
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Sep-2023)

http://dx.doi.org/10.12785/ijcds/140184

REST-API based DDoS Detection Using Multi Feature Hybrid
Classification in the Cloud Architecture

Beenish Habib 11 and Farida Khursheed 12

1Department of Electronics and Communication, National Institute of Technology Srinagar, India
Received 5 Jun. 2022, Revised 27 Aug. 2023, Accepted 19 Sep. 2023, Published 22 Sep. 2023

Abstract: Cloud services are often delivered through HTTP protocol for ease and reduced cost for both service providers and users.
The only drawback is that these protocols and the cloud itself are more prone to Distributed Denial of Service (DDoS) attacks. There
is the need for a detection setup that is lightweight, robust and easily deployable on these architectures with an improved efficiency.
We thus propose a novel multi-feature hybrid classification based DDOS detection setup that uses the Representational State Transfer
(REST)-Application Programming Interface (API) for the attack prediction. The cloud architectures we are using are Heroku, one of
the first developed platform as a service (paas) computing platform by salesforce and Amazon Elastic Compute Cloud, one of the
most sought after and on-demand infrastructure as a service (iaas) computing platform by amazon. The GitHub repository holds the
pre-trained hybrid classifier in its repository which is accessed using the REST-API by the cloud. The HTTP request and response
commands are sent to the cloud architecture through the Postman API client where the final attack prediction is done. This makes our
cloud burden free as the detection is done outside its domain. The hybrid classifier here is the integration of Random Forest classifier,
Decision Tree classifier, Support Vector Machine and XGBoost classifier, all trained on the pre-processed Knowledge Discovery in
Databases (KDD) Cup 99 and UNSW-NB15 datasets. Here we are also using two different feature ranking methods i.e., statistical
feature ranking and machine learning ranking. It shows the best accuracy results with information gain on KDD Cup 99 dataset and
decision tree classifier on UNSW-NB15 dataset as the feature selection technique.

Keywords: Network security, Denial of Service Attacks, Cloud Computing, SaaS, Rest-API, Machine learning

1. INTRODUCTION
As the use of internet cloud services has grown, there

has been an increased need to secure these services from in-
truders and other threats. The Distributed Denial of Service
(DDoS) attack is one of the main security concerns that has
grown significantly over the past recent years [1]. The attack
is achieved by sending a large volume of network traffic
by exploited systems called bots or zombies [2]. These
attacks exhaust the resources and makes the cloud services
unavailable to users [3]. This even cause a huge financial
loss with a loss of confidential and critical resources among
the other concerns. By June 1, 2022 Google Cloud Armor
was targeted with a series of HTTP DDoS attack peaking at
46 million request per second [4]. This was the largest layer
7 DDoS attack reported to date. The attack was at least 76
percent larger than the previously recorded. As per report
of 2022, the HTTP DDoS attacks has increased by 111
percent than previous year with reports of ransom DDoS
attack increased by 67 percent [5].

Cloud computing is the most popular platform that
renders many essential services to the IT sector at a very
low cost. A lot of computing and storage resources are
transferred to users by large data centers and servers of

a cloud [6]. To make cloud architecture robust and scalable
the resources are exchanged via the internet. The internet
in itself is a very vulnerable place for different attacks
and threats especially the DDoS attack. For example, in
2018, Amazon Web Services (AWS) suffered a massive
DDoS attack that affected the availability of its services
in the US-East region [7]. In the same year, Rackspace, a
leading cloud hosting provider, was also targeted by a DDoS
attack causing a lot of financial loss. DDoS attack is one of
the most serious issue a cloud is facing today. The DDoS
attacks is a multi-vector attack and everyday a new attack
comes under the headline. The Shrew attack is a type of
man-in-the-middle attack that seeks to disrupt the Transmis-
sion Control Protocol (TCP) by injecting false packets into
the communication stream. The RoQ (Reduction of Quality)
attack is a type of DDoS attack that seeks to reduce the
quality of service provided by a targeted website or service
by overwhelming it with traffic. The LoRDAS (Low-Rate
DDoS attack against application servers) is a type of DDoS
attack that targets application servers with a low rate of
traffic in an attempt to disrupt their function. EDoS (Eco-
nomic Denial of Sustainability) is a type of DDoS attack
that exploits the elasticity and auto-scaling capabilities of
cloud computing to try to overwhelm a targeted website or

E-mail address: beenish 05phd17@nitsri.net, fklone@nitsri.net http:// journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140184
http://journal.uob.edu.bh


1076 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

service [8]. According to the recent survey a traditional web
application faces about 800 concurrent user sessions under
a DDoS attack in just a 15-minute timeframe with cloud
hosted web application crashing at approx. 3000 concurrent
user sessions under the 20-minute time frame [9].

Most of IDS (Intrusion Detection Systems) dealing
with cloud security are knowledge based (signature based),
anomaly-based or the hybrid-based detection systems. There
is client puzzle, IP-marking, IP-Traceback, Filters (Sensor
Filter, Hop-Count Filter, IP Frequency Divergence Filter,
Puzzle resolver Filter, Double Signature Filter) and many
other techniques for analysing these DDoS attacks . Ma-
chine learning (ML) and deep learning (DL) techniques
have been widely used in recent years for detecting and
mitigating DDoS attacks [10], [11]. The other being statisti-
cal methods, shallow machine learning, quantum computing
and artificial intelligence [12], [13], [14], [15]. Most of the
statistical approaches like entropy variations and correlation
take a lot of time in execution throughout the DDoS attack
detection process. They thus find less usage in real time set-
ups due to their slow computations [16]. Shallow machine
learning algorithms on the other hand take less time during
training, but they take a lot of time in testing [17]. The
quantum computing is promising in many areas like arti-
ficial intelligence, cyber-security and medical research and
have proven to be efficient in solving decision problems,
quantum search and game theory. The only limitation of it
being less efficient in intrusion detections. Machine learning
and deep learning approaches have proven to be far efficient
in detection of DDoS attack with higher efficiency.

With the progress in science and technology, there is
also increase in the complexity of contemporary decision
problems and their solutions. One of the promising areas
of research nowadays focuses on merging the classifiers as
multiple classifiers, ensemble or as a hybrid system [18].
In multiple classifiers we have more than one classifier
working collectively. If the architecture of the classifiers is
same it is the ensemble system and if different architectures
work collectively, we term it as hybrid classification. By
combining the predictions of multiple classifiers, a hybrid
classifier is able to achieve better performance than a
single classifier, particularly in situations where the data
is complex or noisy. Hybrid classifiers are also effective at
detecting and mitigating DDoS attacks, as they can analyze
large amounts of data in real-time and identify patterns and
characteristics that may indicate an ongoing attack.

The goal of the proposed work is to design a DDoS
attack detection system that is both effective and compatible
with cloud architecture. Striking a balance between simplic-
ity and effectiveness can be a challenge when designing a
DDoS detection system, as it is important to have a system
that is able to accurately distinguish between normal and
attack traffic, but at the same time, it should not be too
complex or resource-intensive to be practical for use in a
cloud environment. In our proposed work the cloud only

hosts the hybrid classifier while the detection is done by a
third-party API client.

2. RelatedWork
Tarun Karnwal in 2012 conference paper [19] “A

Comber Approach to Protect Cloud Computing against
XML DDoS and HTTP DDoS attack” proposes a virtual
cloud defender that is designed to protect cloud computing
environments against DDoS attacks that use HTTP, XML,
and REST protocols. The service, known as the filtering
tree, operates as a service broker within a Service-Oriented
Architecture (SOA) model. G Leaden [20] proposes design
and implementation of a honeypot disguised as a REST-
API in the conference paper ”An API honeypot for DDoS
and XSS analysis, 2017”. It presents analyses of both a
distributed denial of service (DDoS) attack and a cross-
site scripting (XSS) malware insertion attempt against this
honeypot.

In 2019, IEEE World Congress on Services Obaid
Rehman et al [21] gave the insight of how Software Defined
Network (SDN) interfaces that involve application layer,
control and data forwarding layers are connected via the
API. The applications use several Application Programming
Interfaces such as Java API to communicate locally with the
controller or representational state transfer (REST) API for
remote communication with the controller.

Raja Majid Ali Ujjan et al [22] in 2020 research article
“Towards sFlow and adaptive polling sampling for deep
learning-based DDoS detection in SDN” showed how SDN
Ryu controller centrally controls VM2 to install sampling
policies and other network manipulations via the REST-API
configuration. In 2022 Madhura Shekhar Potnis et al [23],
proposed “Hybrid Intrusion Detection System for Detecting
DDoS Attacks on Web Applications Using Machine Learn-
ing”. They used the API tier of REST-APIs (one for each
REST service) and Flask APIs to access the trained models
for both anomaly and signature-based DDoS detection.

Most of the research work till now, focuses on the usage
of REST-API with SDN architecture and layers that co-
ordinate through it. None of the research work is proposed
on the application of REST-API for the detection of DDoS
attack. We tried to co-ordinate the REST-API with the
hybrid machine learning model for the cloud defense. This
sets as the application of a trained machine learning model
in a real-world system. Machine learning algorithms are
now finding increased usage in data mining applications
mainly to retrieve the important information for the decision
making [24]. These methods may be classification, associ-
ation, clustering, regression analysis based or rule, decision
tree and neural network based among others.

Each machine learning model work independently and
target different domains. Combining them gives better
performance than the rest of the models. Hybrid models
also reduce individual limitations of basic models and
exploit their different generalization mechanisms [25]. An

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1077

Figure 1. Proposed Hybrid-Machine Learning Classifier.

overwhelming majority of classifier ensembles are cur-
rently constructed based on the homogeneous base classifier
model [26]. The ensemble learning model for homogeneous
individual classifiers though cannot satisfy the needs of
the higher ensemble performance while the heterogeneous
multi-classifier ensemble learning owns more remarkable
and more predominant generalization performance than the
homogeneous multi-classifier ensemble learning [26]. The
classifiers in an ensemble should be different from each
other to increase the gain [27]. These differences cover
diversity, orthogonality, and complementarity [28].

3. Proposed Architecture
Figure 2 gives the idea of the strategic framework of

our proposed DDoS detector via the REST-API using a
hybrid classifier. The hybrid classifier we have used is the
amalgamation of four best machine learning classifiers i.e.,
Decision Tree classifier, Random Forest classifier, XGBoost
classifier and Non-Linear SVM. The integration of these
classifiers has the best attribute selection, best detection
capabilities and best representation of the attack detection.
The domain of the hybrid classifier involves both the
classification as well as regression. The strength of weak
classifiers is enhanced by the ensemble classifiers and the
two well-known ensemble classifiers are Random Forest
model (bagging model) and XGBoost model (extreme gra-
dient boosting model).

There are many different ways to combine the pre-
dictions of multiple classifiers in a hybrid model. Some
common methods include:

A. Majority voting
In this method, the final prediction is based on the

majority vote of the base classifiers.

B. Weighted voting
In this method, each base classifier is assigned a weight,

and the final prediction is based on the weighted sum of the
votes of the base classifiers.

C. Stacking
In this method, the predictions of the base classifiers

are used as features to train a second-level classifier, which
makes the final prediction. In our proposed architecture fig-
ure 1, we stack two weak learners i.e., decision tree

classifier and non-linear SVM with two strong ensemble
learners i.e., Random Forest and eXtreme Gradient boosting
(XGBoost) classifier. We use the term hybrid as this is a het-
erogeneous collection of both weak and strong learners. All
the four machine learning models are trained individually
and then collectively for improved performance. We take
two different datasets; one is KDD Cup 99 and other as
UNSW-NB15. Both the datasets are well known datasets
used for intrusion detection. While KDD Cup 99 dataset
is an old dataset, UNSW-NB15 is the most recent one.
Both the datasets are pre-processed and balanced before
being used for training the machine learning models. All
the machine learning models are trained on two different
feature selection techniques. The feature selection is done
based on statistical ranking and machine learning ranking
i.e., information gain and decision tree ranking respectively.
The top four classifiers with maximum efficiency are then
selected for designing our hybrid classifier.

The DDoS detection approach is robust and lightweight
as it uses a pre-trained hybrid machine learning model. This
makes it easily deployable on multiple platforms may that
be a cloud, a traditional client-server or any networking
device. In our proposed work we checked the performance
of our DDoS detector using two different cloud platforms.
We use a platform as a service (paas) cloud platform,
Heroku developed by salesforce and infrastructure as a
service (iaas) cloud platform, Elastic Compute Cloud (EC2)
by Amazon Web Service (AWS). They emulate most of
the attributes of high-end processor requirements that are
functional through APIs accessed through HTTP.

Both the cloud platforms host the pre-trained hybrid
classifier deployed on a GitHub repository and accesses
it via the REST-API. The HTTP request and responses
are sent via the third-party client, Postman, which predicts
the attack based on the hybrid machine learning model
algorithm. The proposed detection system consists of four
main steps: data pre-processing, feature selection, classifi-
cation based on hybrid trained machine learning model and
predicting the DDoS attack on a cloud via the REST-API.
The classifier is selected based on confusion matrix scores,
i.e., accuracy, false alarm rate (FAR), sensitivity, specificity,
false-positive rate (FPR), F1 score, and area under curve
(AUC) analysis. The main contributions of this paper can
be summarized as follows:

1. A lightweight DDoS attack detection system is pro-
posed for DDoS defence in two different cloud architec-
tures, Heroku (paas) and Amazon EC2 (iaas) stored in the
GitHub repository. The detector is accessed by these cloud
architectures through the REST-APIs.

2. We use ensemble feature selection technique i.e.,
both statistical feature ranking as well as machine learning
ranking to get the best features for model training.

3. A highly efficient hybrid machine learning classifier is
adopted comprising four highly efficient machine learning

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1078 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

Figure 2. Proposed Algorithm-Framework of REST-API based
DDoS Detector Using Hybrid Machine Learning Classifier.

models i.e., Decision Tree, Random Forest, XGBoost and
Support Vector Machine for the DDoS attack detection.
The hybrid machine learning model is pre-trained on the
pre-processed dataset and holds the maximum detection
efficiency.

4. We have an easy access and prediction of attack
through a simple request and response command sent via
the client-server architecture.

4. Model pipeline
The model pipeline defines the course of data processing

done before it is being used and analyzed for training the
machine learning model. Data we use for model training
is first pre-processed to be used for exploratory data anal-
ysis (EDA). The analysis finds the appropriate relationship
between the required variables. This step is crucial for
selecting the correct machine learning models for our hybrid
classifier and further evaluating the prediction done by
it. The top 10 ranking features of both datasets used for
training the machine learning model are selected using
Information Gain (statistical) and Decision Tree classifier
(machine learning) based scores. We then divide the dataset
and label set into training and testing set with a 70:30 mar-
gin. The variables, weights and bias are initialized before
proceeding to training the machine learning models. The
maximum performing parameters are determined using the
GridSearchCV technique. Figure 2 illustrates the algorithm
framework for API based DDoS detection using the trained
hybrid machine learning model.

A. Data Pre-Processing
Both datasets are imbalance datasets and requires pre-

processing [29]. For KDD Cup 99, about 108,927 pack-
ets are attack packets of 1,048,575 which corresponds
10 percent as attack class and 30 percent as normal
class. For UNSW-NB15, Normal attacks are represented
using 2,218,761 records while Fuzzers, Analysis, Back-
doors, DoS, Exploits, Generic, Reconnaissance, Shellcode
and Worms signatures include 24246, 2677, 2329, 16535,
44525, 215481, 13987, 1511, and 174 records, respectively
[30]. Consequently, there is considerable lack of balance for
the dataset as 87% of the dataset comprises normal records
whereas only 0.007% of the dataset consists of worms’
records [31]. This skewness causes biased results. Though
this is actual representation of real-world traffic but causes
the machine learning training to be biased figure 3. We
use oversampling and undersampling technique to balance
both the datasets. We also go through the following pre-
processing stages before being trained by machine learning
models which involve:

B. Data cleaning and transformation
Handling missing undefined data is essential in data pre-

processing part as they could lead to faulty results. The null
values are eliminated and undefined data is equaled to zero
[32]. Also, some features are transformed to numeric, float
or integer values depending on the format that works well
with a particular machine learning model.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1079

Figure 3. Class Imbalance in KDD Cup 99 and UNSW-NB15 .

C. Data Normalization
To scale the features in the same range, we use nor-

malization. The continuous values on the dataset have large
difference in their values and can lead to prediction errors.
We use min-max scaling as our normalization technique
[33]. This method rescales the range of feature value to
0 and 1. The standardization method (z-score) scales the
features to have a mean value 0 and standard deviation 1.
This method makes the approach less susceptible to outliers.

χsc =
χ − χmin

χmax − χmin
. (1)

The standardization is given by,

σ =

√∑n
i=1(xi − µ)2

N − 1
. (2)

Where σ denotes the standard deviation, xi denotes the
feature value, N denotes the number of training samples
and µ represents the mean which is given by,

µ =

∑n
i=1 xi

N
. (3)

D. Class Balance
We distribute the classes to have them both in same dis-

tribution using over-sampling or undersampling techniques.
This way no class is biased with respect to the other.

E. Label Conversion
We have the labels set for the binary classification as

normal network traffic and DDoS/Attack traffic. Both these
labels can mathematically be represented by a function f(y),
where y denotes the data label.

F(y) = Normal, f ory (4)

F. Exploratory Data Analysis
Here we check the features and their dependency by

visualizing the data patterns. We use either statistical or
graphical analysis to summarize the main characteristics.
The data visualization techniques we can use include prin-
cipal component analysis (PCA) or t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique. They both check
the patterns between the classes to predict without modeling
which algorithms are going to perform better on the data.
Here we have used T-SNE for dimensionality reduction in
both datasets figure 4.

G. Feature and Model Selection
Feature selection is the first step of any model training.

It selects the features in the dataset that contributes most to
the prediction variable or output in which we are interested
[34]. Having irrelevant features in the dataset can contribute
to reduced accuracy scores and we need to remove them
beforehand. There are many benefits of doing feature selec-
tion before modeling machine learning models. It reduces
over-fitting, improves modeling accuracy and decreases the
training time.

1) Information-Gain Test
Features are selected based on Information Gain scores.

Information Gain score-based features give better accuracy
than other statistical measures for it directly measures
the entropy or randomness measures. The top ten scoring
features for both datasets are given in the table I. Equation 5
is the formula for calculating the entropy of a feature X.
Equation 6 is the formula for calculating the conditional
entropy of a feature X given a class label Y.

(X) = −ΣiP(xi) log(2P(xi)) (5)

H(X|Y) = −Σ jΣiP(x j|yi) log(2P(x j|yi)) (6)

IG(X|Y) = H(X) − H(X|Y) (7)

2) Decision Tree Test
The Decision Tree (DT) is a machine learning algorithm

that is often used for feature selection in classification
problems [35]. It works by constructing a tree-like model
of decisions based on the features of the data. The internal
nodes of the tree represent decisions based on the values of
the features, and the leaf nodes represent the class labels of

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1080 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

TABLE I. Top 10 significant features and their scores with IG testing.

KDD99 UNSW-NB15
Features IG scores Features IG scores

src bytes 0.445262 ct state ttl 0.661290
count 0.435637 sttl 0.653078

service 0.397823 dttl 0.640302
dst bytes 0.368835 dbytes 0.611305

dst host same src port rate 0.276318 smeansz 0.602808
srv count 0.247668 Stime 0.562286

dst host count 0.223360 dmeansz 0.561209
protocol type 0.221617 Dpkts 0.555514

dst host srv diff host rate 0.185189 dmeansz 0.485649
dst host srv count 0.129100 Dpkts 0.437280

the data (Figure 5). DTs can be used to identify the most
important features in a dataset by ranking them based on
their importance in the decision-making process. DTs are
often used as part of an ensemble classifier, which combines
the predictions of multiple classifiers to make a final predic-
tion. In the proposed DDT detection setup, DTs are used
as part of the hybrid classifier, which combines multiple
classifiers to improve the accuracy of attack predictions.
The top 10 features with the highest importance score are
identified using DTs on both the KDD Cup 99 and UNSW-
NB15 datasets table II.

5. Model Deployment and Experimental Set-Up
The proposed architecture is set up in Anaconda-

Jupyter-Python framework with a GPU base. We are using
two cloud architectures, Heroku (as platform as service
model) and Amazon web services (as infrastructure as ser-
vice model) with Postman as third-party REST-API client.
For training of our machine learning models, we are using
pre-trained hybrid classifier trained on two datasets, KDD
cup 99 and UNSW-NB 15 with different attack size, features
and performance metrics. The other configuration details are
given in table III below.

A. Setting Hyper-Parameter Values and Training Hybrid
Machine Learning Model
For the model selection we need to check on highest

performing machine learning model based on various per-
formance analysis measures. We have trained and tested
all the major machine learning models, optimized their
performance by using various hyper-parameter optimization
techniques. The accuracy score of Decision Tree, Random
Forest, XGBoost and non-linear SVM is better than the
rest and we use these four models for our hybrid machine
learning classification. The hybrid classifier selects the best
performance among the four best performing models to be
used for our proposed DDoS detection set-up. The detection
parameters of each machine leaning models is detailed
in table IV below.

From table IV, V, and VI, we can see that different ma-
chine learning models have different set of hyper-parameters
and accuracy scores on different datasets and feature se-

lection techniques. From the results we infer that hybrid
classifier selects the best of the classifier performance for
the final prediction. For KDD Cup 99 the hybrid classifier
has the same performance as that of XGBoost classifier
and for UNSW-NB15, it has same performance as that
of Random Forest classifier. Both XGboost and Radom
Forest classifier have the highest accuracy score among
all the other trained machine learning models. In hybrid
learning we use amalgamation of heterogenous classifiers
for improved performance using either majority voting or
simply appending the common highest performance scores
of individual classifiers while training. We use the latter in
our proposed work.

B. Serialization
We serialize and de-serialize python object structures

(our machine learning models) using picking process also
called as marshaling or flattening [36]. We convert these
machine learning classifiers as python object in memory to
a byte stream that can be stored on a disk or could be sent
over a network. Thus, is different from the JSON format
where we convert the data to a human readable format. We
then retrieve the python object from the character stream
using de-serialization. This is thus the transformation of
python object which is stored as data in Random Access
Memory (RAM) to the byte stream and vice versa. This
is an important part of rendering the availability machine
learning models as per our requirement for any real time
DDoS detection.

6. Cloud architectures
For attack prediction of our proposed DDoS detection

model, we use two different cloud architectures i.e., Heroku
and Amazon EC2. Heroku is a platform as a service
(PaaS) cloud platform, which means that it provides a
complete platform for developing, running, and managing
applications, including the infrastructure, runtime environ-
ment, and other services such as databases and messaging
[37]. Heroku is designed to be easy to use and requires
minimal configuration, making it a popular choice for de-
velopers who want to get their applications up and running
quickly [37]. Amazon EC2 (Elastic Compute Cloud) is an
infrastructure as a service (IaaS) cloud platform, which

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1081

TABLE II. Top 10 significant features and their scores with Decision Tree testing.

KDD99 UNSW-NB15
Features Decision Tree scores Features Decision Tree scores

count 0.881905 ct state ttl 0.976662
flag 0.030078 is sm ips ports 0.006275

src bytes 0.024445 sbytes 0.004351
dst bytes 0.021507 synack 0.002840

dst host srv diff host rate 0.015716 Ltime 0.002473
service 0.010178 Stime 0.002241

wrong fragment 0.007232 smeansz 0.001604
dst host same src port rate 0.002349 dsport 0.000728

dst host diff srv rate 0.001665 Spkts 0.000600
rerror rate 0.001184 ct srv dst 0.000577

TABLE III. Configuration Details of Proposed DDoS Detection Set-up.

Project Environment
Operating System Ubuntu 18.04 LTS

Python Python 3.10.9
Anaconda 4.10.3

Jupiter Notebook Version 6.3.0
Sci-kit Learn 0.24.1

Mlxtend 0.18.0

Cloud Architectures
Heroku and Amazon EC2 for hosting our proposed DDoS detector and
Google Colab Pro with GPU accelerator and high RAM for training
our machine learning models.

API Platform Postman v9.4
Repository GitHub

means that it provides raw computing resources that can
be used to build and run applications and services [38].
With EC2, users have more control over the underlying
infrastructure, including the choice of operating system,
runtime environment, and other software components. EC2
is more flexible than PaaS platforms like Heroku, but also
requires more setup and configuration [38].

Both Heroku and Amazon EC2 can be used to host
applications and services for DDoS attack prediction, de-
pending on the specific requirements of the application and
the needs of the userTop of FormBottom of Form.

A. Heroku and HTTP Routing
Heroku uses both public and private APIs to render

services to various users and customers [37]. APIs can also
be used for defence too for the Distributed Denial of Service
attacks that happen on a cloud architecture especially HTTP,
XML or even REST based DDoS attacks. We use Heroku
as our platform as a service cloud platform. It was the first
cloud platform developed by salesforce and dates back to
2007. What makes it a robust cloud platform is that the
developer that it uses to build and run the applications,
supports multiple programming languages. Thus, it is also
known as polyglot cloud platform. Applications that run
on Heroku have a unique domain which routes the HTTP
requests to the correct application container which we call
as dyno. We type the application URL or makes a request to

it via an API, to route to the persistent location that hosts our
DDoS detection application ( figure 6). This is done using
Heroku router which is actually a software and a gateway
between the users and dynos hosting an application.

B. Amazon EC2 deployment with DDoS detector
Amazon Elastic Compute offers the most efficient and

multifaceted platform with over 500 instances of computing
resources (figure 7). The resources range from storage,
networking, operating systems to machine learning and
mobile developing tools [38]. AWS is the major cloud
service provider that supports INTEL, AMD and arm pro-
cessors [39]. It has an on demand EC2 instances with
over 400 Gbps ethernet networking. It provides on demand
cloud platforms and APIs to individuals, companies and
government agencies on a metered and pay-as-you-go basis.

The EC2 provides the scalable deployment of multiple
applications through web-services which one can boot as
Amazon Machine Image (AMI) to finally configure a virtual
machine or an instance. The services are functional through
APIs and that are accessed over HTTP protocol using the
REST architectural style (with SOAP protocol for older
APIs and JSON for new). These APIs are accessed by the
client in various ways including AWS console (a website),
SDKs (python/java) or making direct REST calls. Here in
our proposed architecture, we access the AWS resources
through the REST calls. To deploy our DDoS detection

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1082 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

TABLE IV. Hyper-Parameters of all the major machine learning models.

Classifier Hyper P- Grid Search Maximum Performing Features
aramete-

rs CV At-
tributes Information Gain Decision Tree Classifier

Logistic Maximum Classifier, Hyper-, KDD: (’C’: 1, KDD: (’C’: 0.1,
Regression Iterations Parameters Cross val- ’max iter’ 100) ’max iter’: 100)

Penalty idation fold Scoring UNSW-NB15: (’C’ UNSW-NB15: (’C’:
Parameter metric = accuracy : 1, ’max iter’: 100) 1, ’max iter’: 100)

Decision Maximum Classifier, Hyper- KDD: (’max depth’: KDD: (’max depth’:
Tree Depth and Parameters, Cross val- None, ’min samples split’ None, ’min samples split’

classifier Minimum idation fold, Scoring : 2) UNSW-NB15: : 2) UNSW-NB15:
Sample metric = accuracy (’max depth’: None, (’max depth’: None,

Split ’min samples split’: 2) ’min samples split’: 2)
SVM Kernel Classifier, Hyper-, KDD: (’kernel’: ’rbf’) KDD: (’kernel’: ’rbf’)

function Parameters Cross vali- UNSW-NB15: UNSW-NB15:
[linear, dation fold, Scoring (’kernel’: ’poly’) (’kernel’: ’rbf’)

poly, rbf] metric = accuracy
KNN Number Classifier, Hyper- KDD Cup 99: k=3 , UNSW-NB15: k=3

of neig- Parameters, Cross
hbors validation fold, Scor-

ing metric = accuracy
Random Number Classifier, Hyper- KDD:(’criterion’: ’ent- KDD:(’criterion’: ’
Forest of estim- Parameters, Cross Sco- ropy’ ’max depth’: 20, gini’, ’max depth’: 30,

Classifier ators, max- ring metric = accuracy ’n estimators’: 100) ’n estimators’: 100 UNSW
imum and UNSW-NB15: (’criterion’ -NB15: (’criterion’
criterion : ’max depth’: 50, : ’entropy’ ’max depth’

[Gini, En- ’n estimators’: 100) : 50, ’n estimators’: 100)
tropy]

XGBoost Maximum Classifier, Hyper- KDD: (’max depth’: 7) KDD: (’max depth’: 7)
Depth Parameters, Cross Sco- UNSW-NB15: (’ UNSW-NB15: (’max

ring metric = accuracy max depth’: 7) depth’: 7)

app on an Amazon EC2 instance, we need to follow certain
steps. Here is a brief summary of each step:

1) Create an AWS account and set up an EC2 instance
This is a virtual server in the cloud that we can use to

host your app.

2) Choose an AMI and add storage
An AMI (Amazon Machine Image) is a pre-configured

virtual machine image that we can use to launch an EC2
instance. We need to choose an AMI that meets the require-
ments of our app, and then add the necessary storage to the
instance.

3) Add tags and configure security groups
We can use tags to identify and organize our EC2

instances. We will also need to configure security groups,
which specify rules for accessing the instance.

4) Clone the app from the GitHub repository to the EC2
instance and access the instance through the SSH client
Once we have set up the EC2 instance, we can clone

the app from its GitHub repository onto the instance. We
can then use an SSH client to access the instance and run

the app. Here 43.206.226.128 is the public IPv4 address of
the instance.
URL: ssh - i ”vs-flask-hybrid.pem” @ ec2-43-206-226-
128.ap-northeast -1.compute.amazon aws.com

C. API testing using Postman
APIs provide a set of standardized methods for ac-

cessing and interacting with a system or service, and they
can be used to facilitate communication between different
applications or components. Web services are a way for
different systems or devices to communicate over the inter-
net or other networks. SOAP and REST are two common
architectures for implementing web services. SOAP is based
on XML and is typically used for more complex and secure
communication, while REST is based on HTTP and is
usually used for simpler, more lightweight communication
[40].

Postman is a tool that allows developers to test and
work with web services, particularly APIs (Application
Programming Interfaces) [41]. It allows developers to send
HTTP requests and view the responses from the server
( figure 8). It’s a useful tool for testing and debugging
APIs, as well as for documenting and sharing APIs with

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1083

TABLE V. Performance scores of machine learning models and hybrid classifier on KDD Cup 99 dataset with Information Gain as feature selection
technique.

S. No Classif- Accura FAR Sensitiv- Specifi- FPR (%) AUC (%) Precis- Rec- f1
ier cy (%) (%) ity (%) city (%) ion all

0 Logistic 99.7348 0.26 99.1240 100.000 0.000 99.5620 1.000 0.99 0.99
Regression 65 5135 88 000 000 44 000 1241 5601

1 Decision 99.955811 0.04 100.00 99.936 0.063371 99.968314 0.998542 1.00 0.99
Tree Cl- 4189 0000 629 0000 9271
assifier

2 Linear 99.734865 0.26 99.270 99.936 0.063371 99.603351 0.998532 0.99 0.99
SVM 5135 073 629 2701 5608

3 Gauss- 99.779054 0.22 99.270 100.000 0.000000 99.635036 1.000000 0.99 0.99
ianNB 0946 073 000 2701 6337

4 KNN 99.779054 0.22 99.270 100.000 0.000000 99.635036 1.000000 0.99 0.99
0946 073 000 2701 6337

5 Random 99.911622 0.08 99.854 99.936 0.063371 99.895322 0.998540 0.99 0.99
Forest Cl- 8378 015 629 8540 8540

assifier
6 XGB Cla- 99.955811 0.04 100.000 99.936 0.063371 99.968314 0.998542 1.00 0.99

ssifier 4189 000 629 0000 9271
7 SVM (po- 99.911622 0.08 99.708 100.000 0.000000 99.854015 1.000000 0.99 0.99

lynomial) 8378 029 000 7080 8538
8 Hybrid 99.955811 0.04 100.000 99.936 0.063371 99.968314 0.998542 1.00 0.99

Model 4189 000 629 0000 9271

TABLE VI. Performance scores of machine learning models and hybrid classifier on UNSW-NB15 dataset with Decision Tree as feature selection
technique.

S. No Classif- Accura FAR Sensitiv- Specifi- FPR AUC (%) Precis- Recall f1
ier cy (%) (%) ity (%) city (%) (%) ion

0 Logistic 98.591593 1.40 98.169 99.014 0.98 98.592323 0.990097 0.981699 0.98
Regression 8407 898 748 5252 5880

1 Decision 99.866162 0.13 99.871 99.861 0.13 99.866154 0.998617 0.998711 0.99
Tree Cl- 3838 054 254 8746 8664
assifier

2 Linear 98.165959 1.83 97.066 99.268 0.73 98.167860 0.992550 0.970669 0.98
SVM 4041 866 855 1145 1487

3 Gauss- 97.019002 2.98 95.028 99.016 0.98 97.022446 0.989789 0.950286 0.9
ianNB 0998 586 307 3693 6963

4 KNN 97.019002 2.98 95.028 99.016 0.98 97.022446 0.989789 0.950286 0.96
0998 586 307 3693 9635

5 Random 99.928412 0.07 99.950 99.906 0.09 99.928375 0.999068 0.999503 0.99
Forest Cl- 1588 286 463 3537 9286

assifier
6 XGB Cla- 99.819475 0.18 99.843 99.795 0.20 99.819434 0.997966 0.998431 0.99

ssifier 0525 090 778 4222 8198
7 SVM (po- 99.896509 0.10 99.951 99.840 0.15 99.896414 0.998417 0.999518 0.99

lynomial) 3491 839 988 9012 8967
8 Hybrid 99.928412 0.07 99.950 99.906 0.09 99.928375 0.999068 0.999503 0.99

Model 1588 286 463 3537 9286

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1084 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

Figure 4. Data Reduction using T-SNE.

Figure 5. Decision Tree Architecture.

Figure 6. Heroku-Postman Architecture.

Figure 7. Amazon Web Service – Products and Services.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1085

Figure 8. Client-Server Request and Response Structure.

other developers.

1) Request
When a request is sent to an API, it includes the

complete URL, HTTP headers, and a body or payload [42].
The API processes the request and sends a response back to
the client, which includes an HTTP status code indicating
whether the request was successful, and a JSON response
that contains the data requested by the client. The JSON
response can also include additional information such as
error messages or metadata ( figure 8).

2) Response
HTTP responses contain the status line, headers, and

message-response body. The status line includes the HTTP
status code, which indicates the result of the request [43]
( figure 8). There are several categories of HTTP status
codes, each with a specific meaning:
1. 1XX codes: These are informational codes that are used
to communicate intermediate steps in the request process.
2. 2XX codes: These are success codes that indicate that
the request was successful. This includes the 200 OK code,
which is the most common success code.
3. 3XX codes: These are redirection codes that are used
when a client’s request is redirected to a different URL.
4. 4XX codes: These are error codes that are returned
when the client’s request has an error. The most common
4XX codes are 400 Bad Request, 401 Unauthorized, 403
Forbidden, and 404 Not Found.
5. 5XX codes: These are server error codes that are returned
when there is an error on the server side. The most common
5XX codes are 500 Internal Server Error and 503 Service
Unavailable. It’s important to handle these different HTTP
status codes appropriately in your API to ensure that the
client understands the result of their request (table VII).

7. Model Performance Evaluation
The main aim of our proposed approach is to classify

the network traffic coming to a cloud as attack and normal.
The performance of the approach is measured with respect
to various metrics which include accuracy, false acceptance
rate, sensitivity, specificity, false positive rate, precision,

recall, F1 score and AUC curve analysis [44]. The hybrid
classifier shows highest accuracy scores when Information
Gain scored features are taken for feature selection with
the highest of 99.955811% on KDD Cup 99 dataset and
99.928412% using UNSW-NB15 dataset with decision tree
as feature selection method (after optimization and balanc-
ing both the datasets) (table VIII)

A. Measuring performance through AUROC analysis
The Receiver Operator Characteristic (ROC) and Area

Under ROC (AUC) is another metric to analyse the perfor-
mance of the classifier [45]. They are the best predictors of
the performance of binary decision problem classifiers. The
ROC curve plots the true positive rate (sensitivity) against
the false positive rate (1 - specificity) at different classifi-
cation thresholds, while the AUC represents the area under
the ROC curve. AUC is a good metric to use when you
want to compare the performance of different classifiers, as
it is independent of the classification threshold. A classifier
with an AUC of 1.0 is considered to be a perfect classifier,
while a classifier with an AUC of 0.5 is considered to be a
random classifier. The hybrid classifier ROC curve analysis
shows that our hybrid classifier is highly efficient among
all the machine learning models (Figure 9). It has the same
performance characteristics as that of XGBoost classifier
for KDD Cup 99 and Random Forest classifier for UNSW-
NB15 as both have highest accuracy score among the rest
of the trained machine learning models. For KDD Cup
99 dataset, the hybrid classifier shows highest performance
when information gain is used as feature selection technique
and for UNSW-NB15 dataset, the hybrid classifier shows
highest performance when decision tree is used as the
feature selection technique.

B. Results and Discussion
In this section we give the insight of obtained results

of our REST-API based DDoS detector. We use Jupyter-
Python framework to code the post requests. We send the
POST request detailing the normal and attack parameters
(of a particular packet) via the REST-API using JSON
format on the cloud URL (Figure 10 and 11). In both POST
requests we get the response of 200 which is a success code.
This means it has been successfully uploaded on the cloud
architecture.

The trained classifier which is stored as a pickle file on
the GitHub repository is accessed and run as application
on the cloud using the REST-API. To check whether our
cloud can predict the packet as being attack or normal
we use the Postman API Testing. Giving it the access to
POST the cloud URL to predict, we get the response in
the JSON format as “Prediction: Attack” which determines
that the packet we used was that of an attack or “Prediction:
Normal” which determines that there is normal traffic on the
cloud (Figure 12).

Same is the case with API testing of Amazon EC2
architecture via the Postman. The response we get predicts

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1086 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

TABLE VII. HTTP responses, URL access and Status Codes values (43.206.226.128 as public IPv4-address of Amazon EC2)

Operation URL Method Success/Failure Status/Code
GET Heroku GET Success 200

https://ddosattack.herokuapp.com/pred Not Found 404
AWS Failure 500

http://43.206.226.128/pred
DELETE Heroku DELETE Success 200 or 204

https://ddosattack.herokuapp.com/pred Not Found 404
AWS Failure 500

http://43.206.226.128/pred
UPDATE Heroku PUT Success 200

https://ddosattack.herokuapp.com/pred Wrong Format/Data 400 or 415
AWS Not Found 404

http://43.206.226.128/pred Failure 500
CREATE Heroku POST Success 200

https://ddosattack.herokuapp.com/pred Wrong Format/Data 400 or 415
AWS Failure 500

http://43.206.226.128/pred

TABLE VIII. Performance metric scores of Hybrid Classifier

Dataset Feature Accura FAR (%) Sensitiv- Specifi- FPR (%) AUC (%) Prec- Rec- f1
selection cy (%) ity (%) city (%) ision all
method

KDD IG Fea- 99.955811 0.044189 100.000 99.936 0.063371 99.968314 0.99 1.00 0.99
tures 000 629 8542 0000 9271

UNSW DT Fea- 99.928412 0.071588 99.950 99.906 0.093537 99.928375 0.99 0.99 0.99
tures 286 463 9068 9503 9286

whether the cloud architecture is under DDoS attack or not
(Figure 13 and 14)

Our proposed model thus makes the use of trained
hybrid machine learning model in DDoS attack detection
on the cloud architectures using the REST-API. By making
the trained classifier available on a GitHub repository, it
can be easily accessed and used by cloud architectures
when needed. This makes the model lightweight, robust,
and easily accessible, with maximum efficiency.

C. Conclusion and Future Work
A very important role of network security is the detec-

tion of DDoS attack. Traditional networks can be complex
and may require more complex set-ups for attack detection.
Our proposed model aims to address this issue by using
a lightweight REST API-based DDoS detector that can be
deployed on platform as a service (PaaS) and infrastructure
as a service (IaaS) cloud platforms using a hybrid machine
learning classifier. The hybrid machine learning model we
used is a combination of four trained heterogeneous classi-
fiers (Decision Tree, Random Forest, XGBoost, and Non-
Linear Support Vector Machine) that have been optimized
and tested on two different datasets. The trained hybrid
classifier is stored in a GitHub repository, and the cloud
architecture accesses it through a third-party client (Post-
man) via a REST API. This allows the cloud architecture to
use the hybrid classifier for DDoS attack detection without

having to host the detection set-up within the cloud itself.
This can help to reduce the burden on the cloud architecture
and ensure maximum performance.

For the future work we can check for further possibilities
of using pre-trained machine learning models or deep neural
networks in other real-world applications. Right now, a sta-
ble cloud architecture and its defense are the most sought-
after research problems around the world which need an
immediate addressal.

References
[1] S. Bhatia, S. Behal, and I. Ahmed, “Distributed denial of service

attacks and defense mechanisms: current landscape and future
directions,” Versatile Cybersecurity, pp. 55–97, 2018.

[2] R. Kesavamoorthy, P. Alaguvathana, R. Suganya, and P. Vignesh-
waran, “Classification of ddos attacks–a survey,” Test Eng. Manag,
vol. 83, pp. 12 926–12 932, 2020.

[3] B. Sudharsan, D. Sundaram, P. Patel, J. G. Breslin, and M. I. Ali,
“Edge2guard: Botnet attacks detecting offline models for resource-
constrained iot devices,” in 2021 IEEE International Conference on
Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops). IEEE, 2021, pp. 680–685.

[4] Google Cloud Blog. (2023) How google cloud blocked
largest layer 7 ddos attack at 46 million rps. [Online].
Available: https://cloud.google.com/blog/products/identity-security/
how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps

http:// journal.uob.edu.bh

https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1087

Figure 9. ROC curves for the Hybrid Classifier

Figure 10. Normal Data Post Request sent via REST-API using
JSON format on the Cloud URL

Figure 11. Attack Data Post Request sent via REST-API using JSON
format on the Cloud URL

Figure 12. Final API based DDoS detection testing via Postman

[5] Cloudflare Blog. (2022) Cloudflare ddos threat report
2022 q3. [Online]. Available: https://blog.cloudflare.com/
cloudflare-ddos-threat-report-2022-q3/

[6] A. A. Khan and M. Zakarya, “Energy, performance and cost efficient
cloud datacentres: A survey,” Computer Science Review, vol. 40, p.
100390, 2021.

[7] D. Radain, S. Almalki, H. Alsaadi, and S. Salama, “A review on
defense mechanisms against distributed denial of service (ddos)
attacks on cloud computing,” in 2021 International Conference of

Figure 13. REST-API based DDoS detection on Amazon EC2 testing
via Postman - NORMAL prediction

http:// journal.uob.edu.bh

https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3/
https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3/
http://journal.uob.edu.bh


1088 Beenish Habib, et al.: REST-API based DDoS Detection Using Multi Feature Hybrid Classification in the Cloud Architecture

Figure 14. REST-API based DDoS detection on Amazon EC2 testing
via Postman – ATTACK prediction

Women in Data Science at Taif University (WiDSTaif). IEEE, 2021,
pp. 1–6.

[8] V. Vedula, P. Lama, R. V. Boppana, and L. A. Trejo, “On the
detection of low-rate denial of service attacks at transport and
application layers,” Electronics, vol. 10, no. 17, p. 2105, 2021.

[9] H. Khandare, S. Jain, and R. Doriya, “A survey on http flooding—a
distributed denial of service attack,” in Pervasive Computing and
Social Networking: Proceedings of ICPCSN 2022. Springer, 2022,
pp. 39–52.

[10] H. Liu and B. Lang, “Machine learning and deep learning methods
for intrusion detection systems: A survey,” applied sciences, vol. 9,
no. 20, p. 4396, 2019.

[11] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine learning and deep learning methods for
cybersecurity,” Ieee access, vol. 6, pp. 35 365–35 381, 2018.

[12] M. Nooribakhsh and M. Mollamotalebi, “A review on statistical
approaches for anomaly detection in ddos attacks,” Information
Security Journal: A Global Perspective, vol. 29, no. 3, pp. 118–
133, 2020.

[13] Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu, and
S. Camtepe, “Ae-mlp: A hybrid deep learning approach for ddos
detection and classification,” IEEE Access, vol. 9, pp. 146 810–
146 821, 2021.

[14] E. Payares and J. C. Martı́nez-Santos, “Quantum machine learning
for intrusion detection of distributed denial of service attacks: a
comparative overview,” Quantum Computing, Communication, and
Simulation, vol. 11699, pp. 35–43, 2021.

[15] B. A. Khalaf, S. A. Mostafa, A. Mustapha, M. A. Mohammed, and
W. M. Abduallah, “Comprehensive review of artificial intelligence
and statistical approaches in distributed denial of service attack and
defense methods,” IEEE Access, vol. 7, pp. 51 691–51 713, 2019.

[16] N. Hoque, H. Kashyap, and D. K. Bhattacharyya, “Real-time ddos
attack detection using fpga,” Computers & Communications, vol.
110, pp. 48–58, 2017.

[17] M. Woźniak, M. Grana, and E. Corchado, “A survey of multiple
classifier systems as hybrid systems,” Information Fusion, vol. 16,
pp. 3–17, 2014.

[18] N. N. Abdulla and R. K. Hasoun, “Review of detection denial of
service attacks using machine learning through ensemble learning,”

Iraqi Journal for Computers and Informatics, vol. 48, no. 1, pp.
13–20, 2022.

[19] T. Karnwal, T. Sivakumar, and G. Aghila, “A comber approach to
protect cloud computing against xml ddos and http ddos attack,”
in 2012 IEEE Students’ Conference on Electrical, Electronics and
Computer Science. IEEE, 2012, pp. 1–5.

[20] G. Leaden et al., “An api honeypot for ddos and xss analysis,” in
2017 IEEE MIT Undergraduate Research Technology Conference
(URTC). IEEE, 2017.

[21] O. Rahman, M. A. G. Quraishi, and C. H. Lung, “Ddos attacks
detection and mitigation in sdn using machine learning,” in 2019
IEEE World Congress on Services (SERVICES), 2019, pp. 184–189.

[22] R. M. A. Ujjan et al., “Towards sflow and adaptive polling sampling
for deep learning-based ddos detection in sdn,” Future Generation
Computer Systems, vol. 111, pp. 763–779, 2020.

[23] M. S. Potnis et al., “Hybrid intrusion detection system for detecting
ddos attacks on web applications using machine learning,” ICT
Analysis and Applications, pp. 797–805, 2022.

[24] I. H. Sarker, “Machine learning: Algorithms, real-world applications
and research directions,” SN Computer Science, vol. 2, no. 3, pp.
1–21, 2021.

[25] R. K. Batchu and H. Seetha, “A generalized machine learning
model for ddos attacks detection using hybrid feature selection and
hyperparameter tuning,” Computer Networks, vol. 200, p. 108498,
2021.

[26] B. Jia et al., “A ddos attack detection method based on hybrid het-
erogeneous multiclassifier ensemble learning,” Journal of Electrical
and Computer Engineering, p. 2017, 2017.

[27] V. Miškovic, “Machine learning of hybrid classification models for
decision support,” Sinteza 2014-Impact of the Internet on Business
Activities in Serbia and Worldwide, pp. 318–323, 2014.

[28] L. I. Kuncheva, “That elusive diversity in classifier ensembles,” in
Proceedings of the 1st Iberian Conference on Pattern Recognition
and Image Analysis (ibPRIA ’03). Springer, 2003, pp. 1126–1138.

[29] I. Obeidat et al., “Intensive pre-processing of kdd cup 99 for network
intrusion classification using machine learning techniques,” pp. 70–
84, 2019.

[30] Z. Zoghi and G. Serpen, “Unsw-nb15 computer security dataset:
Analysis through visualization,” arXiv preprint arXiv:2101.05067,
2021.

[31] Z. Zoghi, “Ensemble classifier design and performance evaluation
for intrusion detection using unsw-nb15 dataset,” 2020.

[32] B. Habib and F. Khursheed, “Performance evaluation of machine
learning models for distributed denial of service attack detection
using improved feature selection and hyper-parameter optimization
techniques,” Concurrency and Computation: Practice and Experi-
ence, vol. 34, no. 26, p. e7299, 2022.

[33] S. Das et al., “Empirical evaluation of the ensemble framework
for feature selection in ddos attack,” in 2020 7th IEEE Inter-
national Conference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference on Edge Com-
puting and Scalable Cloud (EdgeCom). IEEE, 2020.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1075-1089 (Sep-23) 1089

[34] H. Polat, O. Polat, and A. Cetin, “Detecting ddos attacks in software-
defined networks through feature selection methods and machine
learning models,” Sustainability, vol. 12, no. 3, p. 1035, 2020.

[35] K. Sahin and I. C. Emrehan, “Performance analysis of advanced
decision tree-based ensemble learning algorithms for landslide sus-
ceptibility mapping,” Geocarto International, vol. 36, no. 11, pp.
1253–1275, 2021.

[36] “pickle — python object serialization,” https://docs.python.org/3/
library/pickle.html, accessed: 2023-08-17.

[37] N. Middleton and R. Schneeman, Heroku: up and running: effortless
application deployment and scaling. O’Reilly Media, Inc., 2013.

[38] M. Wittig and A. Wittig, Amazon web services in action. Simon
and Schuster, 2018.

[39] W. Khan, “Ddos mitigation analysis of aws cloud network,” 2017.

[40] M. I. Beer and M. F. Hassan, “Adaptive security architecture for pro-
tecting restful web services in enterprise computing environment,”
Service Oriented Computing and Applications, vol. 12, no. 2, pp.
111–121, 2018.

[41] J. Jain, Learn API Testing. Berkeley, CA: Apress, 2022.

[42] A. Rodriguez, “Restful web services: The basics,” IBM developer-
Works, no. 33, p. 18, 2008.

[43] “Api testing using postman,” https://www.softwaretestinghelp.com/
api-testing-using-postman/, accessed: 2023-08-17.

[44] A. A. Salih and A. M. Abdulazeez, “Evaluation of classification
algorithms for intrusion detection system: A review,” Journal of
Soft Computing and Data Mining, vol. 2, no. 1, pp. 31–40, 2021.

[45] N. Bindra and M. Sood, “Detecting ddos attacks using machine
learning techniques and contemporary intrusion detection dataset,”
Automatic Control and Computer Sciences, vol. 53, no. 5, pp. 419–
428, 2019.

Beenish Habib Beenish Habib is a PhD
candidate in the Department of Electronics
and Communication Engineering in NIT Sri-
nagar. Her field of expertise is Cloud and
Network Security and is mainly working on
detecting and mitigating DDoS attacks. She
has done her Bachelors in Technology in
ECE from IUST Awantipora and Masters in
Technology in Communication and IT from
NIT Srinagar. She has 3 years of teaching

experience and 4 years of Research Experience.

Farida Khursheed Dr. Farida Khurshid is
currently providing services as Associate
Professor in ECE department in NIT Sri-
nagar. She has authored and co-authored
multiple peer-reviewed scientific papers and
presented works at many national and inter-
national conferences. Her research interests
include Digital Image Processing, Security
and Biometrics.

http:// journal.uob.edu.bh

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://www.softwaretestinghelp.com/api-testing-using-postman/
https://www.softwaretestinghelp.com/api-testing-using-postman/
http://journal.uob.edu.bh

	INTRODUCTION
	Related Work
	Proposed Architecture
	Majority voting
	Weighted voting
	Stacking

	Model pipeline
	Data Pre-Processing
	Data cleaning and transformation
	Data Normalization
	Class Balance
	Label Conversion
	Exploratory Data Analysis
	Feature and Model Selection
	Information-Gain Test
	Decision Tree Test


	Model Deployment and Experimental Set-Up
	Setting Hyper-Parameter Values and Training Hybrid Machine Learning Model
	Serialization

	Cloud architectures
	Heroku and HTTP Routing
	Amazon EC2 deployment with DDoS detector
	Create an AWS account and set up an EC2 instance
	Choose an AMI and add storage
	Add tags and configure security groups
	Clone the app from the GitHub repository to the EC2 instance and access the instance through the SSH client

	API testing using Postman
	Request
	Response


	Model Performance Evaluation
	Measuring performance through AUROC analysis
	Results and Discussion
	Conclusion and Future Work

	References
	Biographies
	Beenish Habib
	Farida Khursheed


