
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.14, No.1 (Jul-23)

http://dx.doi.org/10.12785/ijcds/140121

Data Mining for Non-Redundant Big Data Using Dynamic
KMEAN Clustering

Saja Taha Ahmed1

1Ministry of Education, Vocational Education Department, Baghdad, Iraq
1https://orcid.org/0000-0003-3069-7251, sajataha@ymail.com, drsajataha@gmail.com)

Received 13 Sep. 2022, Revised 30 Apr. 2023, Accepted 14 May. 2023, Published 1 Jul. 2023

Abstract: There is an increasing demand for techniques that can process and collect valuable information from huge data in the Big
Data era. Duplicates can seriously influence data processing and data mining, so the major challenge is finding as many duplicate records
as possible. Data deduplication (or Redundancy Removal) removes redundant data and stores only one copy, promoting single instance
storage. The main idea suggests using K-Means clustering for big data deduplication. K-Means Clustering, a localized optimization
approach, is vulnerable to the starting point chosen from the cluster’s center. The K-Means Clustering technique will produce more
errors and bad cluster outcomes if the center of a defective cluster is used as the starting point. The suggested deduplication solution
is based on the numeric conversion of the dataset and pre-processing them to extract useful information utilized by Dynamic K-Mean
clustering (DKMEAN) to categorize replicated chunks. The proposed system greatly improves dataset quality and ultimately reduces
resource consumption. It outperformed Traditional K-Means (TKMEAN) in terms of the number of detected redundant chunks, accuracy,
the number of iterations, and efficiency.

Keywords: Data Mining, Data Deduplication, Clustering , Kmean algorithm, Big Data

1. INTRODUCTION
In the current digital era, the size of data has expanded

substantially in numerous areas such as industry, business,
science, and online applications. Enormous and powerful
data servers have expanded rapidly in response to the
massive advancement and development of the internet and
online world technologies with the rise of data, sharing
websites like Facebook, Flickr, and YouTube. Facebook, for
example, reports 2.5 billion content every day, 105 terabytes
of data every half hour, 300 million photographs, and 4
million movies. Twitter has a user base of 651 million
people and sends out over 6000 tweets each second [1].
These data originate from a range of sources, some of which
may have data quality issues. Duplicates are a fundamental
issue that emerges from integrating different data [2].

Deduplication eliminates data redundancy by maintain-
ing only one physical copy and referring to previously
copied records [3]. Deduplication at the chunk level is more
prevalent than deduplication at the file level as it identifies
and prevents duplication at a higher specification. Separat-
ing input (a data stream) into many segments is the essential
component of data deduplication. Chunking algorithms are
usually divided into two types: Fixed-length chunking and
variable-length chunking [4] [5]. Deduplication methods
based on Content Dynamic Chunking can disclose 10-20%

more duplication than fixed-size chunking [6].

Data de-duplication can be considered a clustering prob-
lem. The purpose is to group chunks that refer to the same
physical entity together while isolating chunks that refer
to other entities into distinct clusters. Clustering for de-
duplication has a variety of different properties that set it
apart from other clustering tasks. Many prominent clus-
tering algorithms, such as k-means and k-median, use the
number of clusters to output as an input. In de-duplication
applications, this information is unknown [7] [8].

The unsupervised learning approach k-Means, which is
partition-based, is noted for its ease of use and simplicity.
However, the k-Mean algorithm has the following severe
flaw [9] [10]:
1- The performance of the K-mean algorithm is substan-
tially determined by the initial centroids, which are chosen
at random, and the resulting clusters differ between runs for
the same input dataset (i.e., converge to Local minima).
2- The traditional K-means algorithm’s distance calculation
procedure takes a long time to converge clustering results
because it calculates the distance from each data object to
each cluster’s centroids in each iteration.

Given the various flaws in the traditional k-mean ap-

E-mail address: sajataha@ymail.com, drsajataha@gmail.com http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140121
http://journals.uob.edu.bh


244 Saja Taha Ahmed: Data Mining for Non-Redundant Big Data Using Dynamic KMEAN Clustering

proach. In this paper, we proposed a redundancy removal
system with the following contributions:
1. The suggested system pre-processes big datasets to
extract numeric information from them.
2. The statistical analysis is implemented based on certain
criteria (in this work, chunk size) to automatically determine
the number of clusters that can group chunks according to
them. Since the number of clusters of big data is unknown.
3. The TKMEAN randomly assigns the points into clusters,
our proposed DKMEAN equally assigns the clusters via
sorting numeric records according to chunks’ size which
can take less time to converge and avoid local minima.
4. The TKMEAN computes the distance between all points
and centroids of all clusters at each iteration which affects
the performance of the algorithm. There is no need to cal-
culate the distance each time in DKMEAN as the resulting
clusters contain some data objects that remain in the same
cluster after several iterations.

In brief, we develop a de-duplication technique based
on complete data numeric conversion. The proposed
DKMEAN used chunks’ numeric records to match records
inside a cluster to locate and eliminate duplicated records,
reducing the number of record comparisons, and improving
the algorithm’s performance.

The remainder of the paper is organized as follows:
In Section 2, we take a look at related works on data
deduplication and KMEAN clustering. We describe our
proposed system in Section 3. In Section 4, we look at
the experiments and discuss the results, before concluding
Section 5.

2. RELATED WORK
Researchers have made several efforts to raise the k-

means algorithm’s effectiveness and efficiency. All of the
mentioned methods in this study address the same k means
algorithm concerns, such as clustering huge datasets, the
number of iterations in the algorithm, specifying the number
of clusters, and selecting the initial cluster center.

Bide et al [11] proposed a new document clustering ap-
proach that didn’t require a predetermined k value. Rather,
it employed cluster labels as input and a cosine similarity
metric to group comparable texts into the appropriate num-
ber of clusters. The experimental findings showed that when
compared to a similar algorithm that was currently in use
and was based on the F-measure, the new method exhibited
a high level of accuracy.

Gopalani et al. [12] presented a distributed computing
framework based on Spark and used it to implement the
parallel K-means-based text clustering method in order
to address the issue of the K-means clustering algorithm
requiring too many iterations. Based on the k-means al-
gorithm’s shortcomings of excessive iterations and poor
execution efficiency, this was achieved. Gupta et al [13] used
k-means clustering to study an outlier problem. They aim
to minimize variation among sample points inside the same

cluster while discarding a small group of samples that could
be regarded as outliers. The k-means clustering strategy
with an outlier was suggested by the researchers. The
method is adaptable to large datasets. In the experiments,
the proposed algorithm was found to be accurate.

However, using k-means to choose the initial center
at random will result in a local optimum. Values are
vulnerable, the process is iterative and time-consuming.
To increase sampling efficiency and discover the starting
center point, Sardar and Ansari [14] used a MapReduce
computing framework in association with the K-selection
sorting approach for parallel sampling and a sample-based
pre-processing strategy, resulting in a higher accuracy rate.

Based on optimal partitioning, a k-means initial group-
ing core selection method was proposed by Jin et al. [15].
The technique breaks the data samples first, then identifies
the first cluster centers based on the sample distribution’s
properties. This approach enhances clustering accuracy and
efficiency. The approach, on the other hand, will increase the
number of recursions for high-dimensional sample spaces,
increasing the complexity of the calculations and diminish-
ing efficiency.

K-means has shown the selection of the K-center value
and lower the iterations [16] through [21]. Due to difficulties
with local optimization and the randomness in the choice of
the initial center, the cluster number must be predetermined.
We investigated more precise and effective k-means to
achieve a high degree of accuracy.

3. THE PROPOSED SYSTEM
There are three stages to any deduplication system [26]:

chunking, hashing and indexing, and matching. To process
the data, the proposed deduplication systems work in two
stages:
1- Convert file chunks into numeric information.
2- Apply the proposed DKMEAN approach to recognize
redundant chunks.

The suggested deduplication systems partition files into
chunks and find duplicated chunks by comparing their
chunk information after clustering them into clusters using
DKMEAN. A variety of features are utilized to maintain the
relationships between files and chunks, which necessitate
additional resources besides the deduplicated data. The
chunk index holds the chunk information for the chunks
that have been saved. Every deduplication system has a
persistent index that contains the data required to recreate
file contents using file templates. A file template contains
a list of chunk identifiers. Each of these chunk identifiers
is unique. The uniquely identifiable chunked data can be
used to reconstruct the original file contents (referred to
as logical data). To rebuild the logical data, the chunk
identifiers are read, and their relevant data chunks are loaded
and concatenated in a specific order.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 243-251 (Jul-23) 245

A. NUMERIC INFORMATION GENERATION
Chunking is the first and most essential phase in the

data deduplication process, in which a file or data stream
is divided into small, isolated pieces so that chunking
locations so that the chunking positions can be recognized
to save time when duplicate chunks arise in the future. The
chunking algorithm consists of two key steps:
1. For each byte sequence of a specified length, compute
the code (i.e., hash value).
2. To use as a divisor, find the code values in the file that
have the most appearances bytes.

The deduplication method splits files according to the
most frequent patterns in the file, utilizing the option
of determining the length of breakpoints or divisors. In
other words, cut points indicate some of the files’ most
fundamental attributes. The selected code is utilized to
define the breakpoints rather than using judges based on
a criterion value at every rollover hash computation (i.e.,
standard Rabin fingerprint). Figure 1 shows the chunking
process.

Figure 1. The Chunking Process.

Consequently, each file in the dataset is divided into
chunks, with three codes for each chunk. Algorithm 1
showed the functions that generate these codes for each
chunk. At this stage, file chunks will be converted into
numeric information containing the chunk’s cut point, size,
code1, code2, and code3.

Algorithm 1. Chunks‘ Codes Generation

Objective: Generate three codes for each chunk.
Input: chunks as an array of bytes.
Output: three codes for each chunk.
Step1: Load chunks from a chunk list.
step2: Generate three random number arrays
one for each code defined as R1, R2, and R3.
Step3: Set I to 0.

Step4: while not end of the chunk
Step5:Set sum1, sum2, sum3 to 0.
Step6: Compute
code1=sum1+chunk[i]*R1[i].
code2=sum2+chunk[i]*R2[i].
code3=sum3+chunk[i]*R3[i].
Step7: Put code1,code2,code3 in chunk information record.
Step8: Repeat Steps 1-7 until the end of the chunks.

Long codes (i.e., hashes) reduce the chance of a hash
collision, but they take more time to execute and require
more overhead information in the matching step, therefore
the hash function chosen is heavily influenced by applica-
tion accuracy. Common functions used in the redundancy
elimination system are MD5 and SHA-1. The likelihood of
hash collisions is often determined by the strength of the
hashing method. The number of bits needed to store the
hash value in SHA-1 is 160 bits and 128 bits for the MD5
signature, while the proposed method required 48 bits. Since
hashing uses a lot of computational resources, employing
the suggested hash algorithms drastically cuts down on the
time of comparisons by effectively handling the collisions.

Non-redundant chunks are contained in the chunk bucket
(or index table) in the suggested system; consequently,
every segment generated by the system has its own id
Number, which represents the segment index and accepts
an integer number between 0 and M, with M increasing
indefinitely for each segment. Table 1 shows the contents
of the index table. Algorithm 2 describes the full conversion
of big data to numerical information.

TABLE I. The Chunk Bucket Structure

Chunk ID Cut Point Code Size (Bytes) code1 code2 code3

0 16320 627 55434 57737 21156
1 20348 159 54678 35617 33431
2 28590 512 12010 11164 45946

B. THE PROPOSED DKMEAN APPROACH
After passing the previous phases (chunking and hash-

ing), the system must identify and delete duplicated chunks
in the deduplication matching steps when a new file is
entered. To begin, the traditional approach compares the
chunks’ code values; if they are the same, the algorithm
checks the two chunks byte for byte; if they are equal, the
system deletes the new one and adds a logical reference to
the location of the old one. Otherwise, there’s a collision;

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


246 Saja Taha Ahmed: Data Mining for Non-Redundant Big Data Using Dynamic KMEAN Clustering

Algorithm 2. Numeric Information Generation

Objective: convert files of a dataset to numeric information.
Input: File of different sizes and types as an array of bytes.

Output: A index table of chunks of information.
Step1: Load file from a dataset

Step2: Compute file Divisor based on most common bytes
of predetermined length.
Step3: Break the file into chunks according to File Divisor.
Step4: Compute code1, code2 & code3 for each chunk.
Step5: Put chunk identifier, chunk size, file Divisor,
code1, code2 & code3 into Index Table.
Step6: Repeat Steps 1-5 until the end of the dataset

the chunks aren’t the same, thus the system would save the
new one as a new chunk. This procedure takes a long time
and places a significant amount of load on the system.

As a result, a novel technique based on the DKMEAN
matching process will be employed to improve efficiency,
i.e., reduce running time and resource consumption. This
paper proposes employing chunks’ information to enhance
the comparison procedure using the size, cut point, and
triple code values already obtained in the hashing step.
This information serves as an identifier for each chunk.
We introduced dynamic k-mean clustering to address the
drawbacks of traditional K-mean clustering discussed ear-
lier in this paper. The main idea is to calculate the number of
clusters K relying on the size criteria for chunks that contain
duplicated portions, then evenly set the initial clusters and
compute the initial centroid for each group. By using
these mechanisms, we avoid assigning random centroids for
initial clusters. Because the divide-and-conquer strategy of
isolating unique chunks from later clustering computations
can have a substantial convergence effect. Additionally,
removing redundant chunks as clusters emerge can help
speed up the process of identifying duplicated chunks. The
greatest chance of having identical chunks since they are
either from the same file with the same code or from various
files of the same size. Finally, three codes are checked
by applying the similarity measure to them. Because it
is preferable to group the chunks by their sizes and then
compare three codes rather than byte-by-byte compare all
of the relevant chunks, the test result reveals a significant
improvement in the time and deduplication ratio.

Because of the excessive amount of numbers between
the variables, the information of chunks would not be pro-
cessed immediately. Determining the difference in distance
or the amount of this value throughout the clustering process
can be difficult. Normalization using equation 1 is one of
the solutions for lowering the number of variables [22]:

Norm(Xi) = d f racXi − XminXmax − Xmin (1)

The variables’ values are standardized to a range of 0 to

1. Before the calculation process, values on each variable
are normalized such that the parameter’s centroid value does
not take precedence in calculating the distance between data
[23]. Clustering often aims for high intra-cluster similarity
and low intercluster similarity. To put it another way, we
want chunks within a cluster to be as similar as possible, but
chunks from separate clusters to be as diverse as possible.
As a result, it’s desired that all chunks of the same size
are grouped in a single cluster. When defining clusters, we
wanted to minimize the overall intra-cluster variations that
measure the compactness of the clustering [24][25].

Let S and T be the clusters created by partitioning
U. The distance between two items x and y belonging
to S and T is given by d (x, y). The distance d (x,
y) is calculated using well-known distance calculation
methods like Euclidean. inter and intracluster distance
are represented using equations 2 & 3, respectively. The
proposed DKMEAN is stated in algorithm3.

Inter(S ,T ) = Min(d(x, y)x ∈ s, y ∈ T ) (2)

Intra(S ,T ) = Max(d(x, y)x, y ∈ s) (3)

Algorithm 3. Dynamic K-Mean Clustering
Input: Raw data as an array of 0. . . N, 0. . . 4,
where N is the number of chunks,and Raw data represents chunks
of Numeric information
Output: A set of deduplicated clusters.
Step1: Compute frequency-based chunk size
and exclude unique chunks, put duplicated records in
Chunks info array.
Set intcluster= number of chunks size have frequent chunks.
Normalize Raw data using Eq1.
Sort the raw data based on size.
Step2: Initialize cluster(s) equally based
on a number of initial clusters.
Step3. Repeat
(re)assign each chunk to the cluster to which the chunks are most similar,
based on the mean value of the Chunk info in the cluster.
Update the cluster means, i.e., calculate the mean value of the objects
for each cluster. until no change.
Step4: Remove duplicated chunks from each cluster
and update the cluster.
Eq.2 is used to calculate the inter-cluster range.
Eq.3 can be used to calculate the intra-cluster range.
If the new intra-cluster value is less than the old intra-cluster value and
the new inter-cluster value is more than the old inter-cluster value,
go to step 3; otherwise, go to step 5.
Step5: End

It should be noted that clusters cannot be known in
advance, but the data preprocessing and relying on a certain
characteristic (i.e., size), the cluster number K is predeter-
mined from the data rather than being fixed a priori as in
TKMEAN. It can also help distinguish outliers from the
data. When compared to TKMEAN, this added flexibility
does not involve a large processing penalty, and DKMEAN
convergence is often obtained faster. The figure 2 illustrated
the proposed system procedure.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 243-251 (Jul-23) 247

Figure 2. The Proposed System Flow.

4. THE EXPERMINTAL RESULTS
The input data for the recommended system comprises

several files of varying sizes and types. The system pro-
cesses each of these files separately, one at once. The
suggested method was built and evaluated on three Linux
file system dataset of 2,32 GB [26]. To conduct fair and
reliable evaluations, the results are evaluated using the
following metrics:
1- Accuracy: This metric describes the degree to which
the predicted labels match the actual labels. The expected
labels are the same as the class labels used to classify new
instances. The accuracy is calculated by Equation (4).
Accuracy=((Correctly identified object )/(Total number of
object))*100 (4)
2- Redundancy Removal: the number of nonredundant
clustered records divided into total data, which measures
the effectiveness of the deduplication process.
3- A number of iterations: the number of iterations taken
by the K-mean clustering algorithm.

In order to set up the suggested system, C# and Visual
Studio 2015 were used. The tests are carried out to examine
and analyze the proposed system’s behavior utilizing the
chunk size. Furthermore, the generated chunks’ numeric
information is approximately 11,896,717 records, to demon-
strate the effects of the proposed system and since it is more
difficult to depict these chunks in a figure and make the
clustering process more understandable, we selected around

37 records of them as minor test data to prove the impacts
of the proposed system. Raw test data, as shown in Table
2 and Figure 3, has 20 duplicate chunks and 17 unique
chunks, totaling 37 chunks.

TABLE II. Raw Test Chunks Information Distribution

Chunks No. Chunk Size (byte) Chunk Divisor code1 code2 code3
0 138 6520466 57643 38208 18795

1 497 6520466 50499 40670 31049

2 337 6520466 26793 47199 2209

3 138 6520466 57643 38208 18795

4 497 6520466 50499 40670 31049

5 355 17069388 43313 4708 31816

6 221 17069388 49085 23553 63353

7 177 17069388 10546 1972 58887

8 196 17069388 30034 21779 13507

9 139 17069388 13180 40869 2986

10 134 17069388 4324 12169 20027

11 133 17069388 14465 37019 59646

12 179 17069388 12543 5786 64704

13 143 17069388 26181 11200 61779

14 153 17069388 44052 2353 26380

15 153 17069388 44052 2353 26380

16 156 17069388 50390 20999 57202

17 190 17069388 32028 13400 60469

18 355 17069388 43313 4708 31816

19 221 17069388 49085 23553 63353

20 177 17069388 10546 1972 58887

21 196 17069388 30034 21779 13507

22 140 17069388 22145 62147 36788

23 183 17069388 20736 35571 50575

24 141 17069388 41519 41904 42310

25 143 17069388 26181 11200 61779

26 153 17069388 44052 2353 26380

27 156 17069388 50390 20999 57202

28 190 17069388 32028 13400 60469

29 140 17069388 22145 62147 36788

30 183 17069388 20736 35571 50575

31 141 17069388 41519 41904 42310

32 146 17069388 34784 36527 38330

33 179 17069388 24926 40199 55736

34 146 17069388 39165 43762 48519

35 141 17069388 41519 41904 42310

36 156 17069388 50390 20999 57202

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


248 Saja Taha Ahmed: Data Mining for Non-Redundant Big Data Using Dynamic KMEAN Clustering

Figure 3. Raw Test Chunks Information Distribution Based On Code 1 Attribute.

TABLE III. DKMEAN Clustering Of Chunk Information

Chunk NO. Cluster Chunk Size Divisor code1 code2 code3 Redundant Chunks
0 1 138 6520466 57643 38208 18795 5
2 138 6520466 57643 38208 18795
9 143 17069388 26181 11200 61779
18 140 17069388 22145 62147 36788
20 141 17069388 41519 41904 42310
21 143 17069388 26181 11200 61779
25 140 17069388 22145 62147 36788
27 141 17069388 41519 41904 42310
28 146 17069388 34784 36527 38330
30 146 17069388 39165 43762 48519
30 146 17069388 39165 43762 48519
31 141 17069388 41519 41904 42310
1 2 497 6520466 50499 40670 31049 2
3 497 6520466 50499 40670 31049
4 355 17069388 43313 4708 31816
14 355 17069388 43313 4708 31816
10 3 153 17069388 44052 2353 26380 4
11 153 17069388 44052 2353 26380
12 156 17069388 50390 20999 57202
22 153 17069388 44052 2353 26380
23 156 17069388 50390 20999 57202
32 156 17069388 50390 20999 57202
5 4 221 17069388 49085 23553 63353 1
15 221 17069388 49085 23553 63353
6 5 177 17069388 10546 1972 58887 4
7 196 17069388 30034 21779 13507
8 179 17069388 12543 5786 64704
13 190 17069388 32028 13400 60469
16 177 17069388 10546 1972 58887
17 196 17069388 30034 21779 13507
19 183 17069388 20736 35571 50575
24 190 17069388 32028 13400 60469
26 183 17069388 20736 35571 50575
29 179 17069388 24926 40199 55736

If the number of clusters is limited, there is a probability
that dissimilar chunks will be grouped, but if the number
of clusters is big, more similar chunks will be grouped
in different clusters. Since the goal is to group redundant
chunks in the same cluster, the proposed system prepro-
cesses and refines raw data based on chunk size and finds 4
unique chunks that are transmitted directly to a deduplicated

list of chunks. These chunks are considered an outlier that
can affect an algorithm decision. The remaining chunks are
aggregated into five clusters using DKMEAN, which can
correctly identify all redundant chunks. Table 3 depicted
all duplicated chunks belonging to a specific cluster. For
instance, Cluster 1 has 5 duplicated chunks.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 243-251 (Jul-23) 249

Figure 4. The Test Data After Applying DKMEAN Attribute.

TABLE IV. Deduplicated Chunks clustered in five groups based on
Code1.

code1 Clusters’ No

57643 1
26181 1
22145 1
34784 1
39165 1
41519 1
50499 2
43313 2
44052 3
50390 3
49085 4
10546 5
12543 5
30034 5
32028 5
20736 5
24926 5

Figure 4 and Table 4 show the chunks after duplication
has been removed, it appears that the dataset’s 33 records
were reduced to 17 records clustered into five groups,
resulting in the removal of 16 redundant chunks.

The performance of the traditional KMEAN has ex-
perimented on the same dataset in Table 2, the conducted
results showed a low effect of grouping duplicated chunks
together in the same clusters. Table 5 shows the TKMEAN
can detect 4 duplicated chunks of 16 ones. In comparison
with DKMEAN can detect all duplication in chunks. Figure
5 shows TKEAM chunk clustering.

Figure 5. The Test Data After Applying TKMEAN

The big dataset of 11,896,717 chunks, all files chunked
with a minimum threshold of 128 bytes and a maximum
threshold of 1024 bytes based on 3 bytes divisor. The
duplicated chunks detected by the proposed DKMEAN
are 7825426 chunks and the unique chunks transmitted to
deduplicated list of a dataset are 4071291. The inferred truth
is the proposed system reduced the dataset from 2.32 GB to
802 MB. Thus, redundancy removal of the proposed system
is about 65.78 percent. In contrast to the traditional Kmean
detected 1595710 chunks of 11,896,717, thus the output of
TKMEAN is 10,301,007. The redundancy removal is 13.5
percent.

The dataset is divided into two categories: 70% training
and 30% testing. The improved strategy outperforms TK-
MEAN in terms of the number of iterations and accuracy
since DKMEAN clusters chunks according to their sizes
and establishes clusters evenly by the initial value. Table
6 compares the accuracy and number of iterations of the
traditional k-means algorithm and the enhanced approach.
The modified algorithm considerably surpasses the original
k-means algorithm in terms of accuracy, number of itera-
tions, and efficiency, as shown in the above experiments.

One more significant result is drawn when implementing
the TKMEAN shows different performance measures for
the same dataset even fixing the number of clusters,
TKMEAN algorithm provides different results in different
runs because of its nature of randomly selecting initial
centers even value of k is fixed, but this problem is
overcoming by the proposed DKMEAN as it fixes the way
initial centers are calculated.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


250 Saja Taha Ahmed: Data Mining for Non-Redundant Big Data Using Dynamic KMEAN Clustering

TABLE V. Traditional KMEAN Clustering of Chunk Information

Cluster No Size Divisor code1 code2 code3 Redundant
1 138 6520466 57643 38208 18795

177 17069388 10546 1972 58887
190 17069388 32028 13400 60469
146 17069388 39165 43762 48519
141 17069388 41519 41904 42310

2 497 6520466 50499 40670 31049 1
139 17069388 13180 40869 2986
153 17069388 44052 2353 26380
153 17069388 44052 2353 26380
141 17069388 41519 41904 42310

3 337 6520466 26793 47199 2209 1
196 17069388 30034 21779 13507
134 17069388 4324 12169 20027
179 17069388 12543 5786 64704
156 17069388 50390 20999 57202
355 17069388 43313 4708 31816
183 17069388 20736 35571 50575
179 17069388 24926 40199 55736
156 17069388 50390 20999 57202

4 138 6520466 57643 38208 18795
355 17069388 43313 4708 31816
177 17069388 10546 1972 58887
190 17069388 32028 13400 60469
183 17069388 20736 35571 50575
140 17069388 22145 62147 36788
146 17069388 34784 36527 38330

5 497 6520466 50499 40670 31049 2
221 17069388 49085 23553 63353
133 17069388 14465 37019 59646
143 17069388 26181 11200 61779
221 17069388 49085 23553 63353
196 17069388 30034 21779 13507
140 17069388 22145 62147 36788
143 17069388 26181 11200 61779
153 17069388 44052 2353 26380
156 17069388 50390 20999 57202
141 17069388 41519 41904 42310

TABLE VI. Performance Evaluation of TKMEAN and DKMEAN

Metrics TKMEAN DKMEAN

Accuracy 60% 95%
No. Iteration 115 25

Time 905 175

Any researcher using large data already has to deal with
these restrictions:
1. The use of larger data implemented on basic computer
hardware specifications is the restriction of the big data
study.
2. Utilizing huge data sets makes visual data mining and
visual-exploratory analysis unfeasible.

5. Conclusions
The traditional Kmean has clustering-related problems

since it relies on arbitrary center selection and is vulnerable
to the local optimization issue. The proposed approach
solves this problem by estimating the number of clusters
based on chunk size and preprocessing the dataset to
determine the best number of clusters. Furthermore, the
clusters are initially selected in the same way, based on
evenly distributed initial clusters of sorted data, to achieve
stable and quick convergence and avoid random selection.
The findings reveal that, the experiments on the large
Linux dataset demonstrate the proposed algorithm has
remarkable clustering performance when compared to
the traditional algorithm in terms of the number of
redundant chunks, accuracy, number of iterations, and
time. Since the chunks of duplicated files are divided based
on the same divisor, further research can focus on how
chunks clustered using another criterion like the file divisor.

References
[1] Fahad, SK Ahammad, and Md Mahbub Alam. ”A modified K-means

algorithm for big data clustering.” International Journal of Science,
Engineering and Computer Technology 6, no. 4 (2016): 129. DOI:
10.13140/RG.2.2.33836.31360

[2] Udechukwu, Ajumobi, Christie Ezeife, and Ken Barker. ”Inde-
pendent de-duplication in data cleaning.” Journal of Informa-
tion and Organizational Sciences 29, no. 2 (2005): 53-68. DOI:
https://doi.org/10.1007/978-0-387-39940-9 596

[3] Reddy, B. Tirapathi, and MVP Chandra Sekhara Rao. ”Filter based
data deduplication in cloud storage using dynamic perfect hash
functions.” International Journal of Simulation Systems, Science &
Technology (2018). DOI 10.5013/IJSSST.a.19.04.08

[4] Periasamy, J. K., and B. Latha. ”Efficient hash function–based du-
plication detection algorithm for data Deduplication deduction and
reduction.” Concurrency and Computation: Practice and Experience
(2019): e5213. DOI: 10.1002/cpe.5213

[5] Xia, W., Zou, X., Jiang, H., Zhou, Y., Liu, C., Feng, D., Zhang,
Y., 2020. The design of fast content-defined chunking for data
deduplication based storage systems. IEEE Trans. Parallel Distrib.
Syst. 31 (9), 2017–2031. DOI: 10.1109/TPDS.2020.2984632.

[6] Xia, Wen, Dan Feng, Hong Jiang, Yucheng Zhang, Vic-
tor Chang, and Xiangyu Zou. ”Accelerating content-defined-
chunking based data deduplication by exploiting parallelism.” Fu-
ture Generation Computer Systems 98 (2019): 406-418. DOI:
10.1016/j.future.2019.02.008.

[7] Kushagra, Shrinu, Hemant Saxena, Ihab F. Ilyas, and Shai Ben-
David. ”A semi-supervised framework of clustering selection
for de-duplication.” In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pp. 208-219. IEEE, 2019. DOI:
10.1109/ICDE.2019.00027.

[8] Manghi, Paolo, Claudio Atzori, Michele De Bonis, and Alessia
Bardi. ”Entity deduplication in big data graphs for scholarly com-
munication.” Data Technologies and Applications (2020). DOI:
10.1108/DTA-09-2019-0163.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 243-251 (Jul-23) 251

[9] Katara, Juhi, and Naveen Choudhary. ”A modified version of the K-
means clustering algorithm.” Global Journal of Computer Science
and Technology (2015). DOI: 10.1109/34.927466.

[10] Bhatia, M. P. S., and Deepika Khurana. ”Experimental study of Data
clustering using k-Means and modified algorithms.” International
Journal of Data Mining & Knowledge Management Process 3, no.
3 (2013): 17. DOI: 10.5121/ijdkp.2013.3302.

[11] Bide, P.; Shedge, R. Improved Document Clustering using k-means
algorithm. In Proceedings of the 2015 IEEE International Con-
ference on Electrical, Computer and Communication Technologies
(ICECCT), Coimbatore, India, 5–7 March 2015; pp. 1–5. DOI:
10.1109/ICECCT.2015.7226065.

[12] S. Gopalani, R. Arora, and S. Gopalani, “Comparing Apache
Spark and MapReduce with performance analysis using Kmeans,”
International Journal of Computer Applications, vol. 113, no. 1, pp.
8–11, 2015. DOI: 10.5120/19788-0531.

[13] Gupta, S.; Kumar, R.; Lu, K.; Moseley, B.; Vassilvitskii, S. Local
search methods for k-means with outliers. Proc. VLDB Endow.
2017, 10, 757–768. https://doi.org/10.14778/3067421.3067425.

[14] T. H. Sardar and Z. Ansari, “An analysis of distributed document
clustering using MapReduce based K-means algorithm,” Journal of
Ae Institution of Engineers (India) Series B, vol. 101, no. 2, pp.
1–10, 2020. DOI: 10.1007/s40031-020-00485-2.

[15] T. K. Jin, J. Song, and C. S. Ah, “Optically readable waveguide
integrated electrochromic artificial synaptic device for photonic
neuromorphic systems,” ACS Applied Electronic Materials, vol. 2,
no. 7, pp. 2057–2063, 2020. Doi: 10.1021/acsaelm.0c00314.

[16] A. A. Aldino, D. Darwis, and A. T. Prastowo, “Implementation of
K-means algorithm for clustering corn planting feasibility area in
south Lampung regency,” Journal of Physics: Conference Series,
IOP Publishing, vol. 1751, no. 1, pp. 012– 038, 2021. DOI:
10.1088/1742-6596/1751/1/012038.

[17] J. Rejito, A. Atthariq, and A. S. Abdullah, “Application of text
mining employing k-means algorithms for clustering tweets of
Tokopedia,” Journal of Physics: Conference Series, IOP Publish-
ing, vol. 1722, no. 1, pp. 012–019, 2021. DOI: 10.1088/1742-
6596/1722/1/012019.

[18] C. Li, F. Kulwa, J. Zhang, Z. Li, H. Xu, and X. Zhao, “A review
of clustering methods in microorganism image analysis,” Advances
in Intelligent Systems and Computing, pp. 13–25, 2021. DOI:
10.1007/978-3-030-49666-1 2.

[19] X. Chen and Y. Yang, “Hanson–Wright inequality in Hilbert
spaces with application to K-means clustering for non-
Euclidean data,” Bernoulli, vol. 27, no. 1, pp. 586–614, 2021.
https://doi.org/10.3150/20-BEJ1251.

[20] M. B. Gesicho, M. C. Were, and A. Babic, “Evaluating performance
of health care facilities at meeting HIV-indicator reporting require-
ments in Kenya: An application of K-means clustering algorithm,”
BMC Medical Informatics and Decision Making, vol. 21, no. 1, pp.
1–18, 2021. https://doi.org/10.1186/s12911-020-01367-9.

[21] M. Ghadiri, S. Samadi, and S. Vempala, “Socially fair k-means
clustering,” in Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, pp. 438–448, Toronto, ON,
Canada, March 2021.

[22] Syakur, M. A., B. K. Khotimah, E. M. S. Rochman, and Budi
Dwi Satoto. ”Integration k-means clustering method and elbow
method for identification of the best customer profile cluster.” In
IOP Conference Series: Materials Science and Engineering, vol.
336, no. 1, p. 012017. IOP Publishing, 2018. doi:10.1088/1757-
899X/336/1/012017.

[23] Virmani, Deepali, Shweta Taneja, and Geetika Malhotra. ”Nor-
malization based K means Clustering Algorithm.” arXiv preprint
arXiv:1503.00900 (2015).

[24] Alsuhaim, Amjad F., Aqil M. Azmi, and Muhammad Hussain.
”Improving the Retrieval of Arabic Web Search Results Using
Enhanced k-Means Clustering Algorithm.” Entropy 23, no. 4 (2021):
449. DOI: 10.3390/e23040449.

[25] Sreedhar, Chowdam, Nagulapally Kasiviswanath, and Pakanti
Chenna Reddy. ”Clustering large datasets using K-means modified
inter and intra clustering (KM-I2C) in Hadoop.” Journal of Big Data
4, no. 1 (2017): 1-19, https://doi.org/10.1186/s40537-017-0087-2.

[26] Saja Taha Ahmed, Loay E. George, Lightweight hash-based de-
duplication system using the self detection of most repeated patterns
as chunks divisors, Journal of King Saud University - Computer and
Information Sciences, Volume 34, Issue 7, 2022, Pages 4669-4678,
ISSN 1319-1578, https://doi.org/10.1016/j.jksuci.2021.04.005.

References

DR. Saja Taha Ahmed Ph.D. holder, Uni-
versity of Information Technology and Com-
munication, Informatics Institute of Post-
graduate Studies. MSC degree from the Col-
lege of Science, Department of Computing,
University of Baghdad. Higher Diploma in
computer science. I am a lecturer with the
vocational education department in the min-
istry of education.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	INTRODUCTION
	RELATED WORK
	THE PROPOSED SYSTEM
	NUMERIC INFORMATION GENERATION 
	THE PROPOSED DKMEAN APPROACH

	THE EXPERMINTAL RESULTS
	Conclusions
	References
	References
	Biographies
	DR. Saja Taha Ahmed 


