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      Abstract:High performance computing architecture heavily depends on the performance of a multiplier. The key contribution 

of this work is to design an efficient carry save multiplier architecture which can be widely employed in signal processing. Two 

novel contributions proposed in this work. Firstly, a modified vector merging adder is proposed that has less latency, power and hardware 

complexity than the existing adder, and the second contribution is a multiplexer- based full adder which has better area efficiency. 

This work focuses on achieving efficient carry save multiplication through the use of the proposed modified vector merging adder. The 

modified vector merging adder and multiplexer-based full adder provides an efficient design of carry save multiplier when compared 

to the existing design and also the proposed design is efficient in terms of speed, power consumption and transistor count. Xilinx ISE 

Design 14.7 version is used for the verification. 

Keywords: Modified vector merging adder, Carry Save Multiplier, Multiplexer based full adder, VLSI design. 

1. INTRODUCTION 
In order to meet high speed input data processing, real-time 
Digital Signal Processing (DSP) architecture ne- cessitates a 
less complex, delay-free and energy- efficient multiplier. In 
any computing unit, multiplication is one of the most 
fundamental arithmetic operations, but it neces-sitates more 
hardware. Because digital signal processing requires a large 
number of filtrations, convolutions and other operations, the 
multiplier is an essential component. As a result, the 
multiplier’s performance limits the performance of digital 
signal processing systems. Extensive research has been done 
to improve the multiplier’s speed and reduce its power 
consumption. The technique used to add the partial products 
has a big impact on the multiplier’s performance. The main 
area of research in VLSI system design is area and power 
reduction in data path logic systems. High performance 
processors and systems have always required high – speed 
addition and multiplication. The basic block in multiplier is 
adder. High speed multipliers depends heavily on the 
efficient design of the adder. The structure of a traditional 
carry save multiplier (CSM) is straightforward and consistent. 
The carry bits in a CSM are saved to pass diagonally 
downwards rather than being immediately added. While the 
carry save operation improves speed, the final vector-
merging operation has an impact on delay performance. 
Various addition schemes like Carry Select Adder have been 
proposed over the years [1]. Comparison of delay between 
different adders were carried out in [2]. Multipliers are 
made efficient by improving the final addition [3]. The square 
root carry select adder is a vector merging adder used in the 
carry save multiplier to produce end products with extremely 
high transistor counts, resulting in increased latency and 
power consumption [4]. Low power VLSI design is highly 
essential so as to increase the speed of the system. The need 
for low power design is not only to increase the speed but 
also to include more features on the single chip.To bring 
down the transistor count, power consumption and the 
delay of the work reported in [4] the proposed work focuses 
on modifying the existing vector merging adder architecture. 

This work has two novel contributions. A modified vector 
merging adder is proposed and secondly a multiplexer based 
full adder is proposed. Using the proposed modified vector 
merging adder and a full adder based on a multiplexer, an 
efficient carry save multiplier is designed which is efficient in 
terms of delay, power consumption and transistor count. 

Section 1 gives an introduction. Exhaustive literature survey 
is carried out in section 2. Existing carry save multiplier 
architecture is discussed in section 3. Section 4 discusses in 
detail about the proposed work. Simulation results are 
shown in section 5. Comparison of the proposed work with 
the existing work is shown in section 6 followed by 
conclusion. 
 

2. LITERATURE SURVEY 

Aiswarya Simson and Deepak [1] proposed a mongrel 
CSLA which utilizes the advantages of both Kogge Stone 
adder and look ahead adder( CLA) to obtain higher speed. 
Kogge Stone adder is a particular type of Adder and hence it’s 
extensively regarded as one of the high speed addition styles 
due to briskly carry generation. Look ahead adders are 
employed in the original stages of the modified adder to 
boost its speed as its calculation performance is better if the 
number of bits are less. 

Yuan-Ho Chen[2]proposed a data scaling technology 
(DST) for use in a low-error fixed-width Booth multiplier 
(FWBM) to reduce truncation errors. The suggested DST 
produces more effective bits in low-error FWBMs by re- 
ducing the amount of redundant bits in the multiplicand. The 
FWBMs’ truncationerrors are decreased by inserting both an 
error-compensation circuit and the suggested DST into them. 
We discovered that the proposed DSTFWBM (1 bit) had a 
signal-to-noise ratio that was more than 1.05 dB greater than 
an FWBM without a DST circuit. It was demonstrated that the 
DST method significantly increased the FWBMs’ accuracy, 
making them appropriate for use in digital signal processing 
procedures. 

    Moslem Heidarpur and Mitra Mirhassani[3] pro- posed 
a unique hardware architecture for efficient field- 
programmable gate array (FPGA) implementation of Finite 
field multipliers for ECC. Performance parameters were 
established by implementing the proposed hardware on var- 
ious FPGA devices for varied operand sizes. The proposed 
method produced a lower combinational delay and area- 
delay product when compared to state-of-the-art works, 
demonstrating the effectiveness of the concept. According to 
implementation results, the suggested technique is, on 
average, 20% quicker than the Overlap-free Karatsuba al- 
gorithm (OKA) and 30% faster than Karatsuba

. 
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         P. Kavipriya, S. Lakshmi, T. Vino M.R. Ebenezar Je- barani, G. 
Jegan[4] proposed a work which move towards to reduce the delay, 
Power, area of CSLA(Carry Select Adder) circuits. The typical carry 
select adder has drawbacks, such as high power consumption 
and larger chip size. In comparison to all other adder designs, the 
improved SQRT CSLA (Square Root Carry Select Adder) employing 
common Boolean logic has less delay, low power, and lowered 
space. It also moves a little faster. Additionally, the proposed SQRT-
CSLA has fewer transistors and requires less space and power, 
making it simple and efficient to im- plement on VLSI hardware. It 
has to be further enlarged to accommodate more bits. With the aid 
of new architectures, space and power can be reduced. 

        Weihang Tan, Benjamin M. Case, Antian Wang, Shuhong Gao, 
and Yingjie Lao[5]presented a novel high- speed modular multiplier 
architecture for polynomial mul- tiplication. The suggested 
architecture uses a divide-and- conquer tactic and takes 
advantage of a unique modulus to boost parallelism, accelerate 
computation, and enable broader applications across different 
cryptosystems. Ac- cording to the testing findings, our design 
reduces space consumption and delay, respectively, by about 
27%and 39% when compared to earlier efforts. 

       Mohammad Saeed Ansari, Bruce F. Cockburn, Jie Han[6] 
proposed an improved logarithmic multiplier (ILM) that, unlike 
existing designs, rounds both inputs to their nearest powers of two 
by using a proposed nearest-one detector (NOD) circuit. Some 
entries in the truth table of a conventional adder cannot exist 
because the NOD’s output utilises a one-hot representation. As a 
result, a little adder is created for the smaller truth table. 
Comparing the 88 ILM to a recently published LM in the literature, 
power consumption can be reduced by up to 17.48. 

       Mary Christina Joy, Ansa Jimmy, Tony C.Thomas, and Manju 
I.Kollannur [7] compare the delays of different 16-bit adders. The 
latency of logic gates has been mathematically modelled using 
logical effort in180nm. This delay is then utilised to calculate the 
delay of various adders. Functional verification has been carried 
out using Modelsim. 

        R. S. Waters and E. E. Swartzlander [8] proposed an area 
efficient Wallace multiplier which reduces the area of a multiplier by 
using a smaller final adder. Synopsys Design Compiler used to create 
the designs using 90nm process technology. The synthesis results 
show that, as expected, the suggested Wallace multiplier has the 
smallest area among the Wallace-based multipliers. 

         Pramod Patali and Shahana Thottathikkulam Kassim 
[9presented high throughput FIR filter designs with reduced 
effective latency using retiming and redesigned CSLA- based 
adders. FIR filter architectures are proposed in two different 
forms. The retiming of delay elements in the RSF module, as well 
as the utilization of RCAs resulted in a high throughput, low 
power and less complicated FIR filter structure. The retiming of 
delay elements in the RSF module, as well as the usage of proposed 
delay efficient adders and multipliers along the delay channels 
resulted in a high throughput energy efficient retimed FIR filter 
structure. 

P.Pramod and T.K Shahana [10] proposed Modular 
hybrid adders with reduced critical path latency for various 
bit-widths. Modularity, reusability and a low design time for 
broad bit-width adder applications are the major features 
of the suggested architecture. Concatenation and 

incrementa- tion techniques are used to form a CLA-RCA-
CSKA hybrid structure, which yields the adder structures. 

H. Baba, T. Yang, M. Inoue, K. Tajima, T. Ukezono and 
T. A. Sato [11]developed an accuracy scalable multiplier 
that uses less power than a Wallace Tree Multiplier. The 
reduction ratio is determined by the level of precision 
required. To construct the accuracy compensation vector, 
the simple circuit of the basic OR gate is chosen at the 
expense of accuracy. This precision- configurable approxi- 
mate multiplier will be useful in applications where power 
and area are more important than accuracy. 
      
        Raghava Katreepalli, Drona Merugubonia, Themistoklis 
[12] presented a high speed, power efficient carry select 
adder design based on manchester carry chain. When com- 
pared to previous designs, the suggested adder offered a 
significant improvement in terms of power delay product 
and hardware overhead. 
 
        Dr, Minal Saxena, Deepak Kumar patel, Raksha Chouk- 
sey and Deepak Kumar Patel[13] proposed and imple- 
mented a strategy that efficiently minimises the delay and 
greatly increases the speed of FIR filter operation. The 
proposed modified Adder is a straightforward programme 
approach for reducing the delay in Carry select Adder by 
introducing URDHWA multiplier compressor technique. By 
utilising this, an FIR filter is implemented. 

K.Golda Hepzibha and C.P. Subha[14] proposed a CSLA 
design based on the Brent Kung(BK) parallel prefix adder, 
which outperforms RCA and Binary to Excess-1 Converter 
(BEC) based CSLAs in terms of speed. The BEC- based BK 
CSLA adder outperforms other adders in terms of speed 
while sacrificing a tiny amount of transistor count. 

R. Bala Sai Kesava, B. Lingeswara Rao, B. E. Studen, 
Bhimavaram, K. Bala Sindhuri, and N. Udaya Kumar[15] 
proposed employing CSLA to reduce the area of the Wallace 
tree multiplier. When compared to Wallace tree multipliers 
using CSLA and Wallace tree multipliers using BEC, the 
Wallace tree multiplier utilising CSLA with BEC takes up less 
space, memory and power. 
 
        A. Anline Reeta and N. Kaleeswari [16] proposed an 
adder tree scheduled in bit- level using CSA (carry select 
adder) and it is designed and implemented in VHDL using 
the Xilinx 13.2 ISE tool. The CSA is a high-speed, low- power 
constant addition block. FPGA is also used to implement it. 
       
       AshwiniA. LokhandeV.G. Raut[17] proposed carry se- 
lect adder design which uses D- latch rather of using RCA 
waterfall structure for cin = 1or cin = 0. This CSLA is 
enforced in the adder of FIR sludge .the proposed design 
achieves the two folded advantages in terms of power and 
detection. 
 
       Bhavani Prasad Y, Ganesh Chokkuala, Srikanth Reddy.P 
and Samhitha.N.R[18] suggested Vedic multiplier consumes 
less power than existing multiplier approaches because of 
the addition of a new module of modified carry select adder. 
Instead of two RCAs in the carry select adder, a binary 
to Excess one convertor was utilised, which resulted in 
considerable reduction in delay. 
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3.CONVENTIONAL CARRY SAVE MULTIPLIER 
A 4-bit unsigned Carry Save Multiplier is shown in Fig.1 . 

It is made up of three rows of half and full adders for 
adding partial products, as well as a vector merging adder 
for generating final multiplication results. Eight-bit 
unsigned Carry Save Multiplier working is as follows. By 
multiplying the first bit of the multiplier series with all of the 
bits in the multiplicand series, the first row is obtained. By 
multiplying the second bit of the multiplier series with all of 
the bits in the multiplicand series, the second row is 
obtained. The third and fourth rows are made by adding 
the first two rows using half adder. By multiplying the third 
bit of the multiplier series with all of the bits in the 
multiplicand series, the fifth row is obtained. The sixth and 
seventh rows are obtained by adding the third, fourth, and 
fifth rows using full adder, and the process is repeated. After 
obtaining the last two rows same steps can’t be followed 
in order to obtain the output, the carry has to propagate to 
next bit. Since the bits are merged, it is called as a vector 
merging adder. 

 
 
 
 
 
 
 
 
 
 
 
 

       Fig.1 4-bit unsigned Carry Save Multiplier 

 
4. MODIFIED CARRY SAVE MULTIPLIER 

The modified carry save multiplier is created by combining 
the methods listed below:- 
 
1)The improved full adder (IFA) structure[9] is replaced       by the 
proposed multiplexer based full adder. 
2)The square root carry select vector merging adder is 
replaced by modified vector merging adder which is efficient 
in terms of delay, area and power. 
A)proposed multiplexer based full adder 

                          A conventional full adder is made up 
of 66 transistors. In order to reduce the number of 
transistors in the existing work, an improved full adder 
shown in Fig.2 requires only 44 transistors[9]. The 
proposed full adder based on multiplexer has further 
reduced the transistor count to 38. When Cin is zero, S [0] 
represents the sum and C[0] represents the carry. When Cin 
is one, S[0] represents the sum and C[1] represents the 
carry. 
 
 
 
 
 
 
 
 
 
 

                          
 

This can be expressed as :- 

Sum =  s[0]cin̅̅ ̅̅  + s[1]cin 

Cout =  c[0]cin̅̅ ̅̅  + c[1]cin 

Where 

s[0] = A ⊕  B 

  

s[1] =  A ⊕ B̅̅ ̅̅ ̅̅ ̅̅  

 Thus  

Sum = (A ⊕  B)cin̅̅ ̅̅  + (A ⊕ B̅̅ ̅̅ ̅̅ ̅̅ )cin  

 

Sum = A ⊕ B ⊕ cin 

While  

c[0] = AB 

  
c[1] =  A + B 

Thus  
Cout = (AB)cin̅̅ ̅̅  + (A + B)cin  

Sum and Cout expressions represents the standard 
expressions of a full adder. Thus a full adder can be 
implemented using a multiplexer. 

 

 

 

 

 

 

 

 

 

 

 

 
                          Fig. 2. Existing Improved Full Adder 

 

 

 

Four NAND gate,one XNOR gate and one OR gate is 
required in the existing improved full adder thereby 
resulting in a total of 44 transistors as per the transistor 
count represented in [9]. The proposed multiplexer-based 
full adder as shown in Fig.3., on the other hand, only 
requires two NAND, two NOT, one OR gate and one 2X1 
multiplexer, resulting in a total of 38 transistors. As a 
result, the proposed full adder based on a multiplexer is 
efficient in terms of logic utilization. Comparison of device 
utilization of existing improved full adder and proposed 
multiplexer-based full adder is shown in table1. 
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                                        Fig. 3. Proposed Multiplexer Based Full Adder 

 TABLE 1:- Comparison of Device Utilization of Existing And Proposed Full 

Adder 

 

1)CMOS realization of a NAND gate requires 4 transistors 

1.To realize existing improved full adder, we require 4 
NAND gates so (4*4=16) totally we require 16 transistors. 

2.Proposed multiplexer based full adder requires 2 NAND 
gate so (2*4=8) totally we require 8 transistors. 

3.Therefore, when compared to proposed multiplexer 
based full adder the existing improved full adder requires 
8 more transistor for NAND gate. 

2)CMOS realization of a OR gate requires 6 transistors 

1.To realize both the existing improved full adder and 
Proposed multiplexer based full adder, we require 1 OR gate 
so (1*6=6) totally we require 6 transistors in terms of OR 
gate. 

2.Therefore, when compared to proposed multiplexer 

based full adder, the existing improved full adder has no 

improvement in transistor count for OR gate. 

3.Therefore, when compared to the existing improved full 

adder, the proposed multiplexer based full adder requires 

20 more transistor for multiplexer. 

3)CMOS realization of a XNOR gate requires 22 transistors 

1.To realize existing improved full adder, we require 1 XNOR 
gate so (1*22=22) totally we require 22 transistors. 

2.Proposed multiplexer based full adder requires no XNOR 
gate. 

3.Therefore, when compared to proposed multiplexer based 
full adder the existing improved full adder requires 22 
more for XNOR gate. 

 

4)CMOS realization of a 2 x 1 MULTIPLEXER requires 20 
transistors 

1.The multiplexer consists of 1 NOT gate requires 2 
transistors.2 AND gate each requiring 6 transistors and 1 OR 
gate which requires 6 transistors. So, totally multiplexer 
requires 20 transistors. 

2.To realize existing improved full adder, multiplexer is not 
required. 

3.Proposed multiplexer based full adder requires 1 
multiplexer so (1*20=20) totally we require 20 transistors 

B)Concept behind the Proposed Vector Merging Adder 

 

Fig. 4. Two Consecutive XOR Gate 

Fig. 5. Two Consecutive XNOR Gate 

 

 

 

Full adder output is obtained by using two 
consecutive XOR gates or XNOR gates. In Fig.4, the 
sum output is zero when all the three inputs are 
zero. In the same way, in Fig.5 the sum output is 
zero when all the three inputs are zero. This is true 
for all inputs. Thus in modified vector merging adder 
the sum output can be obtained by using two 
consecutive XNOR gates instead of employing XOR 
gates. Truth table of full adder is shown in Table 2. 
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         TABLE:-2 Truth Table of Full Adder 

 

 

c)Efficient Proposed Modified Vector Merging Adder 

The efficient modified vector merging adder 
consists of three blocks as depicted in Fig.6. 

 
1)Sum Generation (SG) block  
2)Carry Generation (CG) block 
3)Final Sum Generation (FSG)Blo 

1.SUM GENERATION BLOCK 

The Sum Generation (SG) block uses modified XNOR 
gate as shown in figure 7a consisting of two NAND and 
an OR gate for the generation of bitwise sum, except 
for the first sum bit. However, one bit in the first sum 
bit is zero. As a result, in a half adder, when cin is zero, 
the sum is obtained using the modified XOR gate as 
shown in 7b, while the carry is obtained using the AND 
gate. 

 

Consider an example as shown in Fig.8, the inputs are 
from D[0] to D[6] and from E[0] to E[6]. The outputs are 
from X[0] to X[6], from Y[0] to Y[6], and from Z[0] to 
Z[6]. To obtain the outputs, the inputs enter NAND OR 
gate while the outputs obtained enter as inputs to the 
AND gate. The NAND gate enters the NOT gate to 
obtain the output for the first sum bit alone. 

Fig. 7. (a) Modified XNOR Gate[9] (b) Modified XOR 

Gate[9] 

 

Fig. 6. Block Diagram of Proposed Modified Vector Merging Adde. 
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Fig. 8. Example of sum generation block 

2.CARRY GENERATION BLOCK 
To generate the carry output, the Carry Generate (CG) block 
shown in Fig.9 employs a series of NAND gates. Each NAND 
gate series output is propagated to the next NAND gate 
series. Despite the fact that seven bits are added, only six 
carry bits are generated because the first sum bit’s carry is 
already generated using the half adder concept. The inputs 
of CG block is obtained from previous SG block. 

As shown in the Fig.10, Z[0] to Z[6] and X[1] to X[6] are the 
inputs obtained from the previous SG block. Z[0] is the first 
bit which acts as one of the input. The X series input, as well 
as the previous output enters NAND gate. The outputs enter 
another NAND gate with Z series as another input to obtain 
the outputs. The outputs are labelled from C[0] to C[6]. 

 

 

 

 

 

 

 

 

Fig. 10. EXAMPLE OF CARRY GENERATE BLOCK 

 

 

 

 

Fig.9 series of NAND gate 

                   Fig.11 Example of final sum generation block   

 

3.FINAL SUM GENERATION BLOCK 
The Final Sum Generation (FSG) block uses modified XNOR 
gate. This is the last block. Despite the fact that seven bits are 
added, only six carry bits are generated because the first sum 
bit’s carry is already generated using the half adder concept 
To obtain the final value, the inputs enter the NAND OR gate 
combination, whose outputs also enter a NAND gate.As 
shown in Fig.11, Y[0] to Y[6], C[0] to C[4] and Z[0] are the 
inputs. Z[0] is the first bit in the first sum bit. To obtain the 
final value, the inputs enter the NAND OR gate combination, 
whose outputs also enter a NAND gate. S[1] to S[6] are the 
output finally, S[0] = Y[0] = 1 and S[7] = C[5] = 0 are assigned. 

 

 

 

6



D. SIMULATION RESULTS 

The simulation results of the modified efficient 
Vector Merging Adder and proposed carry save 
multiplier is shown in Fig.12 and Fig.13 respectively. 
The design is simulated and realized with the help of 
Xilinx Isim 14.7 Simulator. 

 
Fig. 12. Efficient Modified Vector Merging Adder 

Output 

 

Fig. 13. Proposed Carry Save Multiplier Ouput 

 

Fig. 14. Power Consumption of Existing Carry save multiplier 

E.OUTPUT COMPARISON 

The delay of the existing square root carry select 
adder- based Carry Save Multiplier (CSM) is depicted 
in table  3 with a delay of 15ns.The proposed efficient 
modified vector merging adder-based carry save 
multiplier has a delay of 14ns, as shown in table 1. 
The proposed carry save multiplier is 7% faster than 
the existing carry save multiplier.Power consumption 
of the proposed carry save mul- tiplier is analyzed 
using XPower estimator. The power consumption of 
the existing square root carry select adder- based Carry 
Save Multiplier (CSM) is 0.047W as shown in Fig.14. 

The proposed carry save multiplier has a power con- 
sumption of 0.040W as shown in figure 15. 

Fig. 15. Power Consumption of proposed Carry save 

multiplier 

 

 
The proposed efficient modified vector merging adder-based 
carry save multiplier consumes 16% less power than the 
existing carry save multiplier. The number of transistors used 
determines the size of an integrated circuit. Table 1 compares 
the square root carry select adder based Carry Save Multiplier 
(CSM) with the proposed efficient modified vector merging 
adder based carry save multiplier, and it is inferred that the 
latter uses fewer transistors than the former. 
 

Table 4 compares the performance of the existing and 

proposed CSMs, revealing that the proposed CSM is 7,15 and 

60 percent more efficient than the existing CSM in terms of 

delay, power and transistor count respectively.Table 2 

compares the performance of the existing square root carry 

select adder[9],square root carry select adder using 

CBL(Common Boolean Logic)[4] and proposed square root 

carry select adder in terms of delay and Gates utilized. We are 

able to notice that the delay and gate utilization has got 

reduced in proposed work than the previous works[9],[4]. 

1)CMOS realization of a NAND gate requires 4 transistors 

1.To realize existing Carry Save Multiplier, we require 215 NAND 
gates so (215*4=860) totally we require 860 transistors. 

2.Proposed Carry Save Multiplier, requires 128 NAND gate so 
(128*4=512) totally we require 512 transistors. 

3.Therefore, when compared to proposed Carry Save 
Multiplier, the existing Carry Save Multiplier, requires 348 more 
transistors for NAND gate implementation. 

2)CMOS realization of a AND gate requires 6 transistors 

1.To realize existing Carry Save Multiplier, we require 215 AND 

gates so (60*6=360) totally we require 360 transistors. 

2.Proposed Carry Save Multiplier, requires 43 AND gate so 
(43*6=258) totally we require 258 transistors. 
 
3.Therefore, when compared to proposed Carry Save 
Multiplier, the existing Carry Save Multiplier, requires 102 
more transistors for AND gate. 
 
3)CMOS realization of a OR gate requires 6 transistors 

1.To realize existing Carry Save Multiplier, we require 58 OR gates 
so (58*6=348) totally we require 348 transis- tors. 

2.Proposed Carry Save Multiplier, requires 55 OR gate so 
(55*6=330) totally we require 330 transistors. 

3.Therefore, when compared to proposed Carry Save 
Multiplier, the existing Carry Save Multiplier, requires 18 
more transistors for OR gate. 
 

4)CMOS realization of a NOR gate requires 4 transistors 
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1.To realize existing Carry Save Multiplier, we require 14 NOR gates 
so (14*4=56) totally we require 56 transis- tors. 

2.Proposed Carry Save Multiplier, requires 7 NOR gate so (7*4=28) 
totally we require 28 transistors. 

3.Therefore, when compared to proposed Carry Save 
Multiplier, the existing Carry Save Multiplier, requires 28 
more transistors for NOR gate. 
 
5)CMOS realization of a NOT gate requires 2 transistors 

1.To realize existing Carry Save Multiplier, we require 6 NOT gates 
so (6*2=12) totally we require 12 transistors. 

2.Proposed Carry Save Multiplier, requires 84 NOT gate so 
(84x2=168) totally we require 168 transistors. 

3.Therefore, when compared to existing Carry Save 
Multiplier, the proposed Carry Save Multiplier, requires 156 
more transistors for NOT gate. 
 

6)CMOS realization of a modified XNOR gate requires 14 transistors 

1.The XNOR gate consist of 2 NAND gates each requiring 4 
transistors and 1 OR gate which requires 6 transistors. So, totally 
XNOR gate requires 14 transistors. 

2.To realize existing Carry Save multiplier and proposed Carry Save 
Multiplier we require 42 modified XNOR gates so (42*14=588) 
totally we require 588 transistors. 

3.Proposed Carry Save Multiplier does not require modified XNOR 
gate. 

4.Therefore, when compared to proposed Carry Save Multiplier, 
the existing Carry Save Multiplier requires 588 more transistors for 
modified XNOR gate. 

7)CMOS realization of a modified XOR gate requires 16 
transistors 

1.The modified XOR gate consist of 1 NAND which requires 
4 transistors,1 AND gate which requires 6 transis- tors and 1 
OR gate which requires 6 transistors. 

2.So, totally XNOR gate requires 16 transistors.To realize 
existing Carry Save Multiplier and proposed Carry Save 
Multiplier, we require 7 modified XOR gates so (7*16=112) 
totally we require 112 transistors. 

3.Therefore, when compared to proposed Carry Save 
Multiplier, the existing Carry Save Multiplier has no im- 
provement in transistor count for modified XOR gate. 

3)CONCLUSIONS AND FUTURE WORK 

A delay, power and area efficient carry save multiplier 
is presented in this work. Remarkably improved 
performance in terms of the performance metrics such 
as delay, power and transistor count is achieved 
through the use of the proposed multiplexer based full 
adder and modified vector merging adder. The 
structural simplicity and regularity of full adder and 
half adder array of the proposed Carry Save 
Multiplier (CSM) is improved when compared to the 
existing square root carry select adder. The transistor 
count of the multiplexer based full adder is less than 
the existing improved full adder because of the use of 
multiplexer where the sum and carry are selected 
based on Cin. The final vector merging addition using 
the proposed modified vector. merging adder further 
improves the speed. Future work is to design a FIR filter 
using the proposed adder and multiplier. 

TABLE I. Comparison of Performance of the Proposed CSM and Existing CSM 

 

Multipliers Delay(ns) Power(W) Transistor count 

Existing CSM 15.634 0.047 2336 
Proposed CSM 14.521 0.040 1408 
Performance 
improvement 

7% 16% 60% 

 
TABLE II. comparison of the performance of the existing square root carry select adder[9],square root carry select adder using CBL(Common 
Boolean Logic)[4] and proposed square root carry select adder in terms of Gates utilized. 

 

ADDER GATE COUNT 

Existing square root carry select adder[9] 80 
Existing square root carry select adder using CBL[4] 1092 

Proposed square root carry select adder (modified vector merging adder) 45 
Performance improvement of proposed adder WRT CBL based square root CSLA[9]  95 % decrease in gate usage 

Performance improvement of proposed adder WRT existing square root carry select adder[4] 43.7% decrease in gateusage 
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