
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.14, No.1 (Jul-23)

http://dx.doi.org/10.12785/ijcds/140119

Performance Analysis of Parallel Implementations of Global
Sequence Alignment Methods for DNA Sequencing

Akash Yadav1, Mushtaq Ahmed2 and Alina Khan3

1,2Department of Computer Science and Engineering,
Malaviya National Institute of Technology Jaipur, Rajasthan, India

3Karaganda Medical University, Republic of Kazakhstan

Received 20 Dec. 2022, Revised 6 May. 2023, Accepted 10 May. 2023, Published 1 Jul. 2023

Abstract: Global sequence alignment is an essential process in bio-informatics for determining the degree of similarity between two
DNA sequences. It is performed using the Dynamic Programming (DP) approach, in which the problem is broken down into smaller
ones, and these sub-problems are solved individually. There are various dynamic programming-based approaches to performing global
sequence alignments, e.g.,Needleman-Wunsch (NW), Longest Common Subsequences (LCS). It is computationally difficult and complex
to perform a global sequence alignment operation when the given DNA sequences are very large because programs based on dynamic
programming are generally written to run sequentially. On the other hand, A well-written parallelized code executes many times faster
than its equivalent serial code. This paper first explains the NW and LCS methods. Then the parallelization of these methods for
shared memory and distributed memory architecture using OpenMP and MPI parallel paradigms is discussed in detail and compares
the sequential and parallelized version of the Needleman–Wunsch and longest common subsequences. The detailed experiments for
sequential and parallelized implementation of both methods were carried out by varying the DNA sequence length and number of
threads in the case of OpenMP-based parallelization and the number of processes in the case of MPI-based parallelization. The obtained
experimental results helped to perform a comparative performance evaluation based on the execution time of the sequential and parallel
implementation of the methods. The speedup analysis of results showed that the parallelized implementations are many times faster
than the equivalent sequential implementation, and MPI-based parallel implementation is approximately three times faster than the
OpenMP-based parallel implementation.

Keywords: Parallel Computing, Global Sequence Alignment, Needleman–Wunsch(NW), Longest Common Subsequence, OpenMP,
MPI, Sequence Alignment.

1. Introduction
Deoxyribonucleic Acid (DNA) is one of the essential

elements of life presented in every organism in the world.
It is unique to each human being and living organism. This
particular property of DNA enables it to use in various fields
[1]. DNA sequence matching is an important application
used in forensics for identification purposes and in medicine
and agriculture for exploring possible disease and abnor-
mality diagnoses [2], [3]. A DNA sequence is composed of
four letters: A, C, G, and T, as shown in Figure 1. In bio-

Figure 1. Example of a DNA sequence

informatics, DNA sequence alignment and matching are the
most significant and vital operations. These operations are
used to identify the common subsequence and arrangement
of the DNA sequences based on identified common sub-

sequence to determine the similarity regions among DNA
sequences [4]. The sequence alignment can be classified
into the following two types [5]:

1) Global Alignment: Global alignment is the end-to-
end alignment of two DNA sequences to determine the
best optimal alignment between them. Closely related
sequences of the same lengths are best suited for global
alignment (shown in Figure 2).

Figure 2. Example of global sequence alignment

2) Local Alignment: Local alignment of two DNA se-
quences is an alignment of local regions (sub-strings)
with a high level of similarity. The local alignment
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method can also be used to compare even dissimilar
DNA sequences (shown in Figure 2).

Figure 3. Example of local sequence alignment

DNA sequence alignment is a fundamental method that
aims to find the similarity level between two given DNA
sequences or between a given query sequence and different
DNA sequences in a DNA database. Many sequence align-
ment algorithms have been presented for this purpose [6],
[7], [8], [9]. Many approaches are also proposed to perform
Multiple Sequence Alignment (MSA) in which instead of
comparing two DNA sequences, multiple sequences are
compared [10], [11]. Some sequence alignment methods
also use hardware-based or data-centric approaches that use
special hardware or specific data structures such as FM-
Index for faster processing [12], [13], [14]. However, most
of the methods depend on algorithm-centric approaches
such as edit distance, estimation algorithms, dynamic pro-
gramming, etc., for fast processing [2], [15]. In the dy-
namic programming-based approach, a larger problem is
divided into smaller independent sub-problems, and these
sub-problems are solved individually [16]. Generally, DP-
based global sequential alignment algorithms are sequential
in nature and dividing a larger problem into sub-problems
and computing them takes a considerable amount of time.
Therefore, high-speed pattern matching is needed to per-
form a faster operation which requires more computing
power.

Today every computer system is a multi-core system.
These different cores in the system allow for performing
parallel processing for fast computing of complex and
large tasks. In parallel processing, a problem is divided
into different parts, and these parts are distributed among
multiple cores to speedup the processing [17]. As discussed
earlier, programs to solve a problem using DP are generally
written for sequential execution and are not suitable for
parallel computing. Hence efficiently written parallelizable
programs are required to perform parallel execution and
produce results faster [18], [19], [20], [21].

Our paper addresses different approaches for the parallel
implementation of NW and LCS. Our main contributions
are:

• Overview of the various method for sequence align-
ment;

• Review of the two primarily used algorithms (NW and
LCS) for global sequence alignment;

• Discussion of the parallel paradigms used to parallelize
the above algorithms;

• Comparative performance analysis of the parallel im-

plementation of the above algorithms based on the
execution time for various sizes of inputs.

The rest of the paper is organized as follows: Section
2 presents various global sequence alignment techniques.
In Section 3, we address shared memory and distributed
memory-based parallelization paradigms for implementing
global sequence alignment techniques discussed in Section
2. In Section 4, the experimental setup and results were
evaluated. Finally, we conclude the paper in Section 5.

2. Global Sequence AlignmentMethods
For computational purposes, DNA sequences are repre-

sented as strings of characters A, G, T, and C, as shown
in Figure 1. Many dynamic programming-based global
sequence alignment algorithms exist in the literature [5].
In dynamic programming, a problem is broken down into
simpler sub-problems. These sub-problems are solved only
once, and their solutions are stored in a matrix-like table.
This matrix is used to get the solution for similar sub-
problems without solving them again. [22].

In DP-based sequence alignment methods, this matrix
is known as the score matrix. Each cell of the score
matrix contains a score and a direction pointer indicating
from which neighbouring elements (diagonal, left, or top)
the current cell’s value is calculated. These directional
pointers are used in the traceback step to obtain optimally
aligned sequences for given DNA sequences. Needleman-
Wunsch (NW) and Longest Common Subsequence (LCS)
are the widely used methods for sequence alignment [23].
Both of these methods work on the concept of dynamic
programming.

A. Needleman–Wunsch(NW) Method
Needleman–Wunsch(NW) algorithm is a prominent dy-

namic programming-based method used for the global
alignment of DNA sequences [24]. For any two given
DNA sequences, many possible alignments exist between
them. The NW algorithm is used to find the most optimal
alignments among those alignments [25]. The NW algo-
rithm assigns a score to each possible alignment, and the
alignment with the maximum score is the optimal sequence
alignment between two given sequences.

The scoring schema of the NW algorithm used the
substitution score and a gap score to calculate the score
of each matrix cell. The substitution score can be user-
defined (e.g., 1 for match and -1 for mismatch), or it can
be obtained from the predefined substitution score matrices
like BLOcks SUbstitution Matrix (BLOSUM) and Percent
Accepted Mutation (PAM). The gap score defines a gap
penalty given to alignment when we have insertion or
deletion. It is a user-defined value that is either 0 or a
negative integer value(e.g.,−1 or −2).

Given two DNA sequences SeqA=< a1, a2, .., an > and
SeqB=< b1, b2, .., bm >, The recursive equation for NW
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algorithm is defined as follows:

NW Mat(x, y) = max


NW Mat(x − 1, y − 1) + S (ax, by),
NW Mat(x, y − 1) +GP,
NW Mat(x − 1, y) +GP

(1)
where:
• S (ax, by) is the function to compute the substitution

score, and
• GP is the gap penalty

The Eq. 1 shows that the value of the current cell depends
on its diagonal (top-left), left, and top neighbors. Figure 4

match/miss 

substitution score

vertical

gap score

horizontal

gap score

Diagonal Top

Left
Current Cell


Score

Figure 4. Data-dependency for calculation of cell score in Needle-
man–Wunsch method

shows that all three neighboring cells are used to compute
three different scores (match/miss, vertical gap, and hori-
zontal gap), and the maximum score is the score of the
current cell. Figure 5 shows the example of score matrix
filling using the NW algorithm.

Figure 5. Example of score-table filling in Needleman–Wunsch
method

Figure 5 shows the example of score matrix filling using
the NW algorithm. In the example, the substitution score is
calculated using the substitution function defined in Eq. 2.
The substitution score for match is 1, miss is −1, and the
gap penalty (GP) is −1.

S (ax, by) =
{

1 i f ax = by

−1 i f ax , by
(2)

B. Longest Common Subsequence
Longest common Subsequence is a special case of

global sequence alignment [26], [27]. LCS is used to
find the largest subsequence that is common to both se-
quences [28], [29]. Let SeqA=< a1, a2, .., an > and SeqB=<
b1, b2, .., bm > are the two DNA sequences with the length
n and m respectively to be compared and determine the
length of a maximal common subsequence in them. The
mathematical formula to compute the score of each element
of the score matrix in LCS is defined in Eq. 3.

LCS (x, y) =


0 if x = 0 or y = 0
LCS (x − 1, y − 1) + 1 if ax = by

max(LCS (x, y − 1), LCS (x − 1, y)) otherwise
(3)

where 0 ≤ x ≤ n and 0 ≤ y ≤ m. The Eq. 3 states that the
score value of matrix element LCS (x, y) depends on three
entries: LCS (x − 1, y − 1), LCS (x − 1, y) and LCS (x, y − 1)
as shown in Figure 6.

(a) Case 1 (b) Case 2

Figure 6. Data-dependency for calculation of cell score in Longest
Common subsequence method (a) Case 1: when ax = by (b) Case
2: when (ax , by) and (x , 0 and y , 0)

Figure 7 shows the example of a score matrix generated
using LCS for two DNA sequences. The solid arrows
show from which neighbour (arrow-tail) the value of the
current cell (arrow-head) is calculated. The dashed arrows
represent that the value of the current cell can be computed
from either of its neighbours neighbors. The value of the
LCS (n,m) element is the length of the longest common
sub-sequence of given strings and can be found by tracing
back the score matrix.
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Figure 7. Example of score-table filling in Longest Common Sub-
sequence method

C. Parallel Approach
The score matrix for both LCS and NW methods can

be generated row-wise [30]. In the row-wise approach, the
score of each element of the score matrix is computed one
row at a time, as shown in Figure 8(a). However, in this
approach score value of two elements can not be computed
simultaneously because every element’s score is dependent
on its top, left, and diagonal neighbors in both LCS and NW
methods, as shown in Figures 4 & 6. Hence, the scores of
two cells, either in the same row or in different rows, can
not be computed simultaneously. Thus, this row-wise score
matrix generation is a sequential approach and can not be
parallelized.

(a) Row-wise (b) Diagonal-wise

Figure 8. Cell accessing order for filling the score table in (a)
sequential implementation and (b) parallel implementations of NW
and LCS methods

In the parallel approach, the elements of the score matrix
are accessed diagonally, as shown in Figure 8(b). Figure 6
and Figure 4 show that in both LCS and NW methods, the
score value of one element does not depend on the value of
any other element in the same diagonal [24]. Therefore, the
score of elements in the same diagonal can be computed

simultaneously. However, similar to the row-wise manner,
elements of two diagonals can not be computed in parallel
because every ith diagonal’s element’s score depends on the
(i−1)th diagonal’s cell score. Hence in the parallel approach
of score matrix generation, the score of cells of the same
diagonal can be computed in parallel. Algorithm 1 and
Algorithm 2 show the steps of generating the score matrix
in a diagonal-wise manner for NW and LCS, respectively.

Algorithm 1 Needleman-Wunsch (A, B)

1: m ← size of sequence A
2: n ← size of sequence B
3: match ← match score
4: miss ← mismatch score
5: gap ← gap penalty
6: score mat ← A 2D-array of size (m + 1, n + 1)
//Initialize the 1st row of the score matrix

7: for row← 0 to m + 1 do
8: score mat[row, 0]← gap ∗ row
9: end for
//Initialize the 1st column of the score matrix

10: for col← 0 to n + 1 do
11: score mat[0, col]← gap ∗ col
12: end for
//Compute scores

13: for dia← 2 to m + n do
14: for i← max(1, dia − n) to min(m, dia − 1) do
15: j← dia − i
16: if A[i] = B[ j] then
17: sub value← score mat[i − 1, j − 1]

+ match
18: else
19: sub val← score mat[i − 1, j − 1] + miss
20: end if
21: del← score mat[i − 1, j] + gap
22: ins← score mat[i, j − 1] + gap
23: score mat[i, j]← max(sub val, del, ins)
24: end for
25: end for

3. ParallelizationModels
Parallel computing requires a multicore architecture to

perform multiple tasks simultaneously. In the case of a large
complex task, parallelization can be achieved by breaking
the task into multiple subtasks [31]. Based on the use of
the memory architecture during implementation, multicore
architecture can be divided into two groups [32], [33], [34]:
shared memory system and distributed memory system as
shown in Figure 9.

• Shared memory system: Shared memory architecture
(also known as the symmetric multiprocessing or SMP
model) is a type of computer architecture where a sin-
gle physical memory space is shared among multiple
processors or CPUs. Each CPU has direct access to all
memory locations, allowing it to exchange information
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Algorithm 2 Longest Common Subsequence (A, B)

1: m ← size of sequence A
2: n ← size of sequence B
3: score mat ← A 2D-array of size (m + 1, n + 1)
//Initialize the 1st row of score matrix

4: for row← 0 to m + 1 do
5: score mat[row, 0] = 0
6: end for
//Initialize the 1st column of score matrix

7: for col← 0 to n + 1 do
8: score mat[0, col] = 0
9: end for
//Compute scores

10: for dia← 2 to m + n do
11: start ind ← max(1, dia − n)
12: end ind ← min(m, dia − 1)
13: for i← start ind to end ind do
14: j← dia − i + 1
15: if A[i] = B[ j] then
16: score mat[i, j]← score mat[i−1, j−1]+1
17: else
18: score mat[i, j]← max(score mat[i − 1, j],

score mat[i, j−1])
19: end if
20: end for
21: end for

with other CPUs by writing and reading from the same
locations.

The advantage of the shared memory model is that
it simplifies programming, as processors can easily
communicate with each other by accessing the same
memory location. This makes it easy to write parallel
programs, as it is not necessary to manage communi-
cation between processors explicitly. However, shared
memory architectures can suffer from performance
bottlenecks due to contention for access to the shared
memory, which can result in reduced performance.
In addition, shared memory architectures are limited
by the physical size of the memory, which can limit
the scalability of the system. In this architecture,
programming models like OpenMP are used to exploit
parallelism.

• Distributed memory system: In contrast to the shared
memory system, distributed memory system (also
known as message-passing architecture) is a type of
computer architecture where each processor has its
own memory space, and processors communicate by
passing messages to each other. In other words, pro-
cessors do not share memory, and each processor com-
municates with other processors via a communication
network, passing messages and data between them as
needed.

Each CPU in a distributed memory model has its

(a) Shared Memory (b) Distributed Memory

Figure 9. Parallel computer architecture based on the memory
implementation [34]

own local memory, and communication between CPUs
is handled directly, allowing the model to expand to
a high number of CPUs or processors. This makes
it well-suited for large-scale parallel processing ap-
plications. However, distributed memory architectures
can be more difficult to program than shared mem-
ory architectures, as the programmer must explicitly
manage the communication between processors. In
addition, communication overhead can be a bottleneck
for performance, specifically if the communication
network is slow or congested. In distributed memory
systems, programming models like MPI are commonly
used to manage message passing and parallelism.

A. OpenMP
OpenMP is an Application Programming Interface (API)

library built for shared memory systems that utilize thread-
level parallelization. In OpenMP-based parallelization, all
threads share memory and data [35]. At the execution time,
an OpenMP program uses one thread (known as a master
thread) for all the sequential sections and multiple threads
(known as slave threads) for the parallel sections of the
program.

In the parallel OpenMP implementation of the LCS and
NW methods, the master thread (thread number 0) executes
the sequential sections until a parallel section is arrived,
represented by OpenMP directive #pragma omp parallel
as shown in Figure 10. In the parallel section, the master
thread creates multiple slave threads based on the number of
cores available in the system [37]. In parallel processing,
diagonal-wise score computation is performed, and these
computation tasks are distributed between master and slave
threads [36].

Figure 11 shows the distribution of diagonal elements
between threads for score computation. Figure 11(a) shows
that the master thread is used for the score computation of
only element of the first diagonal. The score computations
of the second diagonal’s elements are shown in Figure
11(b). the master thread creates one slave thread to compute
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Figure 10. Threads creation by master-slave for the execution of
parallel region in OpenMP based parallelization [36]

Figure 11. Distribution of a diagonal’s elements between master and
slave threads in OpenMP for calculating scores in parallel (a) for
1st diagonal, (b) for 2nd diagonal, and (c) for 4th diagonal

the score of both elements of the second diagonal in parallel.
Similarly, Figure 11(c) shows that in the case of the fourth
diagonal, the master thread creates three slave threads to
compute the score of all four elements in parallel.

B. Message Passing Interface
MPI is one of the best parallel computing paradigms

designed for distributed memory systems. In MPI, processes
communicate data between them using explicit messages
[38]. The MPI API library contains a rich number of func-

tions that allow processes to do point-to-point or collective
communication. MPI distributes data between the processor

mpirun -np 3 ./prog

prog prog prog

cores

rank 0 rank 1 rank 2

Figure 12. Creation of multiple instances of a program and their
distribution between different cores using MPI

using these functions to do parallel processing for tasks
that requires high performance. MPI programming has a
substantial advantage in terms of program speedup because
each process handles a distinct component of the same job
concurrently and independently. The mpirun command is
used to exploit the MPI-based parallelism [39]. The mpirun
starts the multiple instances of the same task to run in
parallel on available processors, as shown in Figure 12.
When an MPI library function is called in the program, the

0 1 2 3 4

0

1

2

3

4

5

5

Block
 1

Block
 2

Block
 3

Figure 13. Example of distribution of elements between process in
MPI

processes communicate through these functions and start the
point-to-point or collective data transfer based on the type
of communication between other instances of the program
running in parallel.

In the distributed memory system, the MPI parallel
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paradigm divides the elements of a diagonal based on
the number of processes available. Then each of these
processes computes the score of those elements in parallel.
The number of elements in a block is calculated as follows:

block length =
total elements

size
(4)

where:
• block length is the number of elements in a block,
• total elements is the total number of elements in the

diagonal, and
• size is the total number of processes.

After that, each process calculates the starting index and
ending index of the assigned elements using Eq. 5 and Eq.
6.

start index = round(block length ∗ rank) (5)
end index = round(block length ∗ (rank + 1)) − 1 (6)

where:
• start index is an index of the first element of the

block,
• end index is an index of the last element of the block,

and
• rank is the unique number assigned to each process in

MPI

The start index and end index are used by the respective
processes to iterate through the elements that are assigned to
them. Figure 13 shows the distribution of diagonal elements
between three processes. Here diagonal has a total of six
elements, and each process is assigned a block of length
two, i.e., each block contains two elements of the diagonal.

4. Experimental Setup and Result Analysis
This section describes the experimental setup and test

inputs used in the experiments, followed by the experimen-
tal result discussion. Figure 1 shows that DNA consists

TABLE I. Details of hardware/software specifications used for
experiments

Hardware/Software Specification
Processor Intel® Xeon® E5-2699 v3
Clock speed 2.30GHz
RAM 64 GB
Operating System Ubuntu 20.04.2 (64-bit)
C Compiler GCC v9.4.0
OpenMP v4.5
MPI v4.0.3

of four characters, i.e., A, C, G, and T. A generator
program is created to randomly generated the pair of DNA
sequences of lengths 10k, 15k, 30k, 45k, 60k, 75k, 90k,
and 100k for testing the implementations. The sequential
and parallel (OpenMP and MPI) versions of both global
alignment algorithms are implemented in C language. The
computation time spent generating the score matrix is
measured for each implementation (serial, OpenMP, and

MPI) of both algorithms. For the correctness of the parallel
implementations, their maximum scores are compared with
the serial implementation.

The run times are measured in seconds and are the
average value of five execution of the application for each
input for all three implementations. All experiments were
carried out on a computer system with Intel® Xeon®
processor with 62GB RAM. Table I shows the details of
the hardware and software used for the experiments.

A. Result Analysis
We have analyzed execution time with varying numbers

of threads and processes for OpenMP and MPI, respectively.
In an OpenMP implementation, the number of created
threads is equal to the number of active cores. In contrast,
in an MPI implementation, the number of processes is equal
to the number of active cores.

Table II and Table III show the averaged execution time
analysis of the three implementations (sequential, OpenMP,
and MPI) of both Needleman-Wunsch and Longest com-
mon subsequences methods versus the size of the DNA
sequences respectively. The execution time includes both
the initialization steps and score-filling steps of the score
matrix.

From Table II, it is clear that, in contrast to the parallel
implementation, the execution time of the Needleman-
Wunsch technique grows exponentially with the amount of
the input DNA sequences when the method is sequentially
implemented. The results show that there is a gradual
increase in execution time in both OpenMP and MPI
implementations. We can also observe that for larger DNA
sequences, the execution time taken by 28 threads is faster
than the execution time for 32 threads. This downgrade in
performance is due to the communication and waiting time
overhead between a large number of threads for accessing
the data from shared memory locations in OpenMP loops.
In MPI-based implementation, The execution time is very
fast compared to sequential implementation and increases
rapidly as the level of parallelization, i.e., the number of
processes, increases. After a certain number of processes,
this difference in the execution time does not increase very
much with the increase in the number of processes. The
results show that there is very less difference between the
execution time for 28 processes and 32 processes.

From Table III, we can see that sequential and parallel
implementation of LCS methods yields results approxi-
mately similar to the NW method. Here also in OpenMP
implementation, execution time decreases with the increase
of the thread, but like the NW method, after a certain
number of threads, execution time starts to increase. The
MPI implementation for the LCS method executes very fast
compared to sequential and OpenMP implementation. From
the experimental results, we also performed a speedup anal-
ysis between the sequential and parallel implementations
of both NW and LCS methods for DNA sequences of size
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TABLE II. Comparison in execution time of sequential and parallelized implementations of Needleman-Wunsch method

Execution
Type

Threads/
Processes

Sequence Length
10K 15K 30K 45K 60K 75K 90K 100K

Execution Time (in seconds)
Sequential 1 2.637 6.091 21.655 48.546 86.488 134.373 193.116 256.194

Parallel
Shared
Memory
(OpenMP)

4 2.009 4.996 20.643 44.810 84.454 131.904 190.765 238.980
8 0.854 2.411 10.327 24.342 44.355 70.299 100.731 127.430

12 0.507 1.350 6.551 16.544 29.990 47.528 69.241 89.629
16 0.431 0.878 5.072 12.475 23.288 35.626 52.064 66.887
20 0.373 0.900 4.225 10.394 18.637 28.454 40.519 58.732
24 0.340 0.729 3.597 9.242 17.447 26.662 45.637 60.212
28 0.310 0.666 3.079 8.174 18.587 29.703 38.454 66.635
32 0.303 0.715 3.044 8.960 19.177 32.613 50.009 83.923

Parallel
Distributed
Memory
(MPI)

4 0.799 1.847 6.595 16.277 27.983 43.031 60.979 74.949
8 0.478 1.048 3.919 8.774 15.338 23.018 32.379 41.688

12 0.331 0.702 2.761 5.97 11.313 16.646 23.302 28.138
16 0.28 0.592 2.06 4.56 8.395 12.401 17.165 22.252
20 0.244 0.453 2.013 3.669 6.598 9.954 13.772 17.55
24 0.188 0.41 1.534 3.172 5.726 10.664 14.799 16.186
28 0.215 0.358 1.281 2.874 7.7 14.687 16.134 16.232
32 0.188 0.393 1.203 3.494 8.676 15.892 14.372 17.819

TABLE III. Comparison in execution time of sequential and parallelized implementations of Longest Common Subsequence method

Execution
Type

Threads/
Processes

Sequence Length
10K 15K 30K 45K 60K 75K 90K 100K

Execution Time (in seconds)
Sequential 1 2.020 4.397 16.361 34.652 61.497 96.181 138.456 187.250

Parallel
Shared
Memory
(OpenMP)

4 1.469 3.589 15.183 33.453 59.934 94.786 137.893 172.837
8 0.530 1.587 7.795 18.224 32.322 52.165 75.892 94.718
12 0.347 0.948 4.805 12.821 22.160 36.796 52.864 71.029
16 0.339 0.709 3.650 9.877 17.844 28.341 40.600 49.249
20 0.270 0.708 3.114 8.023 14.002 23.565 35.209 43.313
24 0.288 0.610 2.749 6.962 13.564 20.841 32.065 39.135
28 0.262 0.539 2.360 6.906 11.788 21.292 30.862 51.201
32 0.324 0.737 2.186 7.384 12.005 22.573 35.605 39.256

Parallel
Distributed
Memory
(MPI)

4 0.575 1.262 4.861 11.110 18.755 29.823 41.441 53.469
8 0.324 0.706 2.585 5.852 10.261 15.790 22.622 36.060
12 0.240 0.508 1.896 4.167 6.923 10.627 16.015 20.070
16 0.198 0.418 1.363 3.212 5.193 8.464 13.056 15.225
20 0.169 0.329 1.161 2.527 4.766 6.451 9.908 12.195
24 0.155 0.314 1.062 2.301 3.524 5.669 7.870 11.792
28 0.147 0.297 0.925 2.029 3.346 6.536 8.919 11.809
32 0.129 0.260 0.840 1.767 3.164 6.227 9.515 14.182

100K. The Eq. 7 has been used to determine the speed
difference between implementations.

S peed U p =
S equential Execution T ime

Parallel Execution T ime
(7)

Table IV shows the difference in speed between the se-
quential execution times and parallel execution times of
both the NW and LCS methods for DNA sequences of
size 100K. Data from Table IV demonstrates that for large
DNA sequences, the MPI-based parallel implementation
of NW and LCS methods executes more quickly than
the OpenMP-based implementation. Compared to OpenMP,

MPI implementation offers a significant speedup. Figure
14(a) and 14(b) illustrate the corresponding graphical rep-
resentation of Table IV. The results showed that for large
DNA sequences, the OpenMP-based parallel implementa-
tion of both methods is approximately 4.36 times faster
than the sequential implementation. Also, the MPI-based
parallel implementation is three times faster than sequential
implementation when the number of processes is low. This
speedup is increased up to 15 times as the number of
processes increases. To analyze the performance difference
between OpenMP and MPI implementations, we have also
compared the speed of these two parallelization paradigms.
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TABLE IV. Speedup the comparison of sequential and parallelized
implementations

No. of
Threads/
Processes

NW LCS

OpenMP MPI OpenMP
vs MPI OpenMP MPI OpenMP

vs MPI
4 1.07 3.42 3.19 1.08 3.50 3.23
8 2.01 6.15 3.06 1.98 5.19 2.63

12 2.86 9.10 3.19 2.64 9.33 3.54
16 3.83 11.51 3.01 3.80 12.30 3.23
20 4.09 14.38 3.52 4.32 13.20 3.05
24 4.25 14.60 3.43 4.67 15.35 3.29
28 4.36 15.78 3.62 4.89 15.86 3.24
32 4.01 15.83 3.95 4.54 15.88 3.32
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(b) Speedup comparison for LCS

Figure 14. Speedup analysis of sequential, OpenMP, and MPI
implementations for (a) Needleman-Wunsch(NW) method and (b)
Longest Common Subsequence(LCS) method

The results show that for both the NW and LCS meth-
ods, MPI implementations run approximately three times
faster than OpenMP implementations.

5. Conclusions and FutureWork
In this paper, we have performed a detailed performance

analysis of parallelized implementations of Needleman-
Wunsch and longest common subsequences algorithms, two
widely used methods for global sequential alignment of
DNA sequences. The serial and parallel implementation
of both methods were executed on a high-end multicore
system. In the parallel implementation, we used both
OpenMP and MPI parallelization paradigms to measure the
performance of shared memory architecture and distributed
memory architecture with respect to the execution time and
speedup for varying input sizes.

The results of the experiment demonstrated that the
OpenMP-based implementation of methods executes ap-
proximately three times faster than the sequential imple-
mentation. For MPI-based implementation, the program
runs approximately 14 times faster compared to the sequen-
tial one when the number of cores is high. The MPI-based
parallel implements also outperformed the OpenMP-based
parallel implementation and achieved a speedup of 3.20. We
planned to implement these methods on GPUs and compare
the OpenMP and MPI implementation with Compute Uni-
fied Device Architecture (CUDA) based implementations
in our future work. Also, an OpenMP and MPI-based
hybrid implementation can be developed to achieve a faster
execution time.
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