating their capability to accurately
identify both positive and negative cases while maintaining
a balance between precision and recall.

Validation accuracy measures the models’ generaliz-
ability on a validation dataset. All models displayed high
validation accuracy scores ranging from 92.56% to 96.03%,
with VGG-16 performing the best.

Test accuracy measures the models’ ability to perform
well in real-world scenarios on a test dataset. All four
models achieved high test accuracy scores ranging from
97.36% to 99.28%, with VGG-16 recording the highest
score.

Overall, the evaluation concluded that all four models
exhibited exceptional performance, with high precision,
recall, and F1-scores, as well as high validation and test
accuracy scores. However, VGG-16 outperformed the
other models slightly in both validation and test accuracy,
making it the best choice for this classification task.

To train the Bangla and Devanagari character datasets,

they were trained separately with different learning rates
and using the Adam Optimizer. The Bangla dataset was
trained with a learning rate of 1e-5, while the Devanagari
dataset was trained with a learning rate of 1e-6. Both
datasets were trained using the categorical cross-entropy
loss function and a batch size of 32. This approach ensured
that the two datasets were trained optimally and achieved
the best possible accuracy. The dataset had a level of
degradation under which both Devanagari characters and
Bangla characters were classified very well using all the
CNN frameworks, but VGG-16 proved to be the most
accurate in classifying characters with a test accuracy of
99.28%. The confusion matrices for VGG16 and AlexNet
frameworks is shown below: -

6

7

Figure 7. AlexNet CNN model framework predictions for

Devanagari script

Figure 8. AlexNet CNN model framework predictions for Bangla

script

TABLE I. Results of CNN frameworks in classifying degraded Bangla Script.

Model Name Precision validation accuracy Recall F1-Score Test Accuracy

VGG-16 99 96.03 99 99 99.28
DenseNet121 96 95.29 96 97 97.36

ResNet-50 98 95.56 98 99 98.57
AlexNet 99 92.56 99 98 98.67

TABLE II. Results of CNN frameworks in classifying degraded Bangla Script.

Model Name Precision validation accuracy Recall F1-Score Test Accuracy

VGG-16 98 94.28 98 99 96.61
DenseNet121 96 93.36 96 97 94.73

ResNet-50 98 94.03 98 99 95.38
AlexNet 95 89.91 95 96 91.18

Figure 6. VGG-16 CNN model framework predictions for

Bangla script

Figure 5. VGG-16 CNN model framework predictions for

Devanagari script

7

After evaluating the model using classification report and
precision-recall curve, it can be concluded that the model
performed exceptionally well on the test data. The model
showed high precision, recall, and F1-score for every class,
which indicates its capacity to accurately classify various
characters in the Devanagari script. Furthermore, the
precision-recall curve shows that the model can achieve high
precision and recall simultaneously. In conclusion, the model
has successfully learned to recognize characters in the
Devanagari script and is performing well on the test data.
Here is the epochs vs validation curve for both Bangla and
Devanagari script obtained using VGG-16 evaluated model.

Figure 9. Validation Loss of VGG-16 model during training of Bangla

dataset

Figure 10. Validation accuracy achieved by VGG-16 model during
training of Bangla dataset

Figure 11. Validation Loss of VGG-16 model during training of
Devanagari dataset

Figure 12. Validation accuracy achieved by VGG-16 model during
training of Devanagari dataset

8

9

5. CONCLUSION

The authors of this research utilized the Keras platform
to evaluate and contrast the effectiveness of VGG16 and
CNN architectures for the purpose of image classification.
Our results showed that both models achieved high accuracy
in image classification, with VGG16 slightly outperform-
ing CNN in our experiments. The findings highlight the
importance of architecture design in deep learning and
provide insights for choosing suitable models for image
classification tasks. Further research can build upon these
results to explore other architectures and datasets, and
optimize hyperparameters for improved model performance.

REFERENCES

[1] Mart´ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283,
2016.

[2] Sergey Ioffe and Christian Szegedy. Batch normalization: Accel-

erating deep network training by reducing internal covariate
shift. In International conference on machine learning, pages 448–
456. PMLR, 2015.

[3] Dominic King, Cheng Zhang, Jian Ma, and Geok See Ng. Ista-net:

Iterative shrinkage-thresholding algorithms for sparse
representation and its applications. IEEE Transactions on
Computational Imaging, 1(4):245–258, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 770– 778, 2016.

[5] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexan-

der A. Alemi. Inception-v4, inception-resnet and the impact of
residual connections on learning. In Proceedings of the AAAI
conference on artificial intelligence, pages 4278–4284, 2017.

[6] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q

Weinberger. Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[8] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model

scal- ing for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

[9] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shuf-

flenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6848–6856, 2017.

[10] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals
and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520, 2018.

[11] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2818–2826, 2016.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenetclassification with deep convolutional neural networks. In
Advances in neural information processing systems, pages 1097–
1105, 2012.

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.

You only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[15] J. Wang and Y. Zhang. Character segmentation: Finally, segment

each individual word into its constituent characters. use techniques
such as connected component analysis and contour analysis to detect
individual characters. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), pages 123–127, Oct. 2021.

[16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,

Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single
shot multibox detector. In European Conference on Computer
Vision, pages 21–37. Springer, 2016.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. In 3rd International Conference on Learning Repre-
sentations, pages 1–15, 2015.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-

cnn: Towards real-time object detection with region proposal
networks. In Advances in neural information processing systems,
pages 91–99, 2015.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-

volutional networks for biomedical image segmentation. In Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234–241. Springer, 2015.

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-

lutional networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[21] K. S. Fu, J. K. Aggarwal, and R. C. Gonzalez. Document processing

for script identification: A review. Proceedings of the IEEE,
80(7):1069–1083, Jul. 1992.

[22] David J Kriegman, Peter N Belhumeur, and Anil Kumar. Acquir- ing

linear subspaces for face recognition under variable lighting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
23(8):769–775, Aug. 2001.

[23] Rafael C. Gonzalez and Richard E. Woods. Digital Image Process-

ing. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 2008.

[24] S. K. Parui. Script identification of degraded text: challenges and

recent trends. International Journal of Document Analysis and
Recognition (IJDAR), 23(3):217–234, Sep. 2020.

9

[25] A. Mishra, A. Patel, and U. Pal. A comprehensive review of
script identification in the document images. Journal of Ambient
Intelligence and Humanized Computing, 10(1):141–163, Jan 2019.

[26] T. Wang, L. Gao, and J. Yao. Deep learning for text recognition: A

comprehensive review. Neurocomputing, 368:154–171, Dec. 2019.

[27] S. Sharma, V. Bansal, and S. Bansal. A review of deep learning

techniques for image classification. Journal of Big Data, 6(1):1–28,
December 2019.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.

Nature, 521(7553):436–444, May 2015.
[29] A Gatzioura and M Sanchez-Marr. A case-based recommendation

approach for market basket data. IEEE Intelligent Systems, 2015.

[30] K Shah, A Salunke, S Dongare, and K Antala. Recommender

systems: An overview of different approaches to
recommendations. In Proceedings of the SIT, Lonavala, India,
2017.

[31] G. Gupta and R. Katarya. Recommendation analysis on item-

based and user-based collaboration filtering. In 2014 International
Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), pages 345–349, 2014.

[32] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender

Systems Handbook. Springer, 2010.

[33] J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems

in e-commerce. Technical Report 1, GroupLens Research Project,
Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, MN 55455, USA, 1999.

[34] R. Jaiswal, A. Agarwal, and M. Singh. Degraded script identifi-

cation of bangla and devanagari scripts using vgg16 and cnn. In
Proceedings of the 2021 4th International Conference on
Intelligent Computing and Control Systems (ICICCS), pages 849–
854. IEEE, 2021.

[35] J. Alomari, N. Alshdaifat, and I. A. Alqadi. A comprehensive

review of convolutional neural network architectures. Journal of
Ambient Intelligence and Humanized Computing, 12(6):5499–
5520, Jun. 2021.

Akshat Banga final year student,

B.Tech(Computer Science and

Engineering) from Amity

University Noida.

Naman Jain final year student,

B.Tech(Computer Science and

Engineering), Amity University

Noida.

Chahat Pal final year student,

B.Tech(Computer Science and

Engineering), Amity University

Noida

 Prof. Dr. M. K. Shukla Professor,

Amity University Noida, PhD from

Indian Institute of Technology (Indian

School of Mines), Dhanbad.

10

