
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

 AN EFFICIENT CARRY SAVE MULTIPLIER FOR SIGNAL PROCESSING

APPLICATIONS
P. Divya Parameswari 1 and A. V. Ananthalakshmi2

1Department of Electronics and Communication Engineering,Puducherry technological university, Puducherry, India

2Department of Electronics and Communication Engineering,Puducherry technological university, Puducherry, India

 Abstract:High performance computing architecture heavily depends on the performance of a multiplier. The key contribution

of this work is to design an efficient carry save multiplier architecture which can be widely employed in signal processing. Two

novel contributions proposed in this work. Firstly, a modified vector merging adder is proposed that has less latency, power and hardware

complexity than the existing adder, and the second contribution is a multiplexer- based full adder which has better area efficiency.

This work focuses on achieving efficient carry save multiplication through the use of the proposed modified vector merging adder. The

modified vector merging adder and multiplexer-based full adder provides an efficient design of carry save multiplier when compared

to the existing design and also the proposed design is efficient in terms of speed, power consumption and transistor count. Xilinx ISE

Design 14.7 version is used for the verification.

Keywords: Modified vector merging adder, Carry Save Multiplier, Multiplexer based full adder, VLSI design.

1. INTRODUCTION
In order to meet high speed input data processing, real-time
Digital Signal Processing (DSP) architecture ne- cessitates a
less complex, delay-free and energy- efficient multiplier. In
any computing unit, multiplication is one of the most
fundamental arithmetic operations, but it neces-sitates more
hardware. Because digital signal processing requires a large
number of filtrations, convolutions and other operations, the
multiplier is an essential component. As a result, the
multiplier’s performance limits the performance of digital
signal processing systems. Extensive research has been done
to improve the multiplier’s speed and reduce its power
consumption. The technique used to add the partial products
has a big impact on the multiplier’s performance. The main
area of research in VLSI system design is area and power
reduction in data path logic systems. High performance
processors and systems have always required high – speed
addition and multiplication. The basic block in multiplier is
adder. High speed multipliers depends heavily on the
efficient design of the adder. The structure of a traditional
carry save multiplier (CSM) is straightforward and consistent.
The carry bits in a CSM are saved to pass diagonally
downwards rather than being immediately added. While the
carry save operation improves speed, the final vector-
merging operation has an impact on delay performance.
Various addition schemes like Carry Select Adder have been
proposed over the years [1]. Comparison of delay between
different adders were carried out in [2]. Multipliers are
made efficient by improving the final addition [3]. The square
root carry select adder is a vector merging adder used in the
carry save multiplier to produce end products with extremely
high transistor counts, resulting in increased latency and
power consumption [4]. Low power VLSI design is highly
essential so as to increase the speed of the system. The need
for low power design is not only to increase the speed but
also to include more features on the single chip.To bring
down the transistor count, power consumption and the
delay of the work reported in [4] the proposed work focuses
on modifying the existing vector merging adder architecture.

This work has two novel contributions. A modified vector
merging adder is proposed and secondly a multiplexer based
full adder is proposed. Using the proposed modified vector
merging adder and a full adder based on a multiplexer, an
efficient carry save multiplier is designed which is efficient in
terms of delay, power consumption and transistor count.

Section 1 gives an introduction. Exhaustive literature survey
is carried out in section 2. Existing carry save multiplier
architecture is discussed in section 3. Section 4 discusses in
detail about the proposed work. Simulation results are
shown in section 5. Comparison of the proposed work with
the existing work is shown in section 6 followed by
conclusion.

2. LITERATURE SURVEY

Aiswarya Simson and Deepak [1] proposed a mongrel
CSLA which utilizes the advantages of both Kogge Stone
adder and look ahead adder(CLA) to obtain higher speed.
Kogge Stone adder is a particular type of Adder and hence it’s
extensively regarded as one of the high speed addition styles
due to briskly carry generation. Look ahead adders are
employed in the original stages of the modified adder to
boost its speed as its calculation performance is better if the
number of bits are less.

Yuan-Ho Chen[2]proposed a data scaling technology
(DST) for use in a low-error fixed-width Booth multiplier
(FWBM) to reduce truncation errors. The suggested DST
produces more effective bits in low-error FWBMs by re-
ducing the amount of redundant bits in the multiplicand. The
FWBMs’ truncationerrors are decreased by inserting both an
error-compensation circuit and the suggested DST into them.
We discovered that the proposed DSTFWBM (1 bit) had a
signal-to-noise ratio that was more than 1.05 dB greater than
an FWBM without a DST circuit. It was demonstrated that the
DST method significantly increased the FWBMs’ accuracy,
making them appropriate for use in digital signal processing
procedures.

 Moslem Heidarpur and Mitra Mirhassani[3] pro- posed
a unique hardware architecture for efficient field-
programmable gate array (FPGA) implementation of Finite
field multipliers for ECC. Performance parameters were
established by implementing the proposed hardware on var-
ious FPGA devices for varied operand sizes. The proposed
method produced a lower combinational delay and area-
delay product when compared to state-of-the-art works,
demonstrating the effectiveness of the concept. According to
implementation results, the suggested technique is, on
average, 20% quicker than the Overlap-free Karatsuba al-
gorithm (OKA) and 30% faster than Karatsuba

.

IJCDS 1570830453

1

 P. Kavipriya, S. Lakshmi, T. Vino M.R. Ebenezar Je- barani, G.
Jegan[4] proposed a work which move towards to reduce the delay,
Power, area of CSLA(Carry Select Adder) circuits. The typical carry
select adder has drawbacks, such as high power consumption
and larger chip size. In comparison to all other adder designs, the
improved SQRT CSLA (Square Root Carry Select Adder) employing
common Boolean logic has less delay, low power, and lowered
space. It also moves a little faster. Additionally, the proposed SQRT-
CSLA has fewer transistors and requires less space and power,
making it simple and efficient to im- plement on VLSI hardware. It
has to be further enlarged to accommodate more bits. With the aid
of new architectures, space and power can be reduced.

 Weihang Tan, Benjamin M. Case, Antian Wang, Shuhong Gao,
and Yingjie Lao[5]presented a novel high- speed modular multiplier
architecture for polynomial mul- tiplication. The suggested
architecture uses a divide-and- conquer tactic and takes
advantage of a unique modulus to boost parallelism, accelerate
computation, and enable broader applications across different
cryptosystems. Ac- cording to the testing findings, our design
reduces space consumption and delay, respectively, by about
27%and 39% when compared to earlier efforts.

 Mohammad Saeed Ansari, Bruce F. Cockburn, Jie Han[6]
proposed an improved logarithmic multiplier (ILM) that, unlike
existing designs, rounds both inputs to their nearest powers of two
by using a proposed nearest-one detector (NOD) circuit. Some
entries in the truth table of a conventional adder cannot exist
because the NOD’s output utilises a one-hot representation. As a
result, a little adder is created for the smaller truth table.
Comparing the 88 ILM to a recently published LM in the literature,
power consumption can be reduced by up to 17.48.

 Mary Christina Joy, Ansa Jimmy, Tony C.Thomas, and Manju
I.Kollannur [7] compare the delays of different 16-bit adders. The
latency of logic gates has been mathematically modelled using
logical effort in180nm. This delay is then utilised to calculate the
delay of various adders. Functional verification has been carried
out using Modelsim.

 R. S. Waters and E. E. Swartzlander [8] proposed an area
efficient Wallace multiplier which reduces the area of a multiplier by
using a smaller final adder. Synopsys Design Compiler used to create
the designs using 90nm process technology. The synthesis results
show that, as expected, the suggested Wallace multiplier has the
smallest area among the Wallace-based multipliers.

 Pramod Patali and Shahana Thottathikkulam Kassim
[9presented high throughput FIR filter designs with reduced
effective latency using retiming and redesigned CSLA- based
adders. FIR filter architectures are proposed in two different
forms. The retiming of delay elements in the RSF module, as well
as the utilization of RCAs resulted in a high throughput, low
power and less complicated FIR filter structure. The retiming of
delay elements in the RSF module, as well as the usage of proposed
delay efficient adders and multipliers along the delay channels
resulted in a high throughput energy efficient retimed FIR filter
structure.

P.Pramod and T.K Shahana [10] proposed Modular
hybrid adders with reduced critical path latency for various
bit-widths. Modularity, reusability and a low design time for
broad bit-width adder applications are the major features
of the suggested architecture. Concatenation and

incrementa- tion techniques are used to form a CLA-RCA-
CSKA hybrid structure, which yields the adder structures.

H. Baba, T. Yang, M. Inoue, K. Tajima, T. Ukezono and
T. A. Sato [11]developed an accuracy scalable multiplier
that uses less power than a Wallace Tree Multiplier. The
reduction ratio is determined by the level of precision
required. To construct the accuracy compensation vector,
the simple circuit of the basic OR gate is chosen at the
expense of accuracy. This precision- configurable approxi-
mate multiplier will be useful in applications where power
and area are more important than accuracy.

 Raghava Katreepalli, Drona Merugubonia, Themistoklis
[12] presented a high speed, power efficient carry select
adder design based on manchester carry chain. When com-
pared to previous designs, the suggested adder offered a
significant improvement in terms of power delay product
and hardware overhead.

 Dr, Minal Saxena, Deepak Kumar patel, Raksha Chouk-
sey and Deepak Kumar Patel[13] proposed and imple-
mented a strategy that efficiently minimises the delay and
greatly increases the speed of FIR filter operation. The
proposed modified Adder is a straightforward programme
approach for reducing the delay in Carry select Adder by
introducing URDHWA multiplier compressor technique. By
utilising this, an FIR filter is implemented.

K.Golda Hepzibha and C.P. Subha[14] proposed a CSLA
design based on the Brent Kung(BK) parallel prefix adder,
which outperforms RCA and Binary to Excess-1 Converter
(BEC) based CSLAs in terms of speed. The BEC- based BK
CSLA adder outperforms other adders in terms of speed
while sacrificing a tiny amount of transistor count.

R. Bala Sai Kesava, B. Lingeswara Rao, B. E. Studen,
Bhimavaram, K. Bala Sindhuri, and N. Udaya Kumar[15]
proposed employing CSLA to reduce the area of the Wallace
tree multiplier. When compared to Wallace tree multipliers
using CSLA and Wallace tree multipliers using BEC, the
Wallace tree multiplier utilising CSLA with BEC takes up less
space, memory and power.

 A. Anline Reeta and N. Kaleeswari [16] proposed an
adder tree scheduled in bit- level using CSA (carry select
adder) and it is designed and implemented in VHDL using
the Xilinx 13.2 ISE tool. The CSA is a high-speed, low- power
constant addition block. FPGA is also used to implement it.

 AshwiniA. LokhandeV.G. Raut[17] proposed carry se-
lect adder design which uses D- latch rather of using RCA
waterfall structure for cin = 1or cin = 0. This CSLA is
enforced in the adder of FIR sludge .the proposed design
achieves the two folded advantages in terms of power and
detection.

 Bhavani Prasad Y, Ganesh Chokkuala, Srikanth Reddy.P
and Samhitha.N.R[18] suggested Vedic multiplier consumes
less power than existing multiplier approaches because of
the addition of a new module of modified carry select adder.
Instead of two RCAs in the carry select adder, a binary
to Excess one convertor was utilised, which resulted in
considerable reduction in delay.

2

3.CONVENTIONAL CARRY SAVE MULTIPLIER
A 4-bit unsigned Carry Save Multiplier is shown in Fig.1 .

It is made up of three rows of half and full adders for
adding partial products, as well as a vector merging adder
for generating final multiplication results. Eight-bit
unsigned Carry Save Multiplier working is as follows. By
multiplying the first bit of the multiplier series with all of the
bits in the multiplicand series, the first row is obtained. By
multiplying the second bit of the multiplier series with all of
the bits in the multiplicand series, the second row is
obtained. The third and fourth rows are made by adding
the first two rows using half adder. By multiplying the third
bit of the multiplier series with all of the bits in the
multiplicand series, the fifth row is obtained. The sixth and
seventh rows are obtained by adding the third, fourth, and
fifth rows using full adder, and the process is repeated. After
obtaining the last two rows same steps can’t be followed
in order to obtain the output, the carry has to propagate to
next bit. Since the bits are merged, it is called as a vector
merging adder.

 Fig.1 4-bit unsigned Carry Save Multiplier

4. MODIFIED CARRY SAVE MULTIPLIER

The modified carry save multiplier is created by combining
the methods listed below:-

1)The improved full adder (IFA) structure[9] is replaced by the
proposed multiplexer based full adder.
2)The square root carry select vector merging adder is
replaced by modified vector merging adder which is efficient
in terms of delay, area and power.
A)proposed multiplexer based full adder

 A conventional full adder is made up
of 66 transistors. In order to reduce the number of
transistors in the existing work, an improved full adder
shown in Fig.2 requires only 44 transistors[9]. The
proposed full adder based on multiplexer has further
reduced the transistor count to 38. When Cin is zero, S [0]
represents the sum and C[0] represents the carry. When Cin
is one, S[0] represents the sum and C[1] represents the
carry.

This can be expressed as :-

Sum = s[0]cin̅̅ ̅̅ + s[1]cin

Cout = c[0]cin̅̅ ̅̅ + c[1]cin

Where

s[0] = A ⊕ B

s[1] = A ⊕ B̅̅ ̅̅ ̅̅ ̅̅

 Thus

Sum = (A ⊕ B)cin̅̅ ̅̅ + (A ⊕ B̅̅ ̅̅ ̅̅ ̅̅)cin

Sum = A ⊕ B ⊕ cin

While

c[0] = AB

c[1] = A + B

Thus
Cout = (AB)cin̅̅ ̅̅ + (A + B)cin

Sum and Cout expressions represents the standard
expressions of a full adder. Thus a full adder can be
implemented using a multiplexer.

 Fig. 2. Existing Improved Full Adder

Four NAND gate,one XNOR gate and one OR gate is
required in the existing improved full adder thereby
resulting in a total of 44 transistors as per the transistor
count represented in [9]. The proposed multiplexer-based
full adder as shown in Fig.3., on the other hand, only
requires two NAND, two NOT, one OR gate and one 2X1
multiplexer, resulting in a total of 38 transistors. As a
result, the proposed full adder based on a multiplexer is
efficient in terms of logic utilization. Comparison of device
utilization of existing improved full adder and proposed
multiplexer-based full adder is shown in table1.

3

 Fig. 3. Proposed Multiplexer Based Full Adder

 TABLE 1:- Comparison of Device Utilization of Existing And Proposed Full

Adder

1)CMOS realization of a NAND gate requires 4 transistors

1.To realize existing improved full adder, we require 4
NAND gates so (4*4=16) totally we require 16 transistors.

2.Proposed multiplexer based full adder requires 2 NAND
gate so (2*4=8) totally we require 8 transistors.

3.Therefore, when compared to proposed multiplexer
based full adder the existing improved full adder requires
8 more transistor for NAND gate.

2)CMOS realization of a OR gate requires 6 transistors

1.To realize both the existing improved full adder and
Proposed multiplexer based full adder, we require 1 OR gate
so (1*6=6) totally we require 6 transistors in terms of OR
gate.

2.Therefore, when compared to proposed multiplexer

based full adder, the existing improved full adder has no

improvement in transistor count for OR gate.

3.Therefore, when compared to the existing improved full

adder, the proposed multiplexer based full adder requires

20 more transistor for multiplexer.

3)CMOS realization of a XNOR gate requires 22 transistors

1.To realize existing improved full adder, we require 1 XNOR
gate so (1*22=22) totally we require 22 transistors.

2.Proposed multiplexer based full adder requires no XNOR
gate.

3.Therefore, when compared to proposed multiplexer based
full adder the existing improved full adder requires 22
more for XNOR gate.

4)CMOS realization of a 2 x 1 MULTIPLEXER requires 20
transistors

1.The multiplexer consists of 1 NOT gate requires 2
transistors.2 AND gate each requiring 6 transistors and 1 OR
gate which requires 6 transistors. So, totally multiplexer
requires 20 transistors.

2.To realize existing improved full adder, multiplexer is not
required.

3.Proposed multiplexer based full adder requires 1
multiplexer so (1*20=20) totally we require 20 transistors

B)Concept behind the Proposed Vector Merging Adder

Fig. 4. Two Consecutive XOR Gate

Fig. 5. Two Consecutive XNOR Gate

Full adder output is obtained by using two
consecutive XOR gates or XNOR gates. In Fig.4, the
sum output is zero when all the three inputs are
zero. In the same way, in Fig.5 the sum output is
zero when all the three inputs are zero. This is true
for all inputs. Thus in modified vector merging adder
the sum output can be obtained by using two
consecutive XNOR gates instead of employing XOR
gates. Truth table of full adder is shown in Table 2.

4

 TABLE:-2 Truth Table of Full Adder

c)Efficient Proposed Modified Vector Merging Adder

The efficient modified vector merging adder
consists of three blocks as depicted in Fig.6.

1)Sum Generation (SG) block
2)Carry Generation (CG) block
3)Final Sum Generation (FSG)Blo

1.SUM GENERATION BLOCK

The Sum Generation (SG) block uses modified XNOR
gate as shown in figure 7a consisting of two NAND and
an OR gate for the generation of bitwise sum, except
for the first sum bit. However, one bit in the first sum
bit is zero. As a result, in a half adder, when cin is zero,
the sum is obtained using the modified XOR gate as
shown in 7b, while the carry is obtained using the AND
gate.

Consider an example as shown in Fig.8, the inputs are
from D[0] to D[6] and from E[0] to E[6]. The outputs are
from X[0] to X[6], from Y[0] to Y[6], and from Z[0] to
Z[6]. To obtain the outputs, the inputs enter NAND OR
gate while the outputs obtained enter as inputs to the
AND gate. The NAND gate enters the NOT gate to
obtain the output for the first sum bit alone.

Fig. 7. (a) Modified XNOR Gate[9] (b) Modified XOR

Gate[9]

Fig. 6. Block Diagram of Proposed Modified Vector Merging Adde.

5

Fig. 8. Example of sum generation block

2.CARRY GENERATION BLOCK
To generate the carry output, the Carry Generate (CG) block
shown in Fig.9 employs a series of NAND gates. Each NAND
gate series output is propagated to the next NAND gate
series. Despite the fact that seven bits are added, only six
carry bits are generated because the first sum bit’s carry is
already generated using the half adder concept. The inputs
of CG block is obtained from previous SG block.

As shown in the Fig.10, Z[0] to Z[6] and X[1] to X[6] are the
inputs obtained from the previous SG block. Z[0] is the first
bit which acts as one of the input. The X series input, as well
as the previous output enters NAND gate. The outputs enter
another NAND gate with Z series as another input to obtain
the outputs. The outputs are labelled from C[0] to C[6].

Fig. 10. EXAMPLE OF CARRY GENERATE BLOCK

Fig.9 series of NAND gate

 Fig.11 Example of final sum generation block

3.FINAL SUM GENERATION BLOCK
The Final Sum Generation (FSG) block uses modified XNOR
gate. This is the last block. Despite the fact that seven bits are
added, only six carry bits are generated because the first sum
bit’s carry is already generated using the half adder concept
To obtain the final value, the inputs enter the NAND OR gate
combination, whose outputs also enter a NAND gate.As
shown in Fig.11, Y[0] to Y[6], C[0] to C[4] and Z[0] are the
inputs. Z[0] is the first bit in the first sum bit. To obtain the
final value, the inputs enter the NAND OR gate combination,
whose outputs also enter a NAND gate. S[1] to S[6] are the
output finally, S[0] = Y[0] = 1 and S[7] = C[5] = 0 are assigned.

6

D. SIMULATION RESULTS

The simulation results of the modified efficient
Vector Merging Adder and proposed carry save
multiplier is shown in Fig.12 and Fig.13 respectively.
The design is simulated and realized with the help of
Xilinx Isim 14.7 Simulator.

Fig. 12. Efficient Modified Vector Merging Adder

Output

Fig. 13. Proposed Carry Save Multiplier Ouput

Fig. 14. Power Consumption of Existing Carry save multiplier

E.OUTPUT COMPARISON

The delay of the existing square root carry select
adder- based Carry Save Multiplier (CSM) is depicted
in table 3 with a delay of 15ns.The proposed efficient
modified vector merging adder-based carry save
multiplier has a delay of 14ns, as shown in table 1.
The proposed carry save multiplier is 7% faster than
the existing carry save multiplier.Power consumption
of the proposed carry save mul- tiplier is analyzed
using XPower estimator. The power consumption of
the existing square root carry select adder- based Carry
Save Multiplier (CSM) is 0.047W as shown in Fig.14.

The proposed carry save multiplier has a power con-
sumption of 0.040W as shown in figure 15.

Fig. 15. Power Consumption of proposed Carry save

multiplier

The proposed efficient modified vector merging adder-based
carry save multiplier consumes 16% less power than the
existing carry save multiplier. The number of transistors used
determines the size of an integrated circuit. Table 1 compares
the square root carry select adder based Carry Save Multiplier
(CSM) with the proposed efficient modified vector merging
adder based carry save multiplier, and it is inferred that the
latter uses fewer transistors than the former.

Table 4 compares the performance of the existing and

proposed CSMs, revealing that the proposed CSM is 7,15 and

60 percent more efficient than the existing CSM in terms of

delay, power and transistor count respectively.Table 2

compares the performance of the existing square root carry

select adder[9],square root carry select adder using

CBL(Common Boolean Logic)[4] and proposed square root

carry select adder in terms of delay and Gates utilized. We are

able to notice that the delay and gate utilization has got

reduced in proposed work than the previous works[9],[4].

1)CMOS realization of a NAND gate requires 4 transistors

1.To realize existing Carry Save Multiplier, we require 215 NAND
gates so (215*4=860) totally we require 860 transistors.

2.Proposed Carry Save Multiplier, requires 128 NAND gate so
(128*4=512) totally we require 512 transistors.

3.Therefore, when compared to proposed Carry Save
Multiplier, the existing Carry Save Multiplier, requires 348 more
transistors for NAND gate implementation.

2)CMOS realization of a AND gate requires 6 transistors

1.To realize existing Carry Save Multiplier, we require 215 AND

gates so (60*6=360) totally we require 360 transistors.

2.Proposed Carry Save Multiplier, requires 43 AND gate so
(43*6=258) totally we require 258 transistors.

3.Therefore, when compared to proposed Carry Save
Multiplier, the existing Carry Save Multiplier, requires 102
more transistors for AND gate.

3)CMOS realization of a OR gate requires 6 transistors

1.To realize existing Carry Save Multiplier, we require 58 OR gates
so (58*6=348) totally we require 348 transis- tors.

2.Proposed Carry Save Multiplier, requires 55 OR gate so
(55*6=330) totally we require 330 transistors.

3.Therefore, when compared to proposed Carry Save
Multiplier, the existing Carry Save Multiplier, requires 18
more transistors for OR gate.

4)CMOS realization of a NOR gate requires 4 transistors

7

1.To realize existing Carry Save Multiplier, we require 14 NOR gates
so (14*4=56) totally we require 56 transis- tors.

2.Proposed Carry Save Multiplier, requires 7 NOR gate so (7*4=28)
totally we require 28 transistors.

3.Therefore, when compared to proposed Carry Save
Multiplier, the existing Carry Save Multiplier, requires 28
more transistors for NOR gate.

5)CMOS realization of a NOT gate requires 2 transistors

1.To realize existing Carry Save Multiplier, we require 6 NOT gates
so (6*2=12) totally we require 12 transistors.

2.Proposed Carry Save Multiplier, requires 84 NOT gate so
(84x2=168) totally we require 168 transistors.

3.Therefore, when compared to existing Carry Save
Multiplier, the proposed Carry Save Multiplier, requires 156
more transistors for NOT gate.

6)CMOS realization of a modified XNOR gate requires 14 transistors

1.The XNOR gate consist of 2 NAND gates each requiring 4
transistors and 1 OR gate which requires 6 transistors. So, totally
XNOR gate requires 14 transistors.

2.To realize existing Carry Save multiplier and proposed Carry Save
Multiplier we require 42 modified XNOR gates so (42*14=588)
totally we require 588 transistors.

3.Proposed Carry Save Multiplier does not require modified XNOR
gate.

4.Therefore, when compared to proposed Carry Save Multiplier,
the existing Carry Save Multiplier requires 588 more transistors for
modified XNOR gate.

7)CMOS realization of a modified XOR gate requires 16
transistors

1.The modified XOR gate consist of 1 NAND which requires
4 transistors,1 AND gate which requires 6 transis- tors and 1
OR gate which requires 6 transistors.

2.So, totally XNOR gate requires 16 transistors.To realize
existing Carry Save Multiplier and proposed Carry Save
Multiplier, we require 7 modified XOR gates so (7*16=112)
totally we require 112 transistors.

3.Therefore, when compared to proposed Carry Save
Multiplier, the existing Carry Save Multiplier has no im-
provement in transistor count for modified XOR gate.

3)CONCLUSIONS AND FUTURE WORK

A delay, power and area efficient carry save multiplier
is presented in this work. Remarkably improved
performance in terms of the performance metrics such
as delay, power and transistor count is achieved
through the use of the proposed multiplexer based full
adder and modified vector merging adder. The
structural simplicity and regularity of full adder and
half adder array of the proposed Carry Save
Multiplier (CSM) is improved when compared to the
existing square root carry select adder. The transistor
count of the multiplexer based full adder is less than
the existing improved full adder because of the use of
multiplexer where the sum and carry are selected
based on Cin. The final vector merging addition using
the proposed modified vector. merging adder further
improves the speed. Future work is to design a FIR filter
using the proposed adder and multiplier.

TABLE I. Comparison of Performance of the Proposed CSM and Existing CSM

Multipliers Delay(ns) Power(W) Transistor count

Existing CSM 15.634 0.047 2336
Proposed CSM 14.521 0.040 1408
Performance
improvement

7% 16% 60%

TABLE II. comparison of the performance of the existing square root carry select adder[9],square root carry select adder using CBL(Common
Boolean Logic)[4] and proposed square root carry select adder in terms of Gates utilized.

ADDER GATE COUNT

Existing square root carry select adder[9] 80
Existing square root carry select adder using CBL[4] 1092

Proposed square root carry select adder (modified vector merging adder) 45
Performance improvement of proposed adder WRT CBL based square root CSLA[9] 95 % decrease in gate usage

Performance improvement of proposed adder WRT existing square root carry select adder[4] 43.7% decrease in gateusage

8

RefeRences
[1] A. Simson and D. S, “Design and implementation
of high speed hybrid carry select adder,”
International Conference on Advances in Electrical,
Computing, Communication and Sustainable
Technolo- gies, pp. 978–1–7281–5791, 2021.

[2] Y. H. Chen, “Improvement of accuracy of fixed-
width booth multi- pliers using data scaling
technology,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, pp. 1018–1022,
2021.

[3] M. Heidarpur and M. Mirhassani, “An efficient
and high-speed overlap-free karatsuba-based finite-
field multiplier for fgpa imple- mentation,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, pp. 667–676, 2021.

[4] T. V. M. R. E. J. P. Kavipriya, S. Lakshmi and G.
Jegan, “Booth multiplier design using modified
square root carry-select-adder,” In ternational
Conference on Artificial Intelligence and Smart
Systems (ICAIS), vol. 68, pp. 1647–1653, 2021.

[5] A. W. S. G. W. Tan, B. M. Case and Y. Lao, “High-
speed modular multiplier for lattice-based
cryptosystems,” in IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, pp. 2927–2931,
2021.

[6] B. F. C. M. S. Ansari and J. Han, “An improved
logarithmic multi- plier for energy-efficient neural
computing,” in IEEE Transactions on Computers, vol.
70, pp. 614–625, 2021.

[7] T. C. M. I. Mary Christina Joy, Ansa Jimmy,
“Modified 16 bit carry select and carry bypass adder
architectures for high speed opera- tions,” IEEE
International Conference for Innovation in
Technology, vol. 70, 2021.

[8] R. S. Waters and E. E. Swartzlander, “A reduced
complexity wallace multiplier reduction,” in IEEE
Transactions on Computers, vol. 59, pp. 1134–11,
2020.

[9] P. Patali and S. T. Kassim, “An efficient architecture
for signed carry save multiplication,” IEEE Letters of
the Computer Society, vol. 3, 2020.

[10] P. Pramod and T. K. Shahan, “High throughput fir
filter architec- tures using retiming and modified csla
based adders,” IET Circuits Devices Syst.,, vol. 13, p.
1007–1017, 2019.

[11] M. I. K. T. T. U. H. Baba, T. Yang and T. A. Sato, “A
low power and small-area multiplier for accuracy-
scalable approximate computing,” Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, p. 569–574, 2018.

[12] D. M. R. Katreepalli and T. Haniotakis, “A power-
delay efficient carry select adder,” 2nd International
Conference for Convergence in Technology, pp.
1234–1238, 2017.

[13] R. C. D.K. Patel and M.Saxena, “Design of fast fir
filter using compressor and carry select adder,” 3rd
International Conference on Signal Processing and
Integrated Networks, pp. 460– 465, 2016.

[14] K. G. Hepzibha and C. P. Subha, “A novel
implementation of high speed modified brent kung
carry select adder,” 10th International Conference on
Intelligent Systems and Control, pp. 1–5, 2016.

[15] B. K. B. S. R. Bala Sai Kesava, B. Lingeswara B.
E. Studen and

N. U. Kumar, “Low power and area efficient
wallace tree multiplier using carry select adder
with binary to excess-1 converter,” Confer- ence
on Advances in Signal Processing (CASP)
Cummins College of Engineering for Women,
pp. 9–11, 2016.

 [16] N. K. Aniline Reeta, “High performance fir
filter using carry select adder to reduce area, delay,”
International Journal of Electrical and Electronics
Engineers, ISSN- 2321-2055, vol. 07, 2015.

 [17] V. G. R. Ashwini A. Lokhande, “Design and
implementation of fir filter using carry select adder,”
International Journal of Science and Research, vol. 4,
2015.

[18] P. Y.B.Prasad, G. Chokkakula and N.R.Samhitha,
“Design of low power and high speed modified carry
select adder for 16 bit vedic multiplier,” International
Conference on Information Communica- tion and
Embedded Systems, 2014.

9

10

