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Abstract: Designing wireless communication systems with an aim to improve the utilization of the existing frequency bands involves
the novel idea of cognitive radio (CR). CR allows sharing of licensed spectral band of primary users (PU) with the secondary users
(SU) if and only if the licensed user is not subject to harmful interference. To sense the availability of PU spectrum, spectrum sensing
is employed as a primary task of CR. Traditional signal processing techniques for spectrum sensing have the problem of false alarm or
missed detection and may cause interference to PU. Thus, to further expand the ability of learning for CRs and to support an efficient
PU sensing, artificial intelligence, machine learning or deep learning techniques can be applied. This paper proposes an efficient and
well performing segmentation cum classification algorithm based on deep learning techniques for PU sensing. The spectrogram of the
PU’s transmission signal pattern for different scenarios was classified using Res-Net 50 model. To further improve the accuracy, a
region proposal-based Res-Net50 model is proposed. The performance evaluations validate the effectiveness of the proposed model.

Keywords: Cognitive Radio, Deep Learning, Spectrum Sensing, Classification, Segmentation.

1. INTRODUCTION
CR, a novel technology addresses the problems in wire-

less technology and computational intelligence [1]. Radio
devices capable of learning and adaptation to changes
around its radio surroundings is referred to as CRs. It is
observed that due to the massive growth in the areas of
wireless networks and communication, the number of nodes
and devices used has increased to a larger extend. Due to
this increase in the usage of devices, scarcity issues in the
available spectrum have become predominant. The problem
of scarcity in spectrum can be mitigated with the use of
CRs which helps to improve the utilization of the licensed
spectrum, by providing the SUs dynamic spectrum access
[2]. To accomplish all these cognitive tasks, the CR should
detect all types of RF activities by being aware of its RF
surroundings. This requires periodic spectrum sensing by
CR.

CRs sense and learn about its RF surroundings through
spectrum sensing technique. Through spectrum sensing, CR
discovers opportunities for access to free PU spectrum and
allows multiple CRs to share the PU spectrum provided
that the latter is not subjected to harmful interference.
Commonly employed spectrum sensing methods include
matched filter technique, energy detection technique, cy-
clostationary based feature detection technique, etc., These
efficacies of these techniques depend on the level of noise
which may result in high false alarm or missed detection.

Hence, this work involves applying machine/deep learning
models to spectrum sensing problem, which can further
improve the correctness of spectrum sensing. The proposed
system model is based on residual deep learning that builds
a classifier model to classify the PU’s communication
pattern into ten classes. The algorithm uses a segmentation
cum classification model trained on spectrogram images to
detect the nature of spectrum occupancy and classifying
them into 10 unique classes. It would be useful for SU if
the trained model to be deployed in a dynamic environment,
to detect the spectrum occupancy.

2. LITERATURE REVIEW
Machine/deep learning techniques and CR are two vast

domains comprising a lot of literature useful for developing
this work. CRs sense the spectrum occupation pattern of
PU and use its spectrum when it is detected vacant as long
as there is no significant interference. Existing spectrum
detection techniques, although effective and robust, can be
substituted with machine/deep learning models for better
classification. With various learning techniques available
for sensing the spectrum, an efficient technique and robust
technique must be chosen. Some of the works of literature
that were found helpful for developing the proposed work
are discussed below.

A comprehensive literature survey for the use of ma-
chine/deep learning algorithms for CR classification with
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their merits and demerits is discussed in [3]. The authors
also point out some challenging learning problems in CRs
with possible solutions. In [4], the detection of cognitive
radio spectrum occupancy is studied using machine learning
techniques like linear regression, naı̈ve Bayes algorithm,
support vector machine (SVM), decision tree algorithm and
hidden Markov models. Finally, a new Firefly based SVM
algorithm is proposed which attains the best classification
accuracy. A cooperative spectrum sensing using super-
vised machine learning approaches (weighted K nearest
neighbor and SVM) and unsupervised machine learning
techniques (Gaussian mixture model and K-means clus-
tering) is proposed in [5]. SVM based classifier is found
to outperform other machine learning techniques. Another
new and improved cooperative spectrum sensing using SVM
is proposed in [6] with reduced overhead and improved
detection performance. In [7], a deep cooperative sensing
model with small sized CNN is introduced which takes real
or binary values individual sensing outcomes of SUs. A
learning model with CNN - long short term memory model
is proposed in [8] The model is proved to perform well
irrespective of the noise model assumptions.

In [9], the authors introduced an alternative approach for
radio signal detection and localization using spectrogram
data trained with CNN for bounding box regression. Their
approach is found to outshine performance of human level
by computer vision for object detection techniques, similar
ones have been used for radio applications. It is done by
the basic with labeled training data with broadband spec-
trogram image annotated with bounding boxes and masks.
Authors reported an increased performance in sensitivity
when compared to conventional energy detection based
sensing methods.

The authors of [10] investigate algorithms for multiple
signal detection with classification of modulation schemes
using a deep learning framework. Details such as the signal
modulation format, start-stop time and carrier frequency can
be obtained from their technique. A single shot multibox
detection scheme for signal detection and multi-input CNNs
for modulation recognition is built which achieves better
performance than the existing methods.

In [11], yet another perspective on classification using
spectrograms is provided. The work in this literature is to
provide the licensed access of the 3.5GHz radar spectrum
to the commercially available users in the United States.
The rules are that the commercial systems should leave
the spectrum when the sensors identify the radars operated
by U.S. military. This work used 14,000 spectrograms over
which they investigated 13 different methods for detection.
They proved that machine learning algorithms outperformed
the traditional signal detection algorithms.

The authors of the research work proposed in [12]
developed a best-performing technique that merge several
low-level features and high-level image context for object

detection applications. They combined region proposals
with CNN, referred to as R-CNN, regions with CNN
features that achieved 30% more performance than the
previous techniques.

A radio access technology classification problem for
opportunistic spectrum access using machine learning tech-
niques is presented in [13]. They use a public spectrograms
dataset for training and developed a prototype to create data
for testing and reported an overall accuracy of 96%.

The dataset used in this paper is obtained from [14] and
[15] which contain the spectrogram data that illustrate the
PU’s scenario into various classes. Spectrograms show the
time frequency variation of the signal graphically. These
spectrograms, which are 64x64 gray scale images are used
as inputs to the proposed deep learning model.

In this paper, a simple and scalable PU algorithm for
detection is proposed with the following primary objective:

• To develop a classifier cum segmentation model that
can classify the PU transmission patterns and detect
the presence channel occupancy in the spectrum using
a suitable semantic segmentation algorithm.

The remaining segments of the paper are structured as
follows: Section 3 provide the dataset description. Section
4 explains the model used for PU sensing comprehensively.
Section 5 describes the model’s performance and analysis
in detail. Section 6 provides the conclusion and discussions.

3. PU DATASET DESCRIPTION
The realistic PU spectrum occupancy with unique values

of packet duration, hopping pattern, inter packet delay, spec-
trum occupancy and bandwidth is captured and reflected
as spectrograms. Each spectrogram is a 64x64 gray scale
image which cover 4 channels for 50 msec occupying
10 MHz bandwidth (4 x 2.5MHz channels). The dataset
obtained for 10 mutually exclusive classes each class and
the details of each class are described in Table I.

There are 71,200 training spectrograms and 17800 test-
ing spectrograms from a total collection of 89000 spectro-
grams. Each class of the dataset is marked according to its
corresponding occupancy in the spectrum. Class 0 to class
4 show absence of PU in some channels, while classes 5 to
9 show PU presence in all channels. Sample spectrogram
images from each class for varying SNR values are shown
in Figure. 1.

4. SYSTEM MODEL
System model for PU classification is developed using a

region proposal based Resnet-50 deep learning framework.
First, the use of deep residual model Resnet-50 for PU
detection is explained. The performance of the model is
discussed in the next section and compared with a simple
2-layer CNN. To further improve the accuracy of the model,
segmentation cum classification model is proposed. The
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TABLE I. Dataset Description

Class Description Inter-packet delay Training dataset Testing dataset

Class 0 Single channel (random) 5 ms 8000 2000
Class 1 Single channel (random) 10 ms 8000 2000
Class 2 Two random channel hopping 5 ms 18000 4500
Class 3 Four random channels hopping 10 ms 3200 800
Class 4 Four channels synchronous 5 ms 18000 4500
Class 5 Two random channel synchronous 5 ms 3200 800
Class 6 Four channels synchronous 2 ms 3200 800
Class 7 Four channels (delays - Poisson distributed) 20 ms (mean) 3200 800
Class 8 Four channels (delays - Poisson distributed) 10 ms (mean) 3200 800
Class 9 Four channels (delays - Poisson distributed) 5 ms (mean) 3200 800

Figure 1. Sample Spectrogram Images for all PU classes at different SNR values

detailed description which is explained whose performance
is compared is resnet-50 model.

A. Deep Residual Model for Spectrum Sensing
Deep neural networks generally have more training

complexities but have shown improved performance for
image classification problems. Owing to the complexity
involved and issues like vanishing gradient, it usually takes
more time to train deeper neural networks and takes a
lot of computational resources. ResNets are deep residual
networks that are well demonstrated as a successful model
for image classification tasks. ResNets makes the training
process faster and easier. In addition, they also achieve
improved accuracy compared to other neural networks.

Figure. 2 describes the Resnet-50 system model used
for PU occupancy detection by secondary users. The input
image is fed to the convolution layers of the model and
becomes interpolated to appropriate image size. The images
are considered as matrices or vectors of the pixel. The
model learns by passing the images through each and every
layer, and an optimized weight vector is finally obtained.
The final convolution layer Conv 5 x includes four 512 lay-

ers and four 2048 layers. The output from the final layer is
flattened to 1x8192 vector. Then the dense fully connected
layer having one thousand nodes and ReLU function for non
linear activation is followed. A final output node has multi-
class output with a SoftMax activation function. A 1x10
label vector is generated having probabilities of multiple
target classes. This vector of appropriate probabilities is
used for classification when the test input image is provided
as input.

B. Segmentation Cum Classification Model
To further enhance the accuracy of detection, segmen-

tation cum classification model is proposed. Deep learning-
based model called DeepLab is the model used for image
segmentation. One of the key advantages of using DeepLab
is that it is compatible with the image classification model,
ResNet-50. In other words, the segmentation model can use
ResNet-50’s weights, thereby not impacting on the compu-
tation complexity and robustness. Even though, DeepLab
uses pre-trained weights it is not trained on a pixel level.
For that purpose, the segmentation model has to train only
on the region proposals of a particular image. For training
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Figure 2. Resnet-50 Model for Spectrum Sensing

Figure 3. Original Image

the DeepLab model on our spectrogram dataset, the data has
to be converted to TFR Record format, which is a simple
XML format consisting of information about a particular
image, its mask, its region of interest in a simpler manner
such that the model understands it easily.

C. Creating Masked Images
The masked image of a particular image is a replicated

binary image containing white pixels only in the regions of
interests. The image masks are created so that the model
learns the region proposals quickly. The image masks are
created using software called pixel annotation tool. This
software is used to annotate images manually and quickly
in directories. The method is pseudo manual because it uses
the watershed algorithm of OpenCV.

In Figure 3-5, a sample original image available in
the dataset, the masked image of the sample and on the
rightmost the pre-processed image is shown. Each class
images in the dataset are separately annotated using the
pixel annotation tool. Each image is initially masked for

Figure 4. Masked Image

Figure 5. Pre-processed Image

the spectrum occupancy and then the masks are transferred
to other similar images in the same class. The output from
a single image generates a colored mask, a watershed mask,
and a regular mask. The mask images are applied with a pre-
processing step called Otsu’s binarization threshold which
is a histogram-based thresholding function from python
OpenCV2 These images are then given as input for the
training of DeepLab model. With this step, the prerequisites
of training a DeepLab model are satisfied. To obtain more
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accurate results DeepLab works in two phases. The first
stage is to extract the region of interest (RoI) or RoIs in the
plural form. An RoI is an area of the input image that may
contain an object. The second stage is classification, where
each RoI is resized to fit the convolutional neural network
as discussed in [16].

D. Region Proposals
Regions of interest are generated through the region

proposal network (RPN). To generate RoIs, the RPN uses
convolutional layers. The RPN accepts an input image and
output the RoIs. Every RoI encloses a bounding box and a
class score probability value. The CNN is used to extract
a feature volume to generate those numbers. The feature
volume is then used to generate the regions, coordinates
and probabilities. The architecture of the RPN model is
shown in Figure 6. The architecture of the RPN and its
step-by-step process shown in explained below:

• Step-1: The RoIs are generated in the original image
and are converted into the feature map coordinate
system.

• Step-2: Resize each RoI such that it fits the input of
the fully connected layers.

• Step-3: Apply the fully connected layer. The map is
flattened to obtain a feature vector.

• Step-4: Apply two different convolutional layers. One
handles the classification (called cls), and the other
handles the refinement of the RoI (called rgs).

The final output is a list of RoIs after post-processing.
At this step, no information about the class of the object
is generated, only about its location. During the next step,
classification, we will classify the objects and refine the
bounding boxes.

E. Classification
The second part of the DeepLab model is classification.

The model accepts two inputs, RoI list from RPN. The
feature volume is computed from the input image and
the final bounding boxes are obtained. The classification
part can work with any feature volume corresponding to
the input image. However, as feature vector weights have
already been computed in the previous classification model
(ResNet-50), they are simply reused here This technique has
two benefits sharing the weights, sharing the computation.

The Deep Learning model used for spectrum sensing
is shown in figure 7. The figure shows how the region
proposals from RPN are being used in the ResNet-50
model. Thus, making it into a segmentation model similar
to DeepLab. The feature extraction and the classification
part of this model are briefly explained in section 4. The
scope of this section is to discuss how a simple classification
model can act as a segmentation model.

As described in 4.1.1 the output from RPN are class
scores and the bounding box locations, it also says that
the refinements of ROIs are handled by a regressor. The
proposed model, in a similar manner, has a regressor for
refining the bounding box locations. The location of a
single bounding box is given by [x, y, w, h], where x and
y are the coordinate points of the left top corner of the
bounding box, whose height and width are given by y+h
and x+w respectively. Since the proposed RCNN model
uses a classifier and a regressor after the full connection
layers, it acts similarly to the DeepLab model and produces
segmentation outputs. The advantage of doing so is it
reduces the computation complexity of the model, thereby
concentrating more on accuracy and robustness.

F. Training the Model
Because of its unique architecture, the proposed model

cannot be trained as a regular CNN. If each of the two parts
of the network were trained separately, the feature extractors
of each part would not share the same weights. Therefore,
a new training regimen for this model was developed, it is
discussed below:

• Step-1: Train the RPN so that it predicts acceptable
RoIs.

• Step-2: Train the classification part using the output
of the trained RPN. At the end of the training,
the RPN and the classification part have different
convolutional weights since they have been trained
separately.

• Step-3: Replace the RPN’s CNN with the classifi-
cation’s part CNN so they now share convolutional
weights. Freeze the shared CNN weights. Train the
RPN’s last layers again.

• Step-4: Train the classification’s last layer using the
output of the RPN again.

At the end of this process, a trained network is obtained
with the two parts sharing the convolutional weights. The
training of this particular model is carried on 20,000 spec-
trograms each class containing 2000 images and is tested
using 5,000 spectrograms. A separate set of 1000 images
not appearing in both training and testing sets is used for
validation. The model trained for 25 epochs, for a batch
size of 32 with a step size of 625. The proposed ResNet-
50 based segmentation model runs on Nvidia GTX 1050
graphics processing unit (GPU) card and implemented on
the open-source TensorFlow object detection API.

5. PERFORMANCE EVALUATIONS
The performance of a deep learning model will be

based on how well the system predicts the given test
image. The performance metrics such as training accuracy,
validation accuracy, confusion matrix, top-one accuracy,
top-five accuracy, are generally used for analysis. For every
single epoch, training is done for a batch size of optimal
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Figure 6. Architecture of the Region Proposal Network

Figure 7. Deep Learning Model for PU Spectrum Sensing

value. At the end of each epoch, the accuracy of training
and testing are obtained. The model is trained using 20,000
spectrograms and is validated on 5,000 spectrograms for
about 15 epochs. The results obtained are shown in Table II
in which a comparison between 2-Layer CNN and ResNet-
50 is carried out.

There are two types of performance metrics available for
appraising the predicted classes in multi-class categorical
classification. Top-1 Accuracy From a set of label vectors
obtained the highest probability is chosen and it is predicted
as the label. Top-5 Accuracy From a set of label vectors
obtained 5 maximum probability values are chosen and
predicted as output in increasing order of probabilities.

A confusion matrix of a set of training data is a
performance indicator of any classification model which
illustrates the correct and incorrect predictions. It gives a
summary of prediction results for known true values as in
the training data for the classification problem. The correct
and incorrect predictions as represented by the confusion
matrix with count values for each class is shown in Figure

8.

From the confusion matrix, the important point that is
observed is that the prediction is perfect for class 6 and
classes 3 and 9 has relatively weak prediction performance
i.e. more of those classes spectrograms were incorrectly
labelled as other classes. Loss function, in general quantifies
how well a model performs in prediction of the classified
output The model is said to be performing better in predict-
ing the classes correctly if the loss function is minimum.
The main parts that defines the losses in a model are
training and validation. The difference between them is
that training loss is obtained during the epochs whereas the
validation loss is obtained after the epoch. The training loss
is continually reported over the duration of the entire epoch;
the validation metrics are computed for the validation set
only when the current training epoch is over. It is seen that
the gaps are much smaller between the training and loss
values. Figure 9. shows the shifted training and validation
losses graph across the epochs.

A good fit for a classification model can be identified by
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TABLE II. Comparison of Resnet-50 and 2 Layer CNN

Performance Resnet-50 model 2 Layer CNN Model

Training Accuracy (%) 82.24 71.45
Validation Accuracy (%) 86.07 72.32

Testing Accuracy (%) 92.24 74.32

TABLE III. Comparison of Resnet-50 and Proposed RCNN based Resnet-50

Performance Resnet-50 model RCNN based Resnet-50

Training Accuracy (%) 82.24 81.81
Validation Accuracy (%) 86.07 87.80

Testing Accuracy (%) 92.24 93.12

Figure 8. Confusion Matrix of the classifier model

Figure 9. Training and validation loss

functions such as training and validation loss. As shown in
Figure 7, it can be inferred that the validation loss is lesser
than the train loss, which means that the model does not
overfit or underfit.

Table III summarizes the accuracy metrics of the
ResNet-50 and RCNN based ResNet-50 models. It is seen
that training accuracy in the RCNN based model is affected
due to the increased strain on the segmentation part. The
following sections will discuss about some metrics on the
segmentation part of the model.

A. Performance of the Segmentation Model
Because of its unique architecture, the proposed model

cannot be trained as a regular CNN. If each of the two parts
of the network were trained separately, the feature extractors
of each part would not share the same weights. Therefore,
a new training regimen for this model was developed, it is
discussed below:

The semantic segmentation is a task which is used to
foresee the class of each pixel of a given image. The
prediction output should match the input’s spatial resolution
(height and width) with a channel extent equal to the total
number of classes to be predicted. Each channel consists of
a binary mask which labels areas where a specific class is
available. Segmentation-centric metrics like pixel accuracy,
mIoU (Jaccard Index) and Dice coefficient (F1 score) are
discussed.

Pixel Accuracy: It is the percentage of pixels in an
image that are correctly classified. The initial segmentation
accuracy obtained was 93%. The issue with this metric is
that, only for one class, the pixel accuracy was 93% of the
original image. So, if the model classifies all pixels as that
class, 93% of pixels are accurately classified and 7% are not
correctly classified. This leads to an issue referred to as class
imbalance. This happens because the spectrogram dataset
contains only a few regions having spectrum occupancy.
This issue can be solved by not taking the black pixels into
considerations, which provided a very low value, i.e., 42%
accuracy. Hence, much better metrics like mIoU and Dice
coefficient are evaluated.

Mean Intersection Over Union (IoU): In semantic seg-
mentation, the IoU otherwise referred to as theJaccard Index
is one of the most popularly used performance metrics. IoU
is defined as ratio of the common area overlapping between
the predicted segmentation and the ground truth image to
the area of union between the predicted and the ground
truth. This range of values for this metric is from 0 to 1 (0
to 100%) with 0 meaning no overlap and 1 meaning fully
overlapping segmentation. For multi-class segmentation, the
average or mean IoU is considered which is calculated by
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TABLE IV. Performance of Segmentation Model

Merics Values Time(sec)

Mean IoU 0.834 204
Dice Coefficient 0.822 202

averaging the IoU values of each class. It is defined as
follows in equation (1)

IoU(A, B) =

∣∣∣A ∩ B
∣∣∣∣∣∣A ∪ B
∣∣∣ =

∣∣∣A ∩ B
∣∣∣∣∣∣A∣∣∣ + ∣∣∣B∣∣∣ + ∣∣∣A ∩ B

∣∣∣
∣∣∣A∣∣∣ and

∣∣∣B∣∣∣ are the cardinality of each set; that is,
the number of elements they each contain.

∣∣∣A∩B
∣∣∣ is the

intersection of the two sets, and therefore the numerator∣∣∣A∩B
∣∣∣ represents the number of elements they have in

common. Similarly,
∣∣∣A∪B

∣∣∣ is the union of the sets, and
therefore the denominator

∣∣∣A∪B
∣∣∣ represents the total number

elements the two sets cover together.

Mean IoU is evaluated using TensorFlow which uses
Keras as a backend to run the IoU part of the metric and
then it is averaged by the frontend. The model performed
well and obtained mean IoU of 0.834 in 204 secs. This
metric proved more efficient than pixel accuracy and did
not pose any class imbalance issues.

Dice Coefficient: The Sorensen–Dice coefficient mea-
sures how well two sets overlap. The Dice coefficient is
a metric that is similar mean IoU. They are positively
correlated, i.e., if model X is found to be better performing
than model Y at segmenting an image, then it will be the
same for the other. The value of Dice coefficient ranges from
0 to 1, with 1 signifying the maximum similarity between
predicted segmentation and ground truth. It is expressed in
the equation (2) as shown below.

Dice(A, B) =
2
∣∣∣A ∩ B

∣∣∣∣∣∣A ∪ B
∣∣∣ = 2

∣∣∣A ∩ B
∣∣∣∣∣∣A∣∣∣ + ∣∣∣B∣∣∣ + ∣∣∣A ∩ B
∣∣∣

In semantic segmentation, Dice is, therefore, used to
measure how well the predicted mask for each class overlap
the ground-truth mask. For one class, the numerator then
represents the number of perfectly classified pixels, and the
denominator represents the total number of pixels belonging
to this class in both the predicted and ground-truth masks.
As a metric, the Dice coefficient thus does not depend on
the relative number of pixels one class takes in images
and thus it is not affected by the class imbalance issue.
Table V shows the mean IoU and Dice coefficient of the
segmentation model.

TABLE V. Predicted Output for RCNN based Resnet-50

Class
Name

Input Sam-
ple

Ground
Truth

Predicted
Output

Class 0

Class 2

Class 3

Class 6

B. Prediction Results
The prediction results of a model is a direct comparison

of predicted outputs with their corresponding ground truth
and original input. The predicted output produces an image
similar to the input image with bounding boxes around
the spectrum occupied region. Table V provides the details
of predicted outputs RCNN based ResNet-50. The table
depicts all the best performing classes, provided a few
poorly performing classes were present which did not affect
the overall performance of the model.

6. Conclusions
Spectrum sensing is a primary key functionality of

CR whose accuracy is very crucial. Traditional spectrum
sensing techniques has some limitations and constraints, so
machine learning techniques were proposed to predict the
occupancy of PUs. In this paper, a ResNet-50 model based
on residual learning was proposed to predict the transmis-
sion patterns of PUs. The prediction results show that the
proposed ResNet-50 model was more accurate and robust
in classifying the PUs transmission classes. In addition, it
is observed that the ResNet-50 model correctly classified
the more related classes into their proper individual classes.
The proposed classifier cum segmentation model, RCNN
based ResNet-50 was tested and validated on the same
dataset. The model was able to precisely detect as well
as classify the spectrogram for the spectrum occupancy.
Various metrics were also used to appraise the model.
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