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Abstract: During the last decade, Android malware detection has ever preoccupied researchers. The rhythm of creation of sophisticated
malicious techniques obliges researchers to look for robust countermeasures. Singular Value Decomposition (SVD) is a powerful
in signal processing for image compression. Unlike image-based deep learning detection that directly take images made of .dex
properties, SVD-based processing of images is investigated in this work to recognize maliciousness. For that, we associate n-gram
for completeness of properties extraction and Simhash for uniqueness of application signatures. SVDroid is proposed to transform
applications based on n-gram and Simhash into 32 x 32 grayscale images, then to apply SVD to only remain with valuable
features. Machine and deep learning algorithms are applied to automatically extract knowledge to profile applications. Experiments
have been conducted on 135 malware and 135 benign applications. Results reveal that the association n-gram, Simhash along
with the learning algorithm process positively contributes to the profiling. CNN outperforms six machine learning algorithms with
an accuracy of 88.55% and an AUC of 93.45% on average. A study demonstrates that SVDroid is able to improve CNN-based
image processing approaches. Exploitation of compression techniques such as SVD should be further studied in mobile malware detection.
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1. Introduction
Android still dominates the smart phone market and

is predicted to remains popular next years. According to
Statista [1], its market share is about 71.93%. Android was
reported in 2019 as the most vulnerable operating system.

As a consequence, this system gained a lot of attention
from attackers. They design sophisticated techniques to by-
pass Google filtering measures. They also mislead popular
applications to redirect sensitive resources requests such as
location, credit card, and contact information [2]. Malicious
people have so far, created malware nests that they maintain
or evolve through advanced techniques.

Protection countermeasures are on demand with a spe-
cific attention in the industry [3]. Authors increasingly rely
on designing feature engineering to be applied on artificial

intelligence algorithms such as machine learning and deep
learning to retrieve knowledge [4], [5]. These algorithms
perform on structures based on static features [6], [7] such
as permissions [8], [9], Application Programming Interface
(API) [10], [11] and dynamic features such as system calls
[12], [13], network traffic [14] as well as combination of
static and dynamic features [15], [16].

However, these attempts although interesting, generally
lack generalization meaning that related models easily rec-
ognize malware as benign. The concern is therefore to
find reliable structure of application which provides kernel
features representing the malicious facets of malware. To
this end, authors propose application transformation into
image due to two reasons: (i) image is an object which
easily keeps representative properties related to its pixels
[17], [18], [19], (ii) there are several mathematical tools to
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process images.

Following this direction, authors propose approaches
that transform an .apk into images based on elements
inside the packages such as manifest, byte code, and source
code. They transfer these images as inputs to Convolu-
tional Neural Network (CNN), a renowned deep learning
technique in image recognition [20]. Most of these authors
perform simple matrix transformations and directly apply
the learning algorithms[21]. However, pre-processing on
these images can be very useful to extract the relevant
characteristics of the pixels.

In this work, SVDroid, is proposed to take advantage of
the SVD compression subtleties for the extraction represen-
tative structure and key properties [22], [18]. The proposed
approach first applies n-gram and Simhash to .dex opcodes
to obtain images which are then processed with SVD to
capture relevant features.

This study contributes into the two following points:

• We introduce SVDroid, a novel feature engineering
approach relying on two key processes: image trans-
formation based on n-gram and Simhash and image
processing to extract key features relying on SVD.
The proposed approach does not take directly con-
verted .dex into image to CNN classification. Unlike,
SVDroid suggests to feature extracts properties from
that images based on robust image processing such
as SVD.

• Experiments have been conducted on 135 malware
and 135 benign transformed in samples of 32 x 32
grayscale images. Results reveal that the variation
of the n-gram hyperparameter impacts the detection
performance and that CNN is the most efficient
algorithm reaching on average Area Under Curve
(AUC) of 93.45% against with six machine learning
algorithms. A study with similar works reveals that
SVDroid improves performance.

The remaining of this paper is structured as follows. Fea-
ture engineering approaches for Android malware detection
are presented in section 2. Notions about Android applica-
tion structure, n-gram, Simhash and SVD are described in
section5. In section 4, the proposed approach architecture
and components are presented. In section 6, experiments
are performed and results are discussed. We conclude and
provide perspectives at the end the document.

2. Related works
In general, solutions against malware fall into static,

dynamic and hybrid categories. The first category does
not run the application. It extracts static features [23]
such as permission, code related information, API and
based on them, identifying the nature of application. The
second category observes activities during run-time to make
decision about the application nature[24]. The third category

combines properties from static and dynamic[25]. Whatever
the category is, authors structure applications into objects
manipulable by Artificial Intelligence AI techniques. We are
interested in studying works based on image processing and
not image processing, to capture malware knowledge.

Permissions controlling access to resources, is the most
popular feature in malware detection [6]. Several authors
use permissions to facilitate application reconnaissance
[26], [27]. Features related to malware installation processes
such as repackaging, updating, privilege escalation are
exploited in [28]. In [6], additional features are considered:
financial charges features such as Short Message Service
(SMS) and phone calls as well as personal information
features such as phone number. Code-based features such
as byte-code frequency, opcode, or opcode sequence are
also used for the same purposes. Additional features are
exploited. In [29], authors exploit data-flow graph (DFG)
and control-flow graph (CFG) whereas in [30], [31], authors
identify sequence of opcodes to profile families of applica-
tions. Dynamic features include features which require run-
time of the application to be retrieved, such as network
traffic. In [32], the authors collect system calls during
application execution. HTTP network traffic is utilized by
Aresu et al. [33] to profile an application. DroidBox [34]
is used in [35] to generate dynamic information exploited
as features. Authors in [36], classify applications based on
consumption of resources. Combination of features can be
exploited. Mantoo and Khurana [24] use this principle on
permissions, system calls and intrinsic features with linear
discriminant analysis as feature engineering technique. In
[37], the authors associate log features related to file I/O,
network flows, and cryptographic usage. In [38], the authors
exploit the DroidBox tool [34] to have dynamic features
related to network traffic.

The aforementioned approaches are subject to some
constraints. They rely on the right selection of features.
This capacity belongs which belongs to the expert who
should have enough knowledge to reliably select features.
In this case, the high number of data often tends to provide
poor generalized models. On the contrary, an image is a
structure from matrices that have enough features (pixels
as an example) and proven theories to manipulate. Authors
start investigating on this direction.

In [39], a system is proposed for identifying Android
malware. Ten types of images are created by inserting
domain knowledge to the image transformation. The process
of conversion the Dalvik opcode and API information then
transforms .dex classes into fractal shaped Hilbert curve
images. Using CNN model including two layers, the system
was accurate with 92%. In [40], authors rely on color
images. They applied different CNN techniques that have
been successfully exploited in ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC). Their system is accurate
with 98.428%. Unlike, the generation of images did not
consider the structure of .dex file.
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In [41], image similarity is combined with CNN to
recognize unknown malware. Authors have experimented
on two datasets of 128 × 128 images. The first contains
9458 grayscale images made of 25 malware families and the
second contains 3000 benign software. Their approach has
been accurate with 98%. In [42], CNN is applied on gray-
scale images converted from executable files of malicious
code. Then, Non-dominated Sorting Genetic Algorithm
II (NSGA-II) is applied to overcome data imbalance in
malware families. In [43], authors take out the byte-code
file from the APK. The byte-code file is then translated
into a two-dimensional matrix which is taken as input
in convolution neural network (CNN). DeepVisDroid is
proposed in the paper [44]. Authors construct four image
datasets from four elements: the Manifest.xml file, the .dex
code files, association of manifest and Resources.arsc files
and Manifest, association of Resources.arsc and .dex files.
They provide hybrid approach considering each dataset in
CNN.

Table shows a summary of papers which are based on
CNN classification based on image features, in terms of
dataset sizes and accuracy.

Table I shows that authors mainly rely on image pro-
cessing because they rely on CNN. Due to that, they
directly convert the byte-code into matrix, and then apply
CNN on matrices. Unlike, this work proposes that images
require prior deep processing to extract the relevant matrix.
According to [21], SVD is a renowned tool used in image
compression. In linear algebra, SVD converts a matrix into
different sub-matrices while giving out geometric structure
and relevant properties of the input matrix. This study inves-
tigates whether SVD is able to bring robustness to proposals
based on image-based processing. To obtain original matri-
ces for each sample, we use n-gram on opcode sequences
for completeness of representation and then Simhash for
uniqueness of hashes to each sample.

3. Background
In this section, notions about application internals[51],

n-gram[52], Simhash[53], and SVD[22] are presented.

A. Basics of application structure
As depicted in Figure 1, an Android application is

composed of several files and folders all grouped together
in an archive file called .apk. This file is used to distribute
and install the application on Android. More specifically,
an application contains the manifest file called Android-
Manifest.xml which contains application metadata such as
package names, access rights, definition of components
including activities, services, broadcast receivers and con-
tent providers. It also contains a folder called res that
contains static resources of such as images, icons, texts
and user interfaces. The directory lib contains the compiled
code of different libraries used in the application. There
is an important file called .dex meaning Dalvik executable
(DEX) referring to the code that will be executed by the
virtual machine. Finally, there is META-INF, a directory

Figure 1. Application Structure [54]

that contains cryptographic signatures used to verify and
certify developer identities.

As shown in Figure 2, the .dex comprises classes
compiled to fit into the environment of limited resources.
The .dex file has four sections: header section, ids sec-
tions, class defs section and data section. The header
section contains top-level information including file size,
signature, the offset and size of the other sections. The
ids sections has the list of identifiers including strings,
types, fields and methods. The class defs section has
the definition of classes including class, superclass, and
interface types as well as the source file name. The data
section has the class data and runtime source codes which
describe application behavior. code item includes certain
information about methods as well as corresponding byte
codes. map list saves the following data: size and offset of
sections and DEX contents. Each method contains human-
readable Dalvik bytecode (i.e. statements). Each statement
has one opcode and several operands. Attackers usually
target this file to insert malicious payloads that launch bad
activities. They therefore exploit the data section.

Figure 2. DEX file Format
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TABLE I. Research dealing with image processing and techniques of machine learning and deep learning. NA: Not available

Author Feature and algorithm Dataset (malware; goodware) Accuracy
[45] Grayscale image, CNN (5.377 ; 6.249 ) 98.02%
[46] Grayscale images, K-NN, grabar kernel 9.459 98%
[47] Grayscale images, CNN (10.805 ; NA) 99.260 %
[48] Images (type NA), CNN based on VGG-16 (9.339 and 21.741 (malware)) 98.52 %;

99.97%
[49] Images processing, CNN (12000) 96%
[50] Grayscale images (32x32 pixel),DT (9342;NA) 88%

RF 91.6%
Perceptrons 90.5 %

[43] Grayscale images (size NA), CNN (3962;1000) 86%
[44] Grayscale images, CNN 04 datasets of (4850 benign and 4850

malware) each
98%

B. N-gram
N-gram is a popular approach for feature engineering

in Natural language processing [52]. N-gram derives con-
tiguous chains of items with length n, such as sequence
of words, characters etc. The popular n-gram models in
text mining are word-based n-grams. An 1-gram refers to
unigram, 2-gram refers to bigram or digram and 3-gram
refers to trigram. N-gram is useful for malware detection
since the manifest has text contents. In this case, N-gram
represents given data into several words. Then, a new
word is made as a composition of n-size serial words
to have the context information. For example, 2-gram in
the sentence God makes Franklin happy gives God makes,
makes Franklin and Franklin happy. N-gram is exploited
in this work due to the following reason. Malware take
advantage of sequence of opcodes to be harmful in a specific
order [55]. Therefore, n-gram will retrieve the possible
sequences including the malicious ones.

C. SVM
Binary classification can be realized by support vector

machines (SVM)[56]. Its objective is to find the optimal
discriminating hyperplane which separates both classes. In
simple words, SVM finds the separation hyperplane which
maximizes the margins from both classes. The margin refers
to the distance between the separator and some close points.
The latter are called support vectors since they control the
separator. An infinite number of separators can be obtained
but the optimal one is kept. Figure 3 shows a case with
two line separators. The one in red is not selected since
the margin is not maximal. The one in black is therefore
selected.

D. Sim-hash
Simhash is a hashing mechanism designed by Moses

Charikar[57], used for identification of text structures and
identification of duplicated web pages [58]. Using Simhash
guarantees that similar contents will have similar hash
values with very low collision. This technique includes
the following steps: (i) structuring given data (ii) hashing
all structured data (iii) computing weighted vectors into a

Figure 3. SVM illustration

calculated value and (iv) Translating the calculated value
into a binary value.

Simhash takes a specified dimension bits vector V to
model a document. More specifically, the n-th bit of V is
determined based on the calculation of the hashed value
of the whole keywords in the document. If the number of
hashed values whose n-th bit is 1 is greater than the number
of hashed values whose n-th bit is 0, then the n-th bit of
V is 1. Otherwise the n-th bit of V is 0. In this work, we
rely on opcodes extracted from each .apk. Due to the fact
that the size of opcode chains is variable, it is difficult to
compare similarity of sequences of distinct length. Simhash
is exploited to compare sequence similarity.

Algorithm 1 presents the Simhash process and Figure 4
illustrates Simhash with an example.
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Algorithm 1 Simhash Algorithm

Require: opcodes sequence Seq, n-bit hash algorithm;
Ensure: n-bit Simhash values;

1: Begin ;
2: Initialize a n-bit vector V as zero vector;
3: Initialize a binary number S as zero;
4: for each opcode to Seq do
5: b =hash(opcode);
6: for i = 1 to n do
7: if b[i] == 1 then
8: v[i]+ = 1;
9: else

10: v[i]− = 1;
11: end if
12: end for
13: end for
14: for i = 1 to n do
15: if v[i] > 0 then
16: s[i Give by the formula :]= 1;
17: else
18: s[i] = 0
19: end if
20: end for
21: End

Figure 4. Simhash Algorithm

E. Singular Value Decomposition
Singular Value Decomposition (SVD) is a mathemati-

cal theory used in various applications, which is used in
various domains based on image processing[22]. SVD has
been popular due to its strength to find key properties in
images. This is the main justification that this work targets
SVD. The operations on images making SVD powerful are:
packing maximum energy, finding least square solutions,
computing pseudo-inverse of a matrix as well as multivari-
ate analysis [59], [60].

SVD relies on matrix factorization which is the repre-
sentation of a matrix into a product of matrices. SVD takes
a matrix A and decomposes it into the product of three
matrices. Suppose that an image I refers to a matrix A of
m × n real with rank r such that r < m, r < n. An SVD of

A is identified as follows:

A = UAS AVT
A (1)

where

• A : m × n matrix;

• UA : m × m orthogonal matrix;

• S A : m × n diagonal matrix;

• VA : n × n orthogonal matrix.

According to [61], SVD is popular in several of applications
due to the following properties:

• The singular values (S A) indicate the intensity of the
image whereas the singular vectors (UA and VA )
accentuate geometrical characteristics of that image.

• S A has a good stability means that the singular values
of the image keep constant with time independently
from any small perturbation.

• Updating singular values during the reformation step
has an incidence on the image quality. They are
therefore useful to represent kernel part of the image.

4. SVDroid approach
As shown in Figure 5, SVDroid is made up of three

main modules: Data preprocessing, feature engineering, and
CNN based training. The first module takes the dataset of
malicious and benign applications and transform them into
32x32 grayscale images from decompiling into .dex to the
serial applications of n-gram and hashing. During feature
engineering which requires as input the dataset of images,
we generate the representative singular matrix based on
SVD exploited as the profile for each sample. CNN based
training aims at learning from these images to predict the
class of an unknown application.

A. Preprocessing
In this module, the transformation of the applications

into grayscale images is realized. We describe this process
which is carried out in several sub-processes represented in
Figure 6.

1) Data collection
SVDroid requires datasets of malware and goodware

.apk collected from reliable various repositories. A script
is necessary to ensure that there are no duplicates within
each category of samples. Since we seek models to assign
the predicted class to any sample, we therefore proceed to
labelling of the whole samples as 0 for malware and 1 for
goodware.

2) Extraction of .dex features and conversion into images
The aim is to take out .dex opcodes from different .apk.

It is realized as follows: a package is decompressed and a
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Figure 5. General procedure of SVDroid

readable .dex is extracted using Smali[62]. The sequence
of opcodes have been generated from the .dex and are split
based on separators using n-gram. Unlike [63], opcodes are
extorted as a single sequence as a whole. Each chain is then
encoded to a m-bit vector of 0 and 1 using Simhash. It is
worth mentioning that the hyperparameter n in n-gram and
the hashing vector size m are experimentally set.

Each sample is therefore encoded into binary Simhash
values with identical size. Each Simhash bit is converted
to a pixel value such that 0 gives 0 and 1 gives 255.
Based on this arrangement of the n pixels into a matrix, the
Simhash structure is therefore converted into a grayscale
image. Figure 7 illustrates an example.

The image size highly depends on the Simhash structure
size. Table II presents certain corresponding sizes in some
hash algorithms.

TABLE II. Hashing techniques versus image sizes

Algorithm Image size
MD5 (64 bits) 8 × 8
MD5 (128 bits) 8 × 16
SHA-256 16 × 16
SHA-512 16 × 32

The image size parameter is chosen such that related ex-
periments provide better performance. The images obtained
from n-gram and Simhash constitute the new datasets.

B. Feature extraction
The preprocessing module provides as output the set

of grayscale images. Unlike existing works which directly
consider these images for learning, we intuitively believe
that it is possible to extract interesting properties from
images before the training process. In this work we rely
on SVD, that powerful image processing which extracts
three key matrices from an original one. We transform the
dataset of images into raster images consisting of a matrix
of juxtaposed colored points. An example of such images
is shown in Figure 8. Each raster image is transformed
into matrix and SVD is fitted to that matrix to obtain its
factorisation. The singular matrix extracted is retained to
profile an application.

C. CNN training
In this paper, deep learning with a convolutional neural

network has been provided for profiling Android applica-
tions as malware and benign. It includes two processes
as depicted in Figure 9: mapping of malicious codes to
grayscale image and CNN formalization on grayscale im-
ages for detection.

In the first process, binary files are converted in
grayscale images based on the feature engineering ap-
proach. CNN is then used to recognize applications based
on those images. Relying on image classification, an au-
tomatic recognition is realized and malicious apps are
classified.
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Figure 6. Preprocessing.

Figure 7. Malware images

Figure 8. Application image into to matrix

CNN provides the convolution layer (C) and the pooling
layer (P) (see Figure 9). The neural network in our case,
has four C with a Relu activation function and four P with
a dropout layer of 0.5. The next step is that the output from

Cs is flattened and the fully connected layers are used.

By establishing a local connectivity pattern between
units of neighbor layers, CNNs can use spatially local
correlation because each unit is connected to a limited
number of the input units.

Each trainable kernel in a convolutional layer is made
up of a layer of connection weights with an input that is
the size of a small two-dimensional patch.

One unit is produced as the result. Each kernel is
convolved across the input patch’s width and height during
the forward phase to provide a two-dimensional feature
map of the kernel. Whether or not the kernel is convolved
through all places relies on the step size (stride). As an
illustration, when the stride is 2, the kernel will jump
two pixels at a time as we move it. This will result in
geographically reduced output quantities[43].

One unit is produced as the result. Each kernel is
convolved across the input patch’s width and height during
the forward phase to provide a two-dimensional feature
map of the kernel. Whether or not the kernel is convolved
through all places relies on the step size (stride). As an
illustration, when the stride is 2, the kernel will jump
two pixels at a time as we move it. This will result in
geographically reduced output quantities[43].

The CNN algorithm has thick layers after convolution

https:// journal.uob.edu.bh
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Figure 9. Overview of the proposed CNN method

and pooling. All of the nodes in the preceding layer are
completely connected to all of the nodes in the dense layer.
The convolutional layer or pooling layer uses the dense
layer to integrate local information with category discrimi-
nation. A Dropout layer that enhances the model’s ability to
generalize by avoiding overfitting typically follows this kind
of layer. The activation function of the dense layer used in
this work is ReLU which is defined as f (x) = max(0, x).
The output of the last layer used is the softmax regression.
Due to its popularity for multi-class classification and for
the purpose of optimization, both the Adam optimizer and
the Cross entropy loss function are employed. The overall
CNN training has been automated using Keras to implement
and manipulate the deep learning models.

5. Experimentations, results and discussions
We put our strategy, SVDroid, into practice and ran

various tests to gauge how well it would detect malware.
We describe several components of our experiment in this
section and, based on the results, discuss its reliability.

A. Datasets
We collected 270 samples including 135 malware and

135 goodware from various malware and goodware repos-
itories.The malware was collected through the Drebin
database[64], which is popular set of malware families. The
dataset of goodware was collected through the AndroZoo
platform [65] while exploiting available API according to
guidelines specified in to the official Androzoo website1.

B. Evaluation metrics
In order to evaluate efficiency of SVDroid, five metrics

are exploited [20]: confusion matrix, accuracy, and AUC.

Confusion matrix: The confusion matrix is the basic
structure used to highlight the classification performance of
the labeled samples. In other words, it indicates whether
a classifier works well and how reliable it is. Each class

1https://androzoo.uni.lu/api doc

in the classifier is represented by a column and a row. The
row indicates the number of elements belonging to the class
and the column indicates how many elements this class C is
assigned to. More specifically, True positive (T P) refers to
fact that a malwareis correctly classified as malicious. False
positive (FP) refers to the fact that a benign application is
incorrectly classified as malicious. Truenegative(T N) refers
to the fact that a normal application is correctly profiled as
normal. False negative (FN) refers to the fact that the a
malware application is mistakenly profiled as benign.
Precision (Prec): Precision represents the proportion of
samples correctly predicted as positive among all samples
correctly predicted (positive and negative). It is expressed
as follows:

Prec =
T P

T P + FP
(2)

Accuracy (Acc): Accuracy is the total number of correctly
classified instances (positive and negative) among all avail-
able instances. It is expressed as follows:

Acc =
T P + T N

T P + T N + FP + FN
(3)

Error Rate (Err) Error is the proportion of misclassifica-
tions in the whole dataset.

Err =
FP + FN

T P + T N + FP + FN
(4)

Recall (R): The ratio of all positive samples that were
accurately predicted to all positive samples is known as
recall.

R =
T P

T P + FN
(5)

Receiver Operating Characteristic (ROC): The rate of
true positives versus the rate of false positives is shown
by the ROC curve. In the event that the test results are
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uneven, it is in its best interest to minimize their size. This
illustration emphasizes an indicator called AUC. The closer
it is to 1, the more powerful the classifier is.

C. Experiments and results
We ran a number of tests to determine the accuracy-

based effectiveness of SVDroid. Each experiment was asked
to address one of the following factors.

Hyperparameter variation: This aspect concerns how
far the variation of n in n-gram impact the final perfor-
mance. Here we seek the best variation of n-gram based
on five learning algorithms explained in [66]: 5-Nearest
Neighbours (NN), 10-NN, LR (Logistic Regression), RF
(Random Forests), DT (Decision Tree), and SVM (Support
Vector Machine).

Algorithms investigation: This aspect is about studying
performance of SVDroid on several machine and deep
learning algorithms. Here, we look for the best learning
algorithm independently from n-gram variations.

Partitioning: In this point, we vary the partitions of the
original training set in (80%-20%, 75%-25%, 70%-30%) to
see whether performance change is considerable.

1) Hyperparameter variation
The question which sustains this part is : Which vari-

ation of n-gram is the most accurate while considering
learning algorithms?. To achieve this objective, we selected
six classification algorithms of different variants such as 5-
NN, 10-NN, LR, RF, DT, and SVM. The variations are
2-gram, 3-gram, 5-gram and 10-gram.

As shown in Table III, accuracy varies when n changes.
But the variation is not growing depending on the accuracy.
One important result is that SVDroid performance firmly is
impacted based on n. We also observe that in certain cases,
algorithms do not provide results with the variation of n.
This means that in certain situations, profiling of sequence
of opcodes is not of importance. Meanwhile, we see that
5-gram is the only which can provide results with more
than one algorithm with 87.33% of accuracy on average.
This means sequences of 5-opcodes fit the best with image
processing approaches in general and SVDroid in particular.
We can already observe 10-NN provides the best accuracy
trend (with 88%).

TABLE III. Hyperparamater variation results

5NN 10NN LR RF DT SVM
1-gram 81%
2-gram 80%
3-gram 85%
5-gram 88% 87% 87%
7-gram 87%

10-gram 87%

2) Cross partitioning, n-gram variation vs. algorithms
The question which underlines this part is: Which parti-

tioning is the most accurate given the algorithms and each
variation?. We randomly selected three splitting and applied
each one on these algorithms: 80% (as training)-20% (as
testing), 75% (as training)-25% (as testing) and 70% (as
training)-30% (as testing). We run each algorithm on every
splitting to have accuracy results available in Figure 10-15.
As shown in Figure 10, 5-NN is the most accurate algorithm
with 5-gram and with 88%. This is observed under the
splitting of 75% − 25%. Figure 10 presents some results

Figure 10. Results with 5-NN

with 10-NN. When k grows to 10, 10-gram fits the most
under the partition 80% − 20% and the accuracy increases
to 87%. The model in this case has offered an AUC of 86%
average, which confers that this model tends to excellence.
In summary, 10-NN fits better with 10-gram and 80%−20%.

Figure 11. Results with 10-NN

As depicted in Figure 12, LR stands most accurate with
5-gram providing an accuracy of 87%, and an AUC of
86%. This model is proud to be robust concerning the class
prediction of an unknown application. In sum, RL adapts
better to 5-gram=5 and 80% − 20%.

Figure 13 illustrates results about DT. This figure shows
that DT is the best with 3-gram with an accuracy of 85%
and an AUC with the same value. The partitioning scheme
which fits is 80% − 20%.

Using RF (Figure 14), 5-gram is accurate with a proba-
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Figure 12. Results with Logistic Regression

Figure 13. Result with Decision Tree

bility of 0.87% with an AUC of 86%. The properties of the
previous algorithms therefore remain. But the partitioning
scheme for that is 75% − 25%.

Figure 14. Result with Random Forest

Figure 15 shows that association with 7-gram worth
the most with an accuracy of 81%, and a AUC of 81%,
demonstrating that SVDroid brings a certain prediction
robustness. This property is verified under the 80% − 20%
partitioning.

From the previous results, one fundamental notice is
that based on partitioning algorithms provides slightly a
gap in performance since different metrics turn around 85%.
Their impact as well as n-gram variations are less consid-
erable based on gaps between accuracy and AUC. The two

Figure 15. Result with SVM

partitioning under n-gram variations were 80% − 20% and
75% − 25%.

Now we come to deep learning, specifically CNN to
study whether strengths can be improved. The results are
presented in Table IV.

We observe that is much more improved in terms
of accuracy i.e. 88.38% on average and a precision of
90% on average. With on average 93.45%, AUC proves
that SVDroid is powerful than machine learning to profile
unknown instances. Moreover, the best partitioning is once
80% − 20%.

3) Algorithms investigation
The question which sustains this part is : Which (ma-

chine/deep) learning algorithm provides the best accuracy?.
Figure 16 depicts accuracy results of machine learning
algorithms. The x-axis holds the algorithms and the y-axis
holds accuracy values. This figure reveals that 5-NN with
5-gram (highlighted in red) under conditions presented is
the most accurate with 88%.

Figure 16. Machine learning algorithm investigation

Now we study the performance of CNN compared to
machine learning algorithms. It highlighted in blue in Figure
17 that CNN is the best compared with the machine learning
algorithms in terms of accuracy. Moreover, as presented
previously CNN is robust in terms of AUC. This result is
independent from the partitioning as shown in Table IV.
Different accuracy values are greater than 88%.
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TABLE IV. Results with CNN

Metrics AUC Precision Accuracy TP TN FP FN
(split 80% − 20%) 93.27% 89% 88.55% 91% 6.96% 84% 11%
(split 75% − 25%) 93.48% 90% 88.15% 91% 6.96% 90% 10%
(split 70% − 30%) 93.59% 91% 88.45% 92% 6.45% 83% 13%

Figure 17. Machine learning vs. CNN

D. Comparison with a similar work
In this section, we compare SVDroid to [43], which

directly extracts byte-code file from .apk, and directly
converts the byte-code file into a matrix of byte-code of
two-dimensions, to exploit CNN to detect malware. Since
the authors worked on different datasets, we completely
reproduced their approach on our dataset. The authors
splitted the whole byte stream into m sub-sequences with
m = [

√
n]+ 1 and n is the size of the byte stream (here the

DEX file).

The classes.dex file is represented as a m × m matrix,
with each sub-sequence being viewed as a row of matrix
M. We add zeros to the end of any sub-sequence that is
shorter than m in length. Since the lengths of different .dex
files vary, so do the widths of the two-dimensional matrices
created for byte-code files.

TABLE V. SVDroid vs. Ding et al. [43]

Criteria/Work Ding et al.[43] SVDroid
Datasets APK APK
File name .dex .dex
Feature byte-code byte-code
Image
processing

convert directly
byte code to
image based on
m = [

√
n] + 1

sub-sequences

convert a
opcodes to
image based
on n-gram for
Sim-hash

Image type grayscale grayscale
Image size m × m 32 × 32
Accuracy 86% 88.39%
Precision 89.5% on average 90%
AUC 91.7% on average

93.45%

We observe in Table V that SVDroid is able to improve

CNN based image processing approaches. CNN models
resize input images while they are being trained, according
to the sensitivity analysis. By the way, data loss often results
from resizing. Notably, our approach uses data portions
rather than the entire DEX file. As a result, our proposal’s
image size is less than the standard one, leading to reduced
data loss, which raises accuracy. We also observe that SVD
retains key properties of the image that even while reducing
it, offers a great impact on data, regardless of the effect of
splits on the data. Moreover, n-gram is able to stabilize the
CNN overall process.

Results considerably decrease in [43] with our dataset.
This shows that their approach is not scalable to new data.
SVDroid comes on the contrary, with that property because
by nature it is independent to the dataset nature. This
situation explains the AUC and precision results.

Despite these interesting results from SVDroid, we can
not guarantee that the variation of the image size and
the nature of image (from grayscale to color) will keep
SVDroid efficient. Additional experiments are required for
these doubts.

As an overall result, we see that CNN incorrectly
profiles 6.76% of malicious applications and 11.33% of
normal applications. This is because SVD processing does
not capture all the properties or unknowingly discards other
properties that can improve results. This is a limitation of
SVDroid that can be covered by complementing with other
features related to resources and the manifest [44].

6. Conclusion and future works
The objective of the study was to investigate on the

contribution of SVD to the detection of Android malware.
SVDroid has been proposed to improve feature processing
in CNN. This approach has been shown reliable than
exploiting classical machine learning algorithms.

The following aspects are considered in future works:
(i) the variation of image sizes (ii) an investigation of other
deep learning methods and (iii) the tuning of different deep
learning features.
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[3] İ. A. Doğru and Ö. KİRAZ, “Web-based android malicious software
detection and classification system,” Applied Sciences, vol. 8, no. 9,
p. 1622, 2018.

[4] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review
of Android Malware Detection Approaches Based on Machine
Learning,” IEEE Access, vol. 8, pp. 124 579–124 607, 2020.

[5] Z. Wang, Q. Liu, and Y. Chi, “Review of Android Malware Detec-
tion Based on Deep Learning,” IEEE Access, vol. 8, pp. 181 102–
181 126, oct 2020.
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novel permission-based Android malware detection system using
feature selection based on linear regression,” Neural Computing
and Applications, pp. 1–16, mar 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s00521-021-05875-1

[10] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan,
“Intelligent mobile malware detection using permission requests and
API calls,” Future Generation Computer Systems, vol. 107, pp. 509–
521, jun 2020.

[11] A. Pektaş and T. Acarman, “Learning to detect Android malware
via opcode sequences,” Neurocomputing, vol. 396, pp. 599–608, jul
2020.

[12] T. Franklin and D. Paul, “System calls analysis of malware on
android,” International Journal of Science and Technology, vol. 9,
no. 2, pp. 669–674, 2013.

[13] A. Ananya, A. Aswathy, T. R. Amal, P. G. Swathy, P. Vinod,
and S. Mohammad, “SysDroid: a dynamic ML-based android
malware analyzer using system call traces,” Cluster Computing,
vol. 23, no. 4, pp. 2789–2808, dec 2020. [Online]. Available:
https://doi.org/10.1007/s10586-019-03045-6

[14] J. Feng, L. Shen, Z. Chen, Y. Wang, and H. Li, “A Two-Layer Deep
Learning Method for Android Malware Detection Using Network
Traffic,” IEEE Access, vol. 8, pp. 125 786–125 796, 2020.

[15] R. B. Hadiprakoso, H. Kabetta, and I. K. S. Buana, “Hybrid-Based
Malware Analysis for Effective and Efficiency Android Malware
Detection,” in Proceedings - 2nd International Conference on Infor-
matics, Multimedia, Cyber, and Information System, ICIMCIS 2020.
Institute of Electrical and Electronics Engineers Inc., nov 2020, pp.
8–12.
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