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Abstract: Feedback with Carry Shift Registers (FCSRs) are being most commonly used in the design of new stream ciphers. This is
because the FCSRs have resistance to correlation and algebraic attacks because of their quadratic feedback [1], [2]. Two representations
of FCSRs, namely, Galois and Fibonacci are quite popular. However, stream cipher designed using any of these representations is
vulnerable to many attacks as proposed in [3], [4]. A new representation called the ring representation, which generalizes and avoids
the weaknesses of both the representations of FCSRs has been proposed in [5]. Similar to other representations, the ring representations
produce sequences that have high periods and entropy. The advantage of ring representation is that it results in faster diffusion and
reduced implementation costs when compared to Galois and Fibonacci. This paper presents two designs of stream cipher based on
ring representations. In both algorithms, the output is produced by linear filters that pass randomness tests. The ciphers proposed have
undergone a thorough security analysis.
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1. INTRODUCTION

Large-period LFSR sequences provide strong statistical
properties. The disadvantage of its linear structure for
cryptographic applications is that it may allow algebraic
attacks. As a result, an LFSR-based cryptosystem should
have a few difficult nonlinear blocks. As an alternative
to LFSRs in stream cipher design, feedback with carry
shift registers (FCSRs) has been suggested [6], [7], [8].
Feedback Shift Registers (FSRs) are recent primitives with
wide applications in cryptography, coding theory, and in-
formation theory. Feedback Shift Registers are suitable for
high-performance hardware and software applications. As
shown in Figure- 1 and Figure- 2, FCSRs are represented
in either Fibonacci or Galois modes [9]. In the Galois
mode [5], one feedback bit impacts every cell, but in the
Fibonacci mode [5], every feedback bit affects just one cell.

As shown in the Figure- 1 and Figure- 2 operations of
the FCSR described more detailed in paper of Klapper and
Goresky [1], set an odd positive integer q and let q + 1 =
q121+q222+· · ·+qr2r be the binary expansion of q+1, where
r = blog2(q+1)c and qi ∈ {0, 1}. The bits in the q+1 equation
{q1, q2, . . . , qr} of the 2-adic FCSR with connection integer
q have r steps and feedback connection coefficients. Let
{a0, a1, . . . , ar−1} ∈ GF(2) denote the contents of the main
shift register cells, and initial memory represents m ∈ Z.

Figure 1. Fibonacci FCSR

Figure 2. Galois FCSR

The main shift register and initial memory combination
are known as FCSR. This mode is suitable for cryptosys-
tems described in [4] since the majority of Fibonacci FCSR
cells contain a linear transition function, reference [4].
Because of the dependence between the carriers and the
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single feedback bit [10], a Galois FCSR might be modeled
effectively during some clocks. This weakness, which has a
non-zero likelihood of occurring, causes FCSRs to become
LFSRized and makes all FCSR-based stream ciphers vul-
nerable to powerful attacks [11]. The keystream produced
by the new proposed design has the period |q| − 1 and also
passes each test listed in the NIST test suite. So that the
generated keystream is considered as a random sequence.
It is resistant to several existing attacks.

Arnault et al,. [5] have invented a new FCSR repre-
sentation termed the ring representation (which is a gen-
eralization of both Fibonacci and Galois representation) as
shown in Figure - 3. This approach allows any cell to act
as a feedback bit for another cell [12]. Thus, when this
new ring mode is used, the attacks presented in [3], [11].
M. Hell et al [3] attack have no longer applicable because
describing an attack requires Mbytes of received sequence
with low complexity.

In this paper, we develop generalization methods using
particular automata known as 2-adic automata. Initially
build automata with inputs and outputs using matrix rep-
resentations [5], [13]. Secondly, instead of using matrices
with coefficients of {0, 1} as was the case with a standard
FCSR, We use matrices that contain coefficients that are 2-
adic integers. The practical implications of such automata,
including their size and memory needs, are then covered.
Finally, we discuss the possible uses of these automata
in the development design of hardware- and software-
based stream ciphers. Stream ciphers could continue to
play an important role in constrained IoT application where
high throughput remains critical and resources are very
restricted [14].

The structure of this paper is as described in the fol-
lowing: Section 2 describes the characteristics of 2-adic
integers and generalized the ring-FCSR automata using
matrix representations and filter functions. In Section 3, we
propose a new automaton design. In Section 4, we provide
the security analysis and requirements of Ring-FCSRs. In
Section 5, we proposed a word-based automaton design
with an algorithm. Using such FCSRs in cryptography
applications is described in this article. Conclusion remarks
have been discussed in section 6.

2. Preliminaries

A. 2-adic Integer and Period

The power series s =
∑∞

i=0 si.2i, is used to formally
represent a 2-adic integer. Let Z2 [5] denoted the set of
2-adic integers. In contrast to addition and multiplication
in F2, they are carried out in Z2 by adding the carries to
the higher order terms. Positive integers are represented
as 00000 . . . sn−1 . . . , s0, where s0, s1, . . . , sn−1 corresponds
to the binary expansion of the integer. Negative integers
are represented using 1’s complement. Only odd integers

have inverses in Z2. From this, it can be concluded that Z2
contains a rational number of the from p/q, with q being
odd.

There exists a bijection between the set of eventually
periodic binary sequences and a set of 2-adic integers of
the form p/q where p, q ∈ Z and q is odd. There also exists
a bijection between the set of periodic binary sequences and
set of 2-adic integers of the form p/q where |p| ≤ |q| and
pq ≤ 0.

Let p/q be the 2-adic integer corresponding to the binary
sequence S = (sn)n∈N. The order of an element 2 in Z∗

|q| is
the period of this sequence S . Further, the sequence S is
said to be l-sequence, if 2 is the generator of Z∗

|q|.

B. Ring FCSR

A ring FCSR [5] consists of two components

1) A main shift register (m) of length n. Each cell
(mi, 0 ≤ i ≤ n − 1) contains {0 or 1}.

2) A carry register (c) also of length n. Each cell ci ∈

Z where 0 ≤ i ≤ n − 1.

The ring FCSR is updated as follows [15]:

m(t + 1) = T.m(t) + c(t) mod 2
c(t + 1) = T.m(t) + c(t) div 2

}
(1)

T = (ai, j)1≤i, j<n where ai, j is the element at the ith row and
jth column of n × n matrix with coefficients 0 or 1 in Z2
called transition matrix, which is of the following form:

T = (ai, j)0≤i, j<n with ai, j =

{
1 if m j is used to update mi,

0 otherwise

T =



∗ 1
∗ 1 (∗)
∗ 1

. . .
. . .

(∗) ∗ 1
1 ∗


Since the main register of a ring FCSR is a shift register,
ai, i+1 mod n = 1 ∀ 0 ≤ i ≤ n by definition to preserve the
ring structure of the automaton.
Note: X div 2 = ( X − (X mod 2) )/2

Theorem 1: The series Mi(t) observed in the cells of the
main register are 2-adic [5] expansion of pi/q with pi ∈ Z
and with q = det(I − 2T ).

Lemma 2: q is referred to as the connection integer [5]
of the FCSR. If q = det(I − 2T ) is prime and if the order
of 2 in Z/qZ is maximal, then each Mi is an l-sequence.

A typical example of Ring FCSR [5] is described in
Figure- 3. In this example, the symbol � refers to addition
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with carry. Which is typically implemented using Full
Adder [16]. If suppose a,b and c are the input to the full
adder and sum and carry are the outputs. then the equations
sum = a ⊕ b ⊕ c and carry = a.b ⊕ b.c ⊕ c.a. At the next
transition, the carry part of the output is delayed and given
back as input. Prime number q = −347 has the maximal
order of 2 in Z/qZ and is a |q| = det(I-2A). As a result,
the FCSR produced an l-sequence in Figure- 3 as its output
sequence.

Figure 3. Ring FCSR with connection integer (q=-347)

C. Design Criteria: Transition Matrix T

The transition matrix T is any random n× n matrix that
must meet the following criteria [8]:

i The matrix must have a general weight of n + l and
be made up of the entries {1, 0}. Let n+ l be as small
as possible. To secure a strong nonlinear structure,
it generally requires between n/2 − 5 and n/2 + 5
willing feedbacks (l).

ii The number of feedbacks (1’s) in each row/column
is less than or equals two. By boosting the number
of cells that the feedback may reach, this condition
enables improved diffusion. In addition, it offers
uncorrelated carries and a fan-out with a diameter
of 2.

iii Matrix should ensures a non-degenerated matrix(T ).
log2(q) ≥ n where q = det(I − 2T ) and det(T ) , 0;
So that sequence output by FCSR is an l-sequence.

iv Connection integer q is prime; 2|q|−1 � 1 mod q
v The diameter of graph G constructed by the tran-

sition matrix T as its adjacency matrix should be
minimum for lower diffusion delay.

Algorithm- 1 generates a n × n transition matrix T that
satisfies all of the design requirements described in this
section.

D. Design Criteria: Linear Filter

In the case of stream cipher using LFSRs, the output
is produced after combining the LFSR state using a highly
non-linear boolean function. For FCSRs, since the feedback
function is quadratic the output can be produced after
filtering using a linear Boolean function [17].

For a fixed-size input, linear Boolean functions provide
the maximum protection against correlation attacks. Both
software and hardware design development variants are the
most productive Boolean operations in terms of timing and
circuit complexity. Therefore, a filter F to produce an output

Algorithm 1 : Construction of Transition Matrix

Input: Pre-constructed Transition Matrix T = (ai, j)0≤i, j<n
Output: Full constructed Transition Matrix(T) with con-

nection integer(q) is prime.
Initialisation :

1: Choose n as size of the matrix size.
2: count ← 0
3: for t1 = 0 to n2 do
4: Get preconstructed Transition Matrix

T = ai,i+1 mod n = 1 ∀ 0 ≤ i < n.
5: Choose an optimal l ← [n/2 − 5, . . . , n/2 + 5]
6: Randomly select the number of feedbacks l in the

Transition Matrix.
7: Choose feedback(l) position at most one in each row

& column. (as a row-pos, col-pos)
8: for t3 = 0 to l do
9: T[row-pos, col-pos] ← 1

10: end for
11: q← det(I − 2T )
12: if (det(T ) , 0) then
13: if det(q) is prime and 2|q|−1 � 1 mod q then
14: if log2(q) ≥ n then
15: Consider the Transition Matrix T and q value.

count ← count + 1
16: else
17: Does not satisfy log(q) value at this stage.
18: end if
19: q value may not be prime and 2|q|−1 � 1 mod q.
20: end if
21: det(T ) = 0
22: end if
23: end for
24: for T = 1 to count do
25: Consider a minimum number of feedbacks.
26: Filter out the Transition Matrix whose graph has a

minimum diameter(d).
27: end for
28: return T

of one bit is a linear GF(2) operation of the form

F : GF(2)n → GF(2), F(x1, . . . , xn) = ⊕n
i=1 fixi, fi ∈ GF(2)

At a particular time instant, where x1, . . . , xn are the ele-
ments of the main shift register of the size n. A filter F
can also be viewed as a vector ( f1, . . . , fn) of size n over
GF(2). It can also be viewed as an integer F =

∑n
i=1 fi2i−1.

At each clock Ring Filter, FCSR produces an output of
u number of bits, in the general output, should be between
1 to n/16 to provide a challenging invertibility of the filter.
Filters are produced output should ensure good statistical
properties and a long period.
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E. Design Criteria: Key/IV setup

A sufficient level of confusion and diffusion of the initial
state bits is often achieved by the initialization process
(Key/IV configuration). A common method of initialization
is to repeatedly clock the Keystream Generator without
creating keystream bits [18].

The Key/IV configuration process must adhere to the
following requirements:

i In order to prevent the time-memory-data-trade-off
(TMTO) attack, the entropy provided by the key
should be preserved (in other words the state should
not lose entropy)

ii To resist a straightforward key recovery attack, the
transformation given by the Key and IV configuration
process must be complex to invert.

iii In order to avoid re-synchronization attacks, the num-
ber of clocks the generator runs before producing any
output should ensure better diffusion.

3. Proposed Stream Cipher Design

The new stream cipher (Ring-Filter-FCSR) mainly con-
sists of two components, i.e, Ring FCSR and linear filter.
Ring FCSR is used for maintaining the state of the stream
cipher. A linear filter is used for producing the output of the
stream cipher as shown in the Figure- 4. At each iteration,
the state gets updated with the help of the transition matrix.

Figure 4. Block Diagram of the Stream Cipher.

A. Design of Ring-Filter-FCSR-8-bit (RFF8)

The proposed Ring-Filter-FCSR-8-bits (RFF8) stream
cipher as the main register and transition matrix has to
satisfy theorem- 1 and lemma- 2. In RFF8 stream cipher
main register contains the size of n = 128. RFF8 structure
takes a Key(K), and Initial Vector(IV) of the sizes 96, 32
respectively, and also produces an output (u) of an 8-bit
word. In this case, d is the diameter of the transition graph.

The design consists of two steps: 1. Key/IV setup and
2. Keystream generation stage. The parameters for the
proposed stream cipher design are chosen based on the
design criteria.

• The main register size n = 128.

• Size of the transition matrix (T ) is 128 × 128.

• The Key(K) = 96 and IV = 32.

• The number of feedbacks (l) is 65.

• Output(u) = 8 − bits.

• Diameter (d) = 24.

• q = 531416742846788740700589340304980564201

The transition matrix T = (ai, j), 0 ≤ i, j ≤ 127 is n×n over
the GF(2), is of the following form:

Transition matrix (T) =

{
ai,i+1(mod 128) = 1 for 1 ≤ i ≤ 127,
ai, j = 1 for (i, j) ∈ U

U =


(0, 44) (3, 49) (4, 45) (5, 37) (6, 86) (10, 70) (11, 14) (15, 17)

(19, 98) (21, 71) (24, 93) (25, 82) (30, 41) (31, 125) (33, 22) (34, 18)
(35, 66) (36, 26) (37, 35) (38, 42) (39, 32) (40, 33) (43, 106) (44, 62)
(45, 100) (46, 115) (49, 99) (50, 2) (51, 59) (52, 57) (53, 113) (54, 12)
(58, 69) (62, 9) (64, 15) (65, 121) (66, 102) (70, 112) (71, 60) (76, 79)
(79, 126) (83, 16) (86, 89) (89, 55) (92, 97) (93, 61) (98, 78) (99, 52)
(100, 95) (101, 119) (102, 11) (106, 94) (107, 85) (109, 120) (110, 80) (112, 68)
(113, 0) (114, 101) (115, 67) (116, 51) (117, 38) (121, 114) (122, 64) (124, 31)
(125, 24)


|U | is the number of willing feedbacks l. The transition
matrix T is represented using the graph given in Figure 5.
An edge (i, j) indicates that register m j is used to update
register mi

Key / IV setup:

The main shift register of 128 bits denoted by
{m127,m126, . . . ,m1,m0} and Key(K) of length 96 bits de-
noted by K =k95||k94|| . . . ||k1||k0 and Initial Vector(IV) of
length 32 bits denoted by IV = v31||v30|| . . . ||v1||v0. Key and
Initial Vector(IV) are loaded into the main shift register
using the below-mentioned mix-function. Initially carry(c)
register set with 0 as shown in the below equation.

Loaded m(0) amd c(0) from the mix-function(Key, IV)
is given below.

m(0) = k95||k94|| . . . ||k1||k0||v31||v30|| . . . ||v1||v0

c(0) = 0

}
(2)

Update the main(m(t)) and carry(c(t)) registers are (by
equation-1) using clock function and produce pseudo-
random word of length 8, S i (0 ≤ i < 16) in each iteration
with the help of filter function. The main register m(t) reset
with the producing S 15|| . . . ||S 1||S 0 values and c(t) = 1. The
Ring-FCSR is clocked d + 4 times without producing any
output. where d is diameter of the transition graph such that
d = max{distance(mi,m j), 0 ≤ i, j ≤ 127} where each mi, ∀
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Figure 5. State update diagram/graph of RFF8

i is a cell in the main register.

i The main register m(t) is reinitialized as follows:
m(t) = (S 15|| . . . ||S 1||S 0)

ii The carry register is reinitialized to zero: c(t) = 1.

iii Update the registers d + 4 times without producing
any output.

Key Stream generation:

After the initialization stage, the ring FCSR is clocked
regularly as shown in the Figure- 5 and it produces 8-
bits keystream. To produce a ciphertext we need to XOR
keystream bits with the plaintext message.
Filters: In the RRF8, design the filters F0, . . . , F7 that are
used given below.
F0 = {0, 19, 35, 45, 58, 79, 100, 113, 125}
F1 = {3, 21, 36, 46, 62, 83, 101, 114}
F2 = {4, 24, 37, 49, 64, 86, 102, 115}
F3 = {5, 25, 38, 50, 65, 89, 106, 116}
F4 = {6, 30, 39, 51, 66, 92, 107, 117}
F5 = {10, 31, 40, 52, 70, 93, 109, 121}
F6 = {11, 33, 43, 53, 71, 98, 110, 122}
F7 = {15, 34, 44, 54, 76, 99, 112, 124}
Each filter Fi, (0 ≤ i ≤ 7) outputs the XOR of bits taken
from the specific main register cells of ring FCSR. ith
(0 ≤ i ≤ 7) keystream bit is the result of applying the
filter Fi on the state of the ring FCSR.

B. Design Performance Analysis

For the purpose of evaluating the throughput of our
RFF8 design, we have chosen other stream ciphers and
compared the performance of the main parameters. Calcu-
late the execution time to produce keystream in the time

of bits transmitted per second. Implementations are carried
out using C, an Ubuntu 18.04 64-bit operating system with
8GB RAM, Intel Core i7 CPU 860 @ 3.2 GHz × 12
processors. We compared with the F-FCSR-32 benchmark
suite and obtained the keystream speed results of 11.92 bits
per second but our proposed RFF8 design takes 0.032 MBps
to produce keystream results.

4. Security analysis of proposed design

The new designs are immune to existing attacks used
to evaluate their security. Various cryptanalytic techniques
have been applied to the proposed stream cipher. It is
resistant to several attacks such as distinguisher attacks [19],
and correlation attacks, and the keystream generated by
it has good statistical properties like large period, high
entropy, and high linear complexity [20]. It has been shown
that retrieving the key or initial vector given the keystream
is extremely difficult based on the correlation tests.

A. Distinguisher Attack

The fact of linear combinations between internal au-
tomaton states that occur with a biased probability can be
used as a basis for distinguishing attacks [19]. The existence
of such relations seems implausible given the presence of
carry cells. Since we were unable to locate any, we think
that none of them exists.

B. Correlation Tests on proposed stream cipher

Correlation test between Keystream and Key: This test
calculates the correlation between key and generated
keystream [21]. The adversary can use it to derive the key
or reduce the search space of an exhaustive search attack.
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The experiment in Table-I uses 220 − 1 random keys
and zero initial vector as input and generates the n-bit key
stream of RFF8. Calculate the Hamming Weight of the
keystream xor key (i.e. Wi = HW(Zi ⊕ Ki)). The RFF8
is secure if the hamming weights probability distribution
is binomial. Use the binomial distribution to calculate the
probabilities of these weights. Hamming weights have been
grouped so that each group roughly has the same probabil-
ity. Perform the χ̃2-Test [22]. The outcome is p value, by
this value, we can say that the design is secure the p value
should be ≥ 0.01.

TABLE I. Correlation test between Keystream and Key

KS & Key test OBSERVED EXPECTED

Group(0-59) 223109 223576.8
Group(60-62) 190919 191138.4
Group(63-65) 219465 219144.3
Group(66-68) 191223 191138.4

Group(69-128) 223859 223576.8
Total 1048575 1048576

p-value 0.71
χ̃2 2.09

Correlation test between Keystream and IV: This test calcu-
lates the correlation between the initial vector and generated
keystream [21]. The existence of a correlation implies that
the part of the keystream can be generated without the
knowledge of the key. The IV setup must be redesigned
if a stream cipher fails this test.

The experiment in Table-II uses a random key and
220 − 1 random initial vector as input and generates the n-
bit key stream of RFF8. The following Table- II gives the
correlation [21] between keystream and IV and keystream
in results (Groups are formed using hamming weights as
like a Table- I).

TABLE II. Correlation test between Keystream and IV

KS & IV test OBSERVED EXPECTED

Group(0-59) 222810 223576.9
Group(60-62) 191313 191138.4
Group(63-65) 219283 219144.3
Group(66-68) 191168 191138.4

Group(69-128) 224001 223576.8
Total 1048575 1048574.8

p-value 0.45
χ̃2 3.68

C. Randomness

Randomness tests examine very closely whether the
provided binary sequence represents a truly random se-

quence [23]. Typically, a test statistic is used to do this. A
true random sequence of data can be tested by using this test
statistic, which pursues a specific probability distribution
P. The test-statistic value and the probability that it will
take the value V under the probability distribution Prob
are computed for the supplied binary sequence to be tested
(This probability is known as the p-value). In terms of true
randomness, the binary sequence can be considered if the p-
value exceeds 95% or 99% level of significant value (where
α is 0.01 or 0.05).

NIST [23] and DIEHARD test suites are used to perform
randomness tests. NIST has devised fifteen randomness tests
to evaluate the randomness stream. The sequence produced
by a PRNG is the input for a separate statistical test in the
NIST test suite, which produces a result showing whether
the sequence is random or not. Consider the claim that
PRNG-generated sequences are random according to sta-
tistical tests. We do statistical tests on the output sequence
to identify if the stream ciphers act as pseudo-random bit
generators. Keystream of size one lakh and ten lakhs has
been produced from newly designed stream cipher. We
applied NIST tests on these keystreams. The results have
been tabulated in Table III.

TABLE III. NIST Test Suite result of 1-lakh & 10-lakhs keystream
bits

TEST NAME Result p value p value
Suc/Fail (1Lakh

bit-
stream)

(10Lakh
bit-
stream)

1. Runs Success p=0.687158 p=0.925766
2. Block Frequency Success p=0.487911 p=0.248277
3. Frequency Success p=0.379340 p=0.324133
4. Discrete Fourier Transform Success p=0.749568 p=0.818546
5. Rank Success p=0.687158 p=0.925766
6. Longest Run of Ones Success p=0.967290 p=0.191964
7. Universal Statistical Success – p=0.40625
8. Overlapping Template Matchings Success p=0.577567 p=0.856626
9. Non-overlapping Template Matchings Success 146/148 147/148

(Successes out of 148 Sub-Tests)
10. Approximate Entropy Success 0.210755 0.027123
11. Serial Success p1=0.424892 p1=0.470194

p2=0.077674 p2=0.276086
12. Linear Complexity Success 0.547553 p=0.296024

χ̃2=4.970881 χ̃2=7.276588
13. Random Excursions Variant N/A Insufficient

cycles
Insufficient
cycles

14. Random Excursions N/A Insufficient
cycles

Insufficient
cycles

15. Cumulative Sums Success p1=0.727154 p1=0.255008
p2=0.277757 p2=0.478352

Additionally, we examined the sequences produced for
selected keys with fixed patterns, shown in Table- IV.

D. Linear Complexity

The linear complexity of a sequence output by a filtered
Galois FCSR has been analyzed in [24]. The same argument
is applicable to ring FCSRs because of Theorem 1.

From Theorem 1, the sequence observed in each cell of
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TABLE IV. Test Vector of RFF8 with various Key, IV settings

Input parameters (Key, IV) Output (Keystream)

Key=0x000000000000000000000000
IV=0x00000000 0x6c33464eabdb9602e565174e7ce99f3e
Key=0x800000000000000000000000
IV=0x80000000 0x140bd118dbebe73da0da85fad1b3bf0d
Key=0xc27dfea157408b90eb2afe51
IV=0x4a9f7c26 0x93e5d97d4f0cbbbdedc13c8472ece42d
Key=0xffffffffffffffffffffffff

IV=0xffffffff 0xaa24e158e3376e02f1380605ac474834

the main register is the 2-adic expansion of pi/q. The linear
complexity of such a sequence is high (close to that of a
random sequence). the output keystream is the XOR of these
sequences. Since each sequence is high linear complexity,
the XOR is also of high linear complexity [20].

E. Cryptanalysis of Multiple Filters

Let F1, . . . , Fu be u filters to be used on the exact state
of the main register (Every filter selects a subset of bits from
the main register’s state and produces a one-bit output). The
following conditions need to be ensured while designing
multiple filters:

• Every filter must be immune against the 2-adic attack.

• Each of the u filters must be linearly independent
(when viewed as vectors) so that any dependency on
the u outputs is avoided.

• 2u filters can be obtained by all possible linear
combinations of the u filters. Each such filter must
be immune against a 2-adic attack.

The multiple filters F1, . . . , Fu will generate a binary linear
code C.

• The dimension of the code C is u because the filters
are linear independent.

• Suppose kF be the smallest integer for F ∈ C, where
F is treated as an integer, and kF is the condition that
2kF > F. The values of kF must have a minimal over
C that is as large as feasible. (so that the cost of a
2−adic attack is no better than an exhaustive attack).

• Because it is feasible to build a filter on d cells of
the main register from a code word of weight d, the
C code with a minimal distance d should be avoided.
A code C satisfying d ≥ 6 is recommended.

The basis of any u-dimensional code of length n whose
minimum hamming distance is greater than 6 and whose
minKF is as large as possible can be used as u filters.

F. Correlation Attack

Consider two binary sequences, S i = (si) and S j = (s j).
The integer α(n) =

∑n−1
i=0 (−1)si⊕s j is the correlation between

the n first bits of S i and S j. α(n) is a random variable of
mean m = 0 and variance σ2 = n for two random sequences
S i and S j.

As explained in the following paragraphs, the correlation
attack is based on the combined LFSRs (proposed in [25]).
F will act as the generator’s combining Boolean function.
Assume that one of the inputs has a value that is not
independent of the output of F. This input is connected
to an LFSR which the attacker selects as a start point, to
determine the correlation between the sequence produced by
the LFSR connected to this input and the series specified
by the generator. |α(n)| is likely to be quite little if the
LFSR’s setup is done incorrectly. It’s probable that |α(n)|
will be higher if the initialization is appropriate it means
that matches the key.

This method can be extended if input(t) and output(F)’s
xor are dependent on each other. Since there will be no
correlation between any set’s combination of at max in-
put/output, the boolean functions utilized in these generators
have to be robust of order t as large as possible. Similar
to this, it is feasible to identify certain linear relationships
between the intermediate states of the automaton for a
binary filter LFSR with like a Boolean function F. It is
feasible to create an extension of the pre-correlation attack
that used a choice of correlations (proposed in [25]).

The application of this approach on a ring FCSR faces
two main challenges [24].

• Firstly, Automaton’s filtering function, which has l in-
put parameters, is linear. Thus a function is balanced
and has no connection between its output data and
any total of at most l − 1 of its input data, making it
l− 1 adaptable. The approach in that method is more
challenging than the Bruteforce attack.

• The second is that because the transition function is
polynomial (degree more than two), the dependencies
between the cells of an FCSR automaton are nonlin-
ear. The discovery of linear dependencies is hard.

5. Design of Ring-Filter-FCSR-32-bit (RFF32)

We propose a word-based Ring FCSR [26], [27], [28].
The major aim of our approach is to develop an optimized
software-based design using a transition matrix (A) [29].
Block matrix(A) is obtained from Mn/w. (Mw(F2)) of di-
mension n, split into blocks with sizes r = n/w across F2,
represented by Ai, j.

The major aim of our approach is to develop an opti-
mized software-based design using a transition matrix (A).
Block matrix (A) is obtained from the array Mn/w. (Mw(F2))
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of dimension n, split into blocks with sizes r = n/w
across F2, represented by Ai, j. FCSR is defined by block(r),
which we name a Ring-Filter-FCSR-32bit (RFF32). A Ring
automaton is made up of a main register denoted by
M = (M0,M1, . . . ,Mr−1) where Mi is a w-bit word and a
carry register denoted by C = (C0,C1, . . . ,Cr−1). The block
matrix(A) is of the following:

A = (Ai, j)1≤i, j≤n with

Ai, j =

{
′∗′ if A j is used to update the Ai,
O otherwise

In this case, ′∗′ represents for apply the itr times left
shifts/right shifts operation of w × w matrix or else zero
matrix and O represents zero matrix of the same w × w
size. The transition matrix is of the following form

A =



∗ Iw
∗ Iw (∗)

∗ Iw
. . .

. . .
(∗) ∗ Iw

Iw ∗


r×r

where Iw represents a binary identity matrix with dimen-
sions of w × w, and each row and column has r blocks..

These Ring FCSRs are appropriate for software develop-
ment procedures since the super diagonal is full of identity
matrices and faster to implement using memory copy or, in
some conditions like the sliding window approach.

Let X be a w-bit word where (x0, . . . , xw−1) such that
xw−1 is most significant bit, (x0) is least significant bits.
The following operations may be defined for w-bit word: a)
copy the memory of matrix, apply left/right shifts on matrix.
The following definition applies to the w-bit words matrix
that implements the left/right shifts (which are indicated by
SL/SR).

SL ∗ (x0, . . . , xw−1)t = (x0, . . . , xw−1, 0)t

SR ∗ S (x0, . . . , xw−1)t = (0, x0, . . . , xw−2)t

The blocks Ai, j used to build the matrix A in this instance is
equivalent to S La, S Rb where a and b represent the number
of shifts.

For the implementation of software, design size is a ma-
jor part as compared with hardware automaton design [28].
We work with single-bit operation in hardware, but in
software at a time, we operate multiple bits as a word. It is
not usual to work with a single bit and usually takes more
operation instructions. Word sizes can range from 8−bits to
64−bits or more, depending on the processor’s architecture.

A. Choice of block Transition Matrix

In the proposed stream cipher number of blocks r=8
and w=16. The block matrix [27] has been chosen using
the algorithm- 2.

Algorithm 2 : Construction of word-based Transition Ma-
trix
Input: The word size is w, and the Word ring FCSR length

is n to seek with n//w.
Output: Transition Matrix(A) with word(w), feedback(l)

and block matrix (Aw) (left/right) shift and also con-
nection integer is prime.
Initialisation :

1: Choose n as size of the matrix size.
2: count = 0
3: for t1 = 0 to n2 do
4: A=(Ai, j)0≤i, j<n/w

where Ai, j =

{
Iw if j ≡ (i+1) mod n/w
O otherwise

5: Construct An×n ← Iw & Ow of block matrices.
6: Choose feedback(l) ← [n/2-5, . . . , n/2+5]
7: select shift( f )← {1, . . . ,w}, and d ≈ n/16
8: for t2 = 0 to l do
9: row, col, f = random([0,n/w,f])

10: S L f or S R f = Aw = Iw[row, col] f

11: end for
12: for t3 = 0 to n do
13: Load all S L and S R into A (update Aw into A)
14: end for
15: q←− det(I − 2A)
16: if (det(A) , 0) then
17: if det(q) is prime and 2|q|−1 � 1 mod q then
18: if log2(q) ≥ n then
19: Table[count] = A
20: count ← count + 1
21: else
22: Does not satisfy log(q) value at this stage.
23: end if
24: q value may not be prime and 2|q|−1 � 1 mod q.
25: end if
26: det(A) = 0
27: end if
28: end for
29: for t4 = 1 to count do
30: if optimal(l) and min(d) then
31: A = Table[t4]
32: Considered an optimal number of feedbacks.
33: Filter out the minimum diameter(d) of A.
34: end if
35: end for
36: return A

The word-based ring FCSR representing the transition
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matrix (A) is given below

A =



O I16 S L7 O O O O O
O O I16 O O S R8 O O
O O O I16 O O O S L5

O O O O I16 O S L5 O
S R6 O O O O I16 O O
O O O S L1 O O I16 O
I16 O O O O O O O


8×8

Where O is a zero matrix with an order of 16, and
I16 is an identity matrix. Let I128 represent the Identity
matrix of order 128. It follows that the q = det(I128 − 2A),
q = 2668421898153340433410655667297910089217, is a
prime and 2|q|−1 � 1 mod q. The number of feedbacks
(l) is 64. diameter of the graph (d) = 20. The related
Word Ring FCSR automaton generates a sequence with a
period of 2668421898153340433410655667297910089216
as a result.

B. Update function

Let the main register’s content blocks of words to be
denoted as M(t) = (M0(t), . . . ,M7(t)) and carry register be
denoted as C(t) = (C0(t), . . . ,C7(t)) at the time t. The size
of the transition matrix T is 128 that is 8*16bits = 128bits.
Ring Automaton always produces a fixed-sequence since
the operations S R6, S L7, S L1, S R8, S L5 and S L5 on m0,
m2, m3, m5, m6, and m7, respectively. The main register
state is being updated as shown in Figure 6.

Figure 6. State update Word Ring FCSR (WRFF32)

Ring automaton RFF32 design contains Main
register(M) and Carry register(C). M has r (= 8)
number of blocks and, in each block stores w (= 16) bit
word integer. Suppose main register initial denoted by
M = (M0,M1, . . . ,M7) where Mi is a 16-bit word and a
carry register denoted by C = (C0,C1, . . . ,C7). Figure 7
shows the state update process.

The word-based ring FCSR state will update as follows:
X0 = M1 + (M2 � 7) + C0
X1 = M2 + (M5 � 8) + C1
X2 = M3 + (M7 � 5) + C2
X3 = M4 + (M6 � 5) + C3
X4 = M5 + C4
X5 = M6 + (M0 � 6) + C5
X6 = M7 + (M3 � 1) + C6

Figure 7. State update diagram/graph of RFF32

X7 = M0 + C7

M = Xi mod 216 ∀ 0 ≤ i < 8
C = Xi div 216 ∀ 0 ≤ i < 8

 (3)

C. Extraction function

The extraction function is made up of an extract Z-
function that takes 128 bits of input, which has 8 register
cells, each cell holds 16-bits memory, and produces an
output of 32 bits from each iteration. The entire extraction
function operates more formally with m0 to m7. The 32-bit
word is computed and stored in Z(t) at time t as follows:

Z(t) = (M0 ||M1) � 2 ⊕ (M2 ||M3) � 1 ⊕ (M4 ||M5)≪ 12 ⊕ (M6 ||M7)≪ 25 }

(4)

D. RFF32 Design: Key Stream Generation:

RFF32 design categories into two stages Key/IV setup
and keystream generation. The parameters of the Key length
(key) = 96, Initial Vector (IV) length = 32 in RFF32 stream
cipher. Output bits in each iteration (u) = 32. Initially
load Key, and Initial Vector into the main register and
carry register set with zero. During warmup, we have to
update the state 4 times using equation 3 mean while
extracting the 32-bit using equation 4. In the next stage,
M has to load with extracted 128-bit output and carry
set one (C = 1) and update the register 5 times, discard
the produced output bits. Each iteration updates the state
to generate the keystream bits of 32-bit. This design is
undesirable for some cryptographic applications.

We examined the test vector RFF32 design sequences
produced for selected keys with fixed patterns, shown in
Table- V.
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TABLE V. Test Vector of RFF32 with various Key, IV settings

Input parameters (Key, IV) Output (Keystream)

Key=0x000000000000000000000000
IV=0x00000000 0x4424100e192a44a441c32b043b142991
Key=0x800000000000000000000000
IV=0x80000000 0x1872131b4a5fcf0af73e284f3cb5f2ff

Key=0xc27dfea157408b90eb2afe51
IV=0x4a9f7c26 0x7656f51d9542b6ae184f45996777252d
Key=0xffffffffffffffffffffffff

IV=0xffffffff 0x385281713487c80c54e16d7f79ad1d27

6. Conclusion

FCSRs are an alternative to LFSRs in stream cipher
design since they contain built-in nonlinearity (quadratic
feedback function) that makes them resistant to correlation
and algebraic attacks. As with LFSRs, FCSRs also possess
statistical properties, but their representation can make the
cipher more vulnerable. A new ring representation based
on matrix representations has generalized the Fibonacci and
Galois representations of FCSRs. This approach avoids the
weakness of both representations while keeping the desir-
able and standard properties of FCSRs like periodicity, and
high entropy. In addition, automata with a faster diffusion
feature and better implementation outcomes are produced
by the ring representation. In this paper, we proposed
two designs of stream cipher based on Ring FCSR which
produces 8-bit and 32-bit output using linear filters. We
provided a highly efficient pseudorandom generator that
was also simple to build, mainly in hardware but also in
software. We compare keystream generation and periodicity
with the existing FCSR design. It has been proven to be
secure from all known attacks and has good statistical prop-
erties. In future work, these designs will be incorporated
into cryptographic communication applications (devices) to
measure cipher all the parameters and efficiency.
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