
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.14, No.1 (Oct-23)

http://dx.doi.org/10.12785/ijcds/140198

Adaptive Length Gene Expression Programming
Samsul Amar1,2, Andi Sudiarso2 and Muhammad Kusumawan Herliansyah2

1Department of Industrial and Mechanical Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Indonesia
2Department of Mechanical and industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

Received 13 Dec. 2022, Revised 8 Aug. 2023, Accepted 21 Sep. 2023, Published 1 Oct. 2023

Abstract: Gene expression programming (GEP) is capable of solving many prediction, classification, and optimization problem
effectively. It uses a fixed-length chromosome representing a set of equations. However, the chromosome length significantly affects
the algorithm’s performance. Different problems may require varied chromosome lengths to achieve good results. Only a few studies
have been conducted to deal with chromosome length in GEP. Therefore, this study aimed to develop an adaptive GEP to find proper
chromosome length during the evolutionary process. The study proposed that the chromosome length may be varied for each individual
instead of using the same length in the population. The evolutionary process would adjust the chromosome length and the chromosome
with proper length will tend to survive. Furthermore, the study proposed a contraction operator that could delete or insert an allele in
the chromosome to make it short or extended. This operator is expected to adjust the chromosome length to its optimal. A special
slice crossover was also proposed to accommodate the crossover between parents with different chromosome lengths. The proposed
algorithms’ performance was investigated by solving three symbolic regression problems. Additionally, the performance was compared
to related previous gene expression programming algorithms.

Keywords: adaptive length, gene expression programming, symbolic regression problem

1. INTRODUCTION
Popular machine learning methods have been applied

for prediction and classification, including artificial neural
networks, k-nearest neighbors, decision trees, and ada-
boost. Although these methods could produce good pre-
diction accuracy, they create a black box problem [1] [2].
The methods could probably provide a better prediction or
classification than humans, but they cannot communicate
or explain the reason underlying that decision. This could
make the decision maker reject applying machine learning
or cause tracing difficulties. Also, it could lead to law
problems regarding the decision guided by machine learning
methods.

The black box problem could be avoided using an
algorithm called gene expression programming (GEP). This
algorithm has been applied successfully to solve many real
problems effectively [3] [4]. GEP is a search algorithm
inspired by the natural or biological mechanism of adapta-
tion and survival. Other popular machine learning methods
encounter black box problems. In contrast, GEP produces
explicit mathematical equations or model explanations. This
enables users to get the answer from a black box and know
how the variables are interconnected.

GEP adopts gene expression in an organism and im-
proves genetic algorithm and genetic programming. It uses

and denotes a fixed-length chromosome into an expression
tree representing a set of equations or a specific model.
A chromosome consists of one or more genes. Fix length
string chromosome is easy to manipulate using various
evolutionary operators. The GEP procedure is similar to
the genetic algorithm processes, including initialization,
fitness evaluation, selection and replication, mutation, and
crossover. The chromosome design makes the decoding pro-
cess always produce valid equations. This is one advantage
of GEP compared with genetic programming, where an
invalid function is probably produced in a generic operation.
Also, the GEP’s expression tree representation is better than
the genetic algorithm in solving complex models.

GEP was developed by Fereira in 1999 and has been
implemented or improved by many studies [4]. For instance,
Mwaura and Keedwell [5] developed a heuristic method to
adjust the mutation and crossover rate during the evolution-
ary process to avoid an unfit rate-setting problem. Some
studies combine GEP with other metaheuristic methods
to increase the algorithm’s performance. Zhang et al. [6]
and Zuo et al. [7] combined GEP with differential evo-
lution and found that their proposed algorithm performed
better than the original GEP. Yang and Ma [8] used an
orthogonal design for a multiple-parent crossover operator
in chromosome reproduction. The study also introduced an
evolutionary stable strategy to maintain population diver-

E-mail address: samsul.amar@trunojoyo.ac.id, a.sudiarso@ugm.ac.id, herliansyah@ugm.ac.id http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140198
http://journals.uob.edu.bh


10252 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

sity during evolution. Furthermore, Fajfar and Tuma [9]
developed a special numeric crossover operator to improve
the constant creation ability of RGEP. Mehr [10] combined
GEP with GA for streamflow forecasting. The study refined
the best individual from the GEP algorithm by GA to
get better fitness. Similarly, Deng et al. [11] combined
GEP with an artificial fish swarm algorithm and found that
the combination performed better than the original GEP.
Yang et al. [12] developed a hybrid Kalman filter GEP to
reconstruct drawing and handwriting.

GEP, with its developments, are capable of solving
various problems. However, some problems still need to
be undertaken [4], such as the encoding design. The basic
encoding of GEP adopts K-expression to represent the
computer program in a fixed-length string. One of the
K-expression disadvantages is that a good building block
could be easily destroyed in the genetic operation. Efforts
have been made to overcome this problem, including prefix
GEP (P-GEP) [13], robust GEP (RGEP) [14], and self-
learning GEP (SL-GEP) [15]. P-GEP applied depth-first
decoding instead of width-first decoding as in the origi-
nal K-expression. Experiments showed that this decoding
method could protect the good structure more than the
original GEP [13]. RGEP implements the P-GEP with
certain development to simplify the gene structure and avoid
invalid syntax. SL-GEP proposes a representation of sub-
function as more efficient for complex problems.

Another problem of GEP is chromosome length. Ac-
cording to Ferreira [3], the algorithm performs better when
the chromosome length expands to a certain threshold. The
performance then decreases significantly because of the
large solution space to be investigated. Therefore, Bautu
et al. [16] developed AdaGEP that could adaptively adjust
the active genes in the chromosome through genemap,
a binary string representing gene activation. The gene is
activated when the value of a correspondent gene in the
genemap is 1. Otherwise, the gene is deactivated or ignored
in the decoding process. The study showed that AdaGEP
could perform better than the original GEP even when the
number of genes surpasses the threshold. Using AdaGEP,
the performance decrease after the chromosome length
threshold is not as sharp as the original GEP. However, the
user must still decide the number of genes. The performance
is also influenced by the number and length of genes.

There is a need for a better adaptive chromosome length
GEP that could produce a good performance. This study
aimed to contribute to reducing the chromosome length
problem by proposing an adaptive length gene expression
programming (ALGEP). It adopted RGEP encoding to
enhance its performance with some developments. First,
the study proposed varying the chromosome length for
each individual instead of using the same length in the
population. The chromosome length is randomly chosen
from a specified range when generating the initial pop-
ulation. The evolutionary process adjusts the length to

ensure that the chromosome with the proper length survives.
Second, the study proposed a contraction operator that could
delete or insert an allele in the chromosome to make it
short or extended. This operator is expected to adjust the
chromosome length to its optimal. A special slice crossover
was also proposed to accommodate the crossover between
parents with different gene lengths.

The performance was investigated by applying the pro-
posed algorithm to solve three non-linear symbolic regres-
sion problems (SRP). The result was compared with the
standard GEP and RGEP, the previous related algorithms.

2. ALGORITHM
This section discusses the basic GEP, P-GEP, RGEP, and

the proposed ALGEP.

A. GEP
GEP was invented by Ferreira in 1999 [3] and used a

fixed-length string to represent and decode the gene to an
expression tree to produce a mathematical equation. The
solution is expressed using the Karva language by adopting
a width-first scheme to translate a gene into an expression
tree. In GEP, a gene contains a head and a tail section. The
head could contain function and terminal string, while the
tail has only the terminal. Function and terminal strings are
defined by the user. Examples of function strings are *, /,
+, -, sqrt, sin, and cos, while terminal strings could include
constants and variables. The length of a tail depends on the
length of the head, calculated using (1).

t = h(nmax − 1) + 1 (1)

Where t is the length of the tail, h is the length of the
head, and nmax is the maximum number of arguments in
the functions. For instance, sqrt (square root) has one input
argument while * (multiplying operator) has two input argu-
ments. Using this scheme, all generated genes and the result
of all generic operators are translated into valid functions.
This is one advantage of GEP, where there is no need to
iteratively find a valid syntax after genetic manipulation of
a gene, as in genetic programming. Fig. 1 shows the gene
decoding process, where a fixed-length string containing
a head and tail is decoded into an expression tree and
translated into a function. In the example, the head length is
six, and the maximum number of arguments in the function
is two. Therefore, the tail length (t) is:

t = 6(2 − 1) + 1 = 7

Fig. 2 shows the typical GEP process, where the initial pop-
ulation is created randomly. The number of chromosomes in
the population, called population size, is predefined. Each
chromosome is then expressed or translated into a math-
ematical function or computer program. The program is
executed to obtain the fitness function of each chromosome.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10251-10262 (Oct-23) 10253

Figure 1. Example of a GEP decoding

Figure 2. Typical GEP process

The selection scheme is similar to genetic algorithm,
where the roulette wheel is the commonly used operator
for selection. A mutation is the most effective evolutionary
operator [3], though it could be constructive or destructive.
The mutation rate is usually low because a rate close to
1 would make the algorithm similar to a random search.

Ferreira proposed a guide to determine the mutation rate
(pm) equal to 2/ (chromosome length). For instance, the rate
is 0.2 when the chromosome length is 10. Mutation could
occur in both the head and tail and the process replaces
an allele with another allele. When the mutation occurs
in the head, a function or terminal is replaced by another
function or terminal. In contrast, the replacement is only
for the terminal when the mutation occurs in the tail. Fig.
3 a) and b) show a mutation in the head and tail sections,
respectively.

Figure 3. Example of mutation: a) in the head. b) In the tail

Inversion is the process of inverting a sequence part of
a gene at a rate usually less than 0.1. Fig. 4 shows an
example of an inversion process that drastically changes fit-
ness. Transposition is copying and inserting a chromosome
fragment into another position, as shown in Fig 5.

Figure 4. Example of an inversion

GEP crossover is performed similarly to crossover in
genetic algorithm. One-point crossover slices two parents in
a point and exchanges each section to produce two children.
The two-point crossover is the same process but with two
slice points. Fig. 6 and 7 show examples of one-point and
two-point crossover.

The process is iterated to satisfy one of the termination

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10254 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

conditions, including reaching a predefined maximum gen-
eration, passing the maximum time, no change in the best
fitness for a specific number of generations, and reaching
an optimal solution (if known).

Figure 5. Example of a transposition

Figure 6. Example of a one-point crossover

Figure 7. Example of a two-point crossover

B. P-GEP
P-GEP adopts a linear genotype representation in prefix

notation and a different mapping mechanism between its
genotype and phenotype. It applies depth-first decoding in-
stead of width-first decoding as in the original K-expression.
The experiments showed that this decoding method could
protect the good structure more than the original GEP [13].
Fig. 8 shows an example of P-GEP decoding.

C. RGEP
RGEP implements the P-GEP encoding scheme with

some development to simplify the gene structure and avoid
invalid syntax. It does not use separate head and tail
sections in a gene and does not re-create and reject invalid
individuals. The method ignores functions with no sufficient
functions or terminal strings. Fig. 9 shows an example of
RGEP decoding. In the example, the grey strings “*” and
“-“ have insufficient input arguments and are ignored in the
decoding process.

Figure 8. Example of a P-GEP encoding

Figure 9. Example of a RGEP encoding

D. The Proposed ALGEP
ALGEP is a development of RGEP with an adaptive

chromosome length and some revised evolutionary op-
erators. The chromosome length is not fixed and could

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10251-10262 (Oct-23) 10255

be varied for each individual in the population. When
generating the initial population, the length of a gene is
randomly chosen from a specified range. The evolutionary
process adjusts the gene length to ensure that the individual
with the proper length survives. Fig. 10 shows an example
of a population in ALGEP. Each individual may have a
different gene length in the specified range. Users could
also choose whether the first allele is always a function
or random randomly. When the first allele is chosen as a
function, it is replaced by a random function in the initial
population or along the evolutionary process. For instance,
individual 2 in Fig. 10 may be changed to “+ a * b +”. The
function “+” in the first allele is chosen randomly from the
function set.

Figure 10. Example of a population in ALGEP

E. The Proposed Contraction Operator
The contraction operator could delete a bit of the

chromosome to shorten it or insert a bit to extend it
with a specified probability, pcon. A random number is
generated in the contraction process. The contraction is
conducted when the random number is less than or equal
to pcon. Moreover, a simple rule is used to decide whether
the individual is to be contracted or expanded. When the
random number generated is less than pcon/2, a bit in the
random position is deleted, and the gene length is shortened.
Otherwise, a bit of a random string is inserted in a random
position. This operation is expected to result in a proper
gene length in the evolutionary process. Fig. 11 shows an
example of the contraction operation of an individual. In
the example, a bit in position 5 is deleted, shortening the
chromosome length from 10 to 9 bits. A random bit could
also be inserted in position 5 to extend the gene length to
11 bits.

F. The Proposed Slice Crossover
The chromosome length in ALGEP may be varied for

each individual, though this makes the crossover process
ineffective. Fig. 12 shows a two-point crossover for two
individuals with gene lengths of 12 and 7 at positions 3
and 6, respectively. Using two-point crossover, the position
from bit 8 to 12 in parent 1 cannot become the subject of
crossover. This condition could reduce the probability of
producing a better child since it might be a good gene in
that position.

Slice crossover was proposed to overcome this problem,
where the crossover position in parents 1 and 2 could be
different and chosen randomly. For instance, Fig. 13 shows
that crossover points in parents 1 and 2 are at positions 7
to 8 and 3 to 4, respectively. Therefore, all positions of the
parents could become the subjects of crossover and increase
the probability of producing good children.

Figure 11. Example of a contraction

Figure 12. Example of a two-point crossover in ALGEP

Figure 13. Example of a slice crossover

3. EXPERIMENT
The performance of ALGEP, contraction operator and

slice crossover were analyzed by applying the algorithms to
solve 3 SRPs and comparing the result with basic GEP and
RGEP. The first SRP (2) is a simple polynomial function
with one variable taken from [17]. The second SRP (3) is
a sequence induction problem from [18] and is relatively
difficult to solve. The third SRP (4) is the most difficult,
with three variables and a complex structure modified from
[19]. It was modified to avoid using a constant in the GEP.
This is because the experiment aimed to evaluate the basic
chromosome structure and avoid other factors, including
constants.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10256 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

f (x) = x4 + x3 + x2 + x (2)

f (x) = 4x4 + 3x3 + 2x2 + x (3)

f (x) =
(x1x2)

((x1 − 1)x2
3)

(4)

For all functions, 20 random values were generated as the
training data set without noise. The x values of the first
(2) and second (3) functions were generated from uniform
random probability in the range [−10, 10]. For the third
function (4), uniform random values were generated in
the range [−1, 1] for variables x1 and x2, whereas x3 was
obtained from the range [1, 2].

The performance of each proposed algorithm was inves-
tigated by setting the six method treatments, including 1)
GEP, 2) RGEP, 3) basic ALGEP without contraction opera-
tor and slice crossover, 4) ALGEP with contraction operator,
5) ALGEP with slice crossover, and 6) ALGEP with a
combination of contraction operator and slice crossover.

Each treatment’s effectiveness was tested using various
chromosome lengths varied from 11 to 103 with a 4-step
interval. This means that chromosome length for the first
experiment was 11, then 15, until 103. Each treatment was
run 100 times, and the success rate percentage was recorded.
A run was successful when the best result had an error less
than the specified precision. The program for the experiment
was coded in Python.

Ineffective genes were avoided by making the first gene
a function for all treatments. When the initial population
generation or the evolutionary process produced a non-
function in the first gene, that gene was changed to func-
tion randomly. The study also used a two-point crossover
method, except for treatments 5) and 6), which used the
proposed slice crossover. The probability of contraction was
set to 0.2 for treatments 4) and 6). Table 1 shows the
parameter setting of the experiment.

4. RESULT AND DISCUSSION
The success rate was recorded for each treatment. Fig.

14, 15 and 16 show the success rate comparison of GEP,
RGEP and ALGEP for solving SRP 1, SRP 2 and SRP 3,
respectively. Table II compares the success rate for each
SRP. The results indicate that ALGEP performs better in
solving all SRPs. RGEP performs better than basic GEP,
supporting [14]. This conclusion is supported by paired
t-test results, as in Table III, where the success rate of
the ALGEP algorithm is significantly higher than the other
algorithms. The success rate of SRP 1 is higher than the
success rate of SRP2 and the success rate of SRP 2 is higher
than the success rate of SRP 3. This result indicate that SRP
1 is the easiest problem of the other, while SRP 3 is the most
difficult problem to be solved among the others. Moreover,
Fig. 14 indicates that the success rate of ALGEP does not
decline after some specific length, while the decline appears
when using GEP and RGEP.

Table IV and Fig. 17 – 19 indicate that applying slice
crossover makes the performance of ALGEP better than
when using the two-point crossover. Moreover, Table V
shows that slice crossover performs significantly better than
two-point crossover for all SRPs. Therefore, the slice oper-
ator is effective in increasing the performance of ALGEP.

The proposed contraction operator does not perform as
well as expected and does not significantly affect basic
ALGEP. The combination of contraction operator and slice
crossover also does not increase the performance of ALGEP
compared to slice crossover alone. Table III shows that the
contraction operator does not significantly affect ALGEP
performance. It may have both destructive and constructive
effect on the gene and consequently cannot improve the
population’s fitness.

Figure 14. The success rate of GEP, REG and ALGEP for solving
SRP1

Figure 15. The success rate of GEP, REG and ALGEP for solving
SRP2

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10251-10262 (Oct-23) 10257

Figure 16. The success rate of GEP, REG and ALGEP for solving
SRP3

Figure 17. The success rate of contraction operator and slice
crossover for solving SRP 1

Figure 18. The success rate of contraction operator and slice
crossover for solving SRP 2

Figure 19. The success rate of contraction operator and slice
crossover for solving SRP 3

5. CONCLUSSION
One of the problem in GEP is deciding proper chro-

mosome length. This paper proposed an adaptive length
GEP that can adaptively find a proper chromosome length
during the evolutionary process. The chromosome length
was generated randomly in the initial population and the
chromosome with the proper length would tend to survive
and produce offspring in the next generations. Success
rate of the proposed ALGEP was compared with basic
GEP and RGEP in solving three SRPs. The result demon-
strated that ALGEP performs significantly better than the
benchmarks for the all problems. For example, ALGEP
produced 69.92% success rate in solving SRP 1 while
RGEP and GEP produced 49.96% and 31.33% success rate
respectively. The superior performance of ALGEP indicates
that the population’s adaptive length works well to find the
proper chromosome length. This result means that ALGEP
is promising in future studies and applications. With some
developments and combined with other methods, ALGEP
may become a good choice in prediction field.

This paper also proposed slice crossover to deal with
different chromosome length during crossover process. This
paper also proposed a contraction operator to make the
proper length finding ran faster. The performance of slice
crossover and contraction operator in ALGEP was investi-
gated in solving three SRPs. As a result, the slice crossover
application in ALGEP increased the performance of the
algorithm significantly. For example, ALGEP using slice
crossover could get 96.29% success rate in solving SRP1,
significantly better compared with 69.92% success rate if
using two-point crossover. Therefore, future studies could
explore more and improve the slice crossover. However,
the results showed that applying the contraction operator in
ALGEP does not gives a significant effect. The combination
of contraction operator and slice crossover also did not
perform better than slice crossover solely.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10258 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

References
[1] Y. Bathaee, “The artificial intelligence black box and the failure of

intent and causation,” Harv. J. Law Technol., vol. 31, no. 2, p. 50,
2018.

[2] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti,
and D. Pedreschi, “A survey of methods for explaining black box
models,” ACM comput. surv., vol. 51, no. 5, pp. 1–42, Aug. 2018.

[3] C. Ferreira, Gene expression programming: mathematical modeling
by an artificial intelligence. 2nd rev. and Extended ed. Berlin; New
York: Springer-Verlag, 2006.

[4] J. Zhong, L. Feng, and Y.-S. Ong, “Gene expression programming:
A survey [review article],” IEEE Comput. Intell. Mag., vol. 12, no. 3,
pp. 54–72, 2017.

[5] J. Mwaura and E. Keedwell, “Adaptive gene expression program-
ming using a simple feedback heuristic,” Proceedings of the AISB
conference, p. 6, 2009.

[6] Y. Zhang and J. Xiao, “A new strategy for gene expression program-
ming and its applications in function mining,” Univers. J. Comput.
Sci. Eng. Technol., vol. 1, no. 2, p. 122, 2010.

[7] J. Zuo, C.-j. Tang, C. Li, C.-a. Yuan, and A.-l. Chen, “Time series
prediction based on gene expression programming,” in Advances in
Web-Age Information Management: 5th International Conference,
WAIM 2004, Dalian, China, July 15-17, 2004 5. Springer, 2004,
pp. 55–64.

[8] J. Yang and J. Ma, “A hybrid gene expression programming algo-
rithm based on orthogonal design,” Int. J. of Comput. Intell Sys,
vol. 9, no. 4, pp. 778–787, Jul. 2016.

[9] I. Fajfar and T. Tuma, “Creation of numerical constants in robust
gene expression programming,” Entropy, vol. 20, no. 10, p. 756,
Oct. 2018.

[10] A. D. Mehr, “An improved gene expression programming model
for streamflow forecasting in intermittent streams,” J. Hydrol.,, vol.
563, pp. 669–678, Aug. 2018.

[11] S. Deng, C. Yuan, L. Yang, and L. Zhang, “Distributed electricity
load forecasting model mining based on hybrid gene expression
programming and cloud computing,” Pattern Recognit. Lett., vol.
109, pp. 72–80, Jul. 2018.

[12] Z. Yang, Y. Wen, and Y. Chen, “semg-based drawing trace re-
construction: A novel hybrid algorithm fusing gene expression
programming into kalman filter,” Sensors, vol. 18, no. 10, p. 3296,
Sep. 2018.

[13] X. Li, C. Zhou, W. Xiao, and P. C. Nelson, “Prefix gene expression
programming,” in Proc. Genetic and Evolutionary Computation
Conference, (GECCO),05, 2005, p. 7.

[14] N. Ryan and D. Hibler, “Robust gene expression programming,”
Procedia comput. Sci., vol. 6, pp. 165–170, 2011.

[15] J. Zhong, Y.-S. Ong, and W. Cai, “Self-learning gene expression
programming,” IEEE Trans. Evol. Comput., vol. 20, no. 1, pp. 65–
80, Feb. 2016.

[16] E. Bautu, A. Bautu, and H. Luchian, “Adagep-an adaptive gene
expression programming algorithm,” in Ninth International Sympo-

sium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2007). IEEE, Sep. 2007, pp. 403–406.

[17] J. R. Koza, “Genetic programming: on the programming of comput-
ers by means of natural selection,” in Cambridge, Mass: MIT Press,
1992.

[18] M. F. Korns, “Accuracy in symbolic regression,” Genetic Program-
ming Theory and Practice IX, R. Riolo, E. Vladislavleva, and J. H.
Moore, Eds. New York, NY: Spriger New York, pp. 129–151, 2011.

[19] M. Keijzer, “Improving symbolic regression with interval arithmetic
and linear scaling,” in Genetic Programming: 6th European Con-
ference, EuroGP 2003 Essex, UK, April 14–16, 2003 Proceedings.
Springer, 2003, pp. 70–82.

Samsul Amar (Member, IEEE) receive
bachelor’s degree in industrial engineering
from Institut Teknologi Sepuluh Nopem-
ber (ITS), Surabaya, Indonesia, in 2002,
and master degree in industrial engineer-
ing from Universitas Gadjah Mada (UGM),
Yogyakarta, Indonesia, in 2012. His master
thesis research was optimization for clinical
rotation scheduling. He is currently a doc-
toral student at Mechanical and Industrial

Engineering Department UGM with the research focus in artificial
intelligent especially in developing adjusted length gene expres-
sion programming.

From 2006 until now, he is a lecturer in Universitas Trunojoyo
Madura, East Java, Indonesia in Industrial and Mechanical Engi-
neering department. His research interest are in field of modelling,
optimization, metaheuristic, and artificial intelligence.

Andi Sudiarso (Member, IEEE) received
the bachelor’s and master degree (M.T.) in
electrical engineering from Universitas Gad-
jah Mada (UGM), Indonesia, master degree
(M.Sc.) in manufacturing engineering from
UMIST, UK, and Ph.D. in Mechanical Engi-
neering from The University of Manchester,
UK.

He is currently a lecturer and researcher
at the Department of Mechanical and Indus-

trial Engineering, UGM. His research interest are manufacturing
engineering, production system, and artificial intelligence.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10251-10262 (Oct-23) 10259

Muhammad Kusumawan Herliansyah
(Member, IEEE) receive bachelor’s degree
in mechanical engineering from Universitas
Gadjah Mada (UGM), Yogyakarta, Indone-
sia in 1996 and master degree in manufactur-
ing system from Institut Teknologi Bandung
(ITB), Indonesia, in 2002. He receive doc-
toral double degree in advance material pro-
cessing from University of Malaya, Malaysia
dan Graduate School of Engineering Kyoto

University, was born in Greenwich Village, Japan, in 2008. He
is currently a lecturer and researcher in UGM at the Department
of Mechanical and Industrial. His research interests are advanced
material engineering, biomaterial, robotic and automation, and
artificial intelligence.

Mr. Herliansyah receive certificate as a professional engineer
from the Institution of Engineers Indonesia (PII) and ASEAN
Engineer from ASEAN Federation of Engineering Organisations
(AFEO). He receive award from

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10260 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

TABLE I. PARAMETERS SETTING

Parameter Value

Population size 100
Max generation 100
Number of run 100

Length of chromosome 11-103
Function in all first gene Yes
Probability of mutation 0.1
Probability of inversion 0.1

Probability of transposition 0.1
Probability of crossover 0.9

Parent selection method for crossover Roulette Wheel
Selection method for next generation Roulette Wheel without replacement

Best possible fitness 1
Accuracy performance measurement Normalize Mean Square Error

Selection Range 1
Precision 0.0001

With constant No
Random method for gene generation Uniform

Mathematical operator + - * /
Problem to be solved SRP 1, SRP 2, SRP 3

TABLE II. THE SUCCESS RATE OF GEP, REG AND ALGEP FOR SOLVING THE SRPS

Chrom Length
Success Rate (%)

SRP 1 SRP 2 SRP 3
GEP RGEP ALGEP GEP RGEP ALGEP GEP RGEP ALGEP

11 0 0 42 0 0 0 0 4 2
15 0 13 58 0 0 0 0 2 7
19 8 31 61 0 0 0 0 1 2
23 13 28 54 0 0 0 1 3 2
27 29 41 64 0 0 1 1 1 4
31 24 32 68 1 1 2 1 4 5
35 27 44 68 1 1 5 0 1 3
39 31 48 66 2 3 4 1 2 4
43 37 52 75 1 4 7 0 1 4
47 43 58 68 1 3 6 0 2 4
51 44 53 63 5 6 8 1 0 2
55 49 59 67 1 8 8 1 0 1
59 37 53 74 6 7 10 0 2 5
63 38 57 74 5 13 11 1 0 2
67 39 55 78 6 5 14 1 0 3
71 40 68 62 8 14 19 2 0 3
75 42 59 78 8 12 15 0 1 3
79 45 67 81 8 12 23 0 0 3
83 37 69 74 7 14 19 0 2 4
87 36 69 67 6 19 21 0 1 0
91 42 64 83 9 16 16 0 0 4
95 35 62 87 8 13 21 0 0 4
99 28 59 83 9 16 21 0 0 3
103 28 58 83 6 21 23 1 0 6

Average 31.33 49.96 69.92 4.08 7.83 10.58 0.46 1.13 3.33

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10251-10262 (Oct-23) 10261

TABLE III. PAIRED T-TEST FOR GEP, RGEP AND ALGEP

SRP Success Rate Mean Comparison p-value Significance different at α = 0.05

SRP 1
RGEP >GEP 1.65E-10 Significant

ALGEP >GEP 1.08E-14 Significant
ALGEP >RGEP 3.83E-08 Significant

SRP 2
RGEP >GEP 1.65E-10 Significant

ALGEP >GEP 1.08E-14 Significant
ALGEP >RGEP 3.83E-08 Significant

SRP 3
RGEP >GEP 1.65E-10 Significant

ALGEP >GEP 1.08E-14 Significant
ALGEP >RGEP 3.83E-08 Significant

TABLE IV. THE SUCCESS RATE OF CONTRACTION OPERATOR, SLICE CROSSOVER AND COMBINATION FOR SOLVING THE SRPS

Chrom Length
Success Rate (%)

SRP 1 SRP 2 SRP 3
Contr. Opr. Slice Cross. Comb. Contr. Opr. Slice Cross. Comb. Contr. Opr. Slice Cross. Comb.

11 40 88 85 0 0 0 5 3 8

15
56 94 97 0 0 0 4 10 5
61 99 100 0 7 6 3 6 13
62 100 98 0 23 21 5 8 12

27
58 97 100 0 38 37 3 13 14
65 100 98 2 41 44 4 14 13
69 99 99 6 52 42 7 7 10

39 72 97 99 10 49 57 7 8 8
43 74 94 96 7 57 59 3 12 8
47 66 94 95 9 49 62 5 11 13
51 79 97 94 10 62 61 5 8 9
55 80 96 97 11 70 58 5 7 6
59 73 96 98 12 59 51 0 7 10
63 75 98 95 17 60 68 3 8 7
67 74 99 96 21 66 63 4 8 4
71 78 98 93 20 59 68 0 3 4
75 75 96 96 16 61 72 3 3 9
79 78 100 99 16 61 58 1 8 8
83 69 96 98 18 74 71 1 5 11
87 77 94 98 24 70 56 1 7 9
91 72 97 92 20 67 68 4 5 4
95 76 97 93 20 52 61 0 7 8
99 82 91 95 24 68 63 4 4 2

103 77 94 98 25 56 61 1 7 6
Average 70.33 96.29 96.21 12.00 50.04 50.29 3.25 7.46 8.38

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


10262 Samsul Amar, et al.: Adaptive Length Gene Expression Programming.

TABLE V. PAIRED T-TEST FOR BASIC GEP, CONTRACTION OPERATOR, SLICE CROSSOVER AND COMBINATION

SRP Success Rate Mean Comparison p-value Significance (α = 0.05)

SRP 1

Contraction >Basic ALGEP 0.79 Not Significant
Slice crossover >Basic ALGEP 1.26E-11 Significant
Combination >Basic ALGEP 1.17E-11 Significant
Slice crossover >Contraction 1.35E-12 Significant
Combination >Contraction 1.53E-12 Significant

Combination <Slice crossover 0.89 Not Significant

SRP 2

Contraction >Basic ALGEP 0.02 Significant
Slice crossover >Basic ALGEP 4.39E-11 Significant
Combination >Basic ALGEP 5.86E-11 Significant
Slice crossover >Contraction 3.26E-11 Significant
Combination >Contraction 4.04E-11 Significant

Combination >Slice crossover 0.87 Not Significant

SRP 3

Contraction >Basic ALGEP 0.88 Not Significant
Slice crossover >Basic ALGEP 2.90E-07 Significant
Combination >Basic ALGEP 7.49E-07 Significant
Slice crossover >Contraction 2.22E-06 Significant
Combination >Contraction 7.36E-07 Significant

Combination >Slice crossover 0.18 Not Significant

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	INTRODUCTION
	ALGORITHM
	GEP
	P-GEP
	RGEP
	The Proposed ALGEP
	The Proposed Contraction Operator
	The Proposed Slice Crossover

	EXPERIMENT
	RESULT AND DISCUSSION
	CONCLUSSION
	References
	Biographies
	Samsul Amar
	Andi Sudiarso
	Muhammad Kusumawan Herliansyah


