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Abstract: The autonomous navigation of a micro aerial vehicle (MAV) relies faithfully on the capacity of the localization and
the building map of the explored environment. This hard task is known as simultaneous localization and mapping (SLAM). To
overcome this problem, many approaches have been proposed based on a variety of sensors. The most popular are those based
on monocular vision. But practically all the monocular SLAMs (Mono SLAM) suffer from the scale drift due to the difficulty of
depth estimation. To avoid this limitation, the use of a second sensor is crucial to retrieving a metric pose to navigate safely. The
Mono-SLAM problem has been resolved by many authors as a problem of filtering or optimization. In this paper, we propose a
new SLAM scheme based on a robust filter named Smooth Variable Structure Filter (SVSF). The main advantage of our solution
compared to previous solutions is the use of an Inertial Measurement Unit (IMU) associated with a single camera. The different
results of the IMU-Mono-SLAM obtained from simulation and experimentation on a well-known dataset prove the reliability,
robustness, and accuracy of the proposed solution (SVSF-SLAM) compared to the classical approach (EKF-SLAM).
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1. INTRODUCTION
The capability of localization of an unmanned aerial

vehicle (UAV) is a crucial task to navigate autonomously
in the explored area [1], [2]. This task became more and
more delicate in the absence of the environment map. This
problem has been treated by a well-known field named
as simultaneous localization and mapping. This domain
has been seeing a huge amount of works. However, the
SLAM technique was resolved using many sensors, but
the most attractive solution is the visual SLAM, especially
in the case of a single camera. The earliest approaches
proposed to resolve monocular SLAM (Mono-SLAM)
showed that it can exceed stereo vision SLAM in term
of result quality. Beyond of this reason, the use of a
monocular camera is very suitable in the robotics field.
It can be easily installed, and respond to the constraint
of low-cost systems. Moreover, the reduced volume of
a single camera carries to realize a compact system.
Many techniques have been used to provide an accurate
localization within a good map. We can divide these
techniques into two parts, filtering [3], [4], [5], [6], [7], [8]
and optimization methods [9], [10], [11], [12]. Our work
can be classified as a mono-SLAM by filtering method.
We follow the idea of Civera et al [8], which is based
on the classical solution EKF mono SLAM [13] with
other features parameterization. Instead of coded features
(points) on three coordinates (x,y,z), will be defined with
six parameters (x,y,z,theta,phi,rho) as in [8]. In this case,
the depth between a point and the camera is defined by
its inverse form (rho) in order to involve this point in
the filtering process in the first apparition (immediate

initialization). The results shown by the authors encourage
us to do a deep exploration of the filtering method.
However, the use of Extended Kalman Filter (EKF) into a
Mono-SLAM scheme presents many drawbacks, such as
quadratic complexity, the high sensitivity in the presence
of false associations and linearization of prediction and
observation models. The hard nonlinearity and modeling
errors lead to get an inconsistent solution, except in
the particular case of a Gaussian noise. To avoid these
shortages, it is possible to use robust filters, as in the
work of [14]. In our paper, we suggest using another
robust filter (SVSF) [15], which is a closed loop filter
(predictor-corrector), developed on the basis of variable
structure theory and sliding mode concepts. Our work
is based principally on this new filter to elaborate a
new SLAM using a monocular camera by exploiting the
advantage of the last work realized by Civera et al [8].
Our new technique provides the localization and the map
for a MAV accurately with considerable robustness. Our
Mono-SLAM provides - as all previous Mono-SLAMs
- a trajectory up to scale due to the absence of an
appropriate manner to estimate the depth precisely. In
order to overcome this limitation, and to get a metric pose,
we suggested predicting the MAV localization based on
IMU measurements.

The main contributions of this paper are:

• To elaborate a robust IMU-Mono-SLAM based on
SVSF.
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• To compare, and analyze the performances of EKF
and SVSF based IMU-Mono-SLAM in the case of
inverse depth parameterization.

This paper is organized as follows : Section. 2 gives
the state-of-the-art of the SLAM field. Section. 3 sketches
the SLAM designed and an overview of our approach.
Section. 4 shows the state estimation using EKF and
SVSF. Section. 5 and Section. 6 describe the scenario
of simulation and experimentation with some results. In
Section. 7, the proposed approach is evaluated in term of
real-time constraint. This paper ends with a conclusion
and further suggestions.

2. RELATED WORK
The SLAM task can be realized by displacement of

the MAV through a sequence of positions and acquiring
data using its embedded sensors. These data are processed
properly to provide an estimated localization with an
eventual map of the explored environment. In the last
decade, the SLAM problem was resolved as a filtering
problem. The famous solution is based on the Extended
Kalman Filter (EKF-SLAM) [3], Fast-SLAM [5], and
SLAM based state dependent Ricatti equation (SDRE)
[16]. Many types of sensors are used to obtain an accurate
localization within the SLAM techniques, but the most
convenient in robot applications is the vision sensor.
For a long time, the stereo camera is considered as a
spine of the visual SLAM. Recently, including monocular
camera on SLAM resolution has become a real challenge
due to the absence of depth measurement. This kind
of SLAM system is solved by two big methods with
respect to real-time condition; the first is filtering, and
the second is optimization (direct or indirect methods).
The previous succeed of EKF on SLAM-based multi-
sensors, push Davison et al to elaborate a real-time SLAM
module based just on a single camera [13], and building
a sparse map of a limited area. This work is followed
by Eade and Drummond’s efforts [17]. Their approach
relies on the enhancement of the Fast SLAM by applying
it in the case of a monocular camera, in which they
introduce the terminology of inverse depth to do an instant
initialization. This issue allows profiting from the feature
at the first apparition (at least for orientation). Staying
in the same context, Civera et al [8] presented a new
scheme of parameterization for features (points) within
Mono-SLAM system based on EKF. This manner of rep-
resentation allows handling uncertainty properly within
instant initialization. Recently, a sophisticated SLAMs
techniques are elaborated as a concurred to the classical
solution (filtering approaches), these techniques are based
on optimization which is inspired from the structure
from motion (SFM), which is adapted to be executed in
real-time by involving bundle adjustment. All of these
approaches cannot function in real-time without a labori-
ous selection of frames (key-frame selection). The most
popular is parallel tracking and mapping (PTAM) [9].
This Mono-SLAM was developed to operate in a small
workspace. It was the first work in which the localization
and mapping were split into two threads. The PTAM can
build a sparse map of the environment in real-time, it
is considered an indirect method, because it is based on
features (points) extraction instead of using the whole

image. In the optic of Mono-SLAM, Engel et al proposed
a new approach named Large-Scale Direct Monocular
SLAM (LSD-SLAM) [10]. It is based essentially on
optimization directly through pixel intensities instead of
bundle adjustment of the extracted features. It is able
to build a semi-dense map, which is suited for robotic
applications. In the same context, Raul Mur et al were
designing a new direct Mono-SLAM named a versatile
and accurate monocular SLAM system (ORB-SLAM)
[11]. This SLAM permits to provide a localization and
a sparse map accurately with considerable efficiency,
especially in the case of loop closing. This framework
has improved two times. The first one is called ORB-
SLAM2 [1], in which the authors use stereo and RGB-
D cameras to obtain the trajectory with a metric scale.
The second is called ORB-SLAM3 [12], it is a system
able to handle visual, inertial and multi-map SLAM with
monocular, stereo and RGB-D cameras. By profiting from
the advantage of the Convolutional neuronal network on
depth estimation Keisuke proposes a sophisticated Mono-
SLAM named CNN-SLAM [18], the strength of this latter
is on map construction by involving semantic labeling.
In the same context, the CNN can be used to estimate
the camera pose by training the CNN architecture on
images of the environment of navigation. This pose is
used with a structural Mono-SLAM, as is in [19]. It is
also possible to use CNN to estimate the scale from a
single image. After that, the predicted depth can be used
with a Mono-SLAM framework to get a metric scale as
given by [2]. All the previous Mono-SLAMs provide a
trajectory up to scale, because these SLAMs lack depth
estimation accuracy, so it is necessary to be aligned with
another sensor [20] as IMU. Fortunately, the majority of
MAVs are equipped with an IMU, which facilitates the
SLAM task. Implicating the IMU measurement into all
the SLAM stages is better than considering the Mono-
SLAM as a black box. The accuracy of IMU localization
is good in a short time, which obliges us to fuse it with
another sensor. In fact, it is difficult or almost impossible
for the MAV to navigate safely based on just a single
camera. However, the use of the IMU to predict a pose
is a good manner to reduce the scale drift of a Mono-
SLAM. Targeting the filtering scheme to find an estimated
pose is justified by the fact that all the stages of the
SLAM (tracking, map management, and loop closing)
are processed implicitly by the same filter. The idea of a
robust SLAM was tackled by many authors, but to stay
near the context of our contribution, we suggest those
based on the SVSF [15] as the work of [21]. In this
paper, the author used the LSD-SLAM as a black box
that provides the Cartesian coordinates and the quaternion
to define the camera pose. This means, that the IMU
measurements were not used effectively for the prediction
step. In the same optic, Demimi et al [22], [23] propose
another robust SLAM based on SVSF. His work is limited
to 2D robot based on odometer and Laser data. In the
same context, a robust SLAM is realized using the SVSF
and its ameliorated version, adaptive SVSF (ASVSF)
[24], [25] based on the odometer and stereo camera [26].
The robust filters are investigated by researchers in the
SLAM field by testing the feasibility of the new filters as
in [14]. In this work, a robust least square filter (RLSF)
is used. Therefore, the derivative of this filter has been
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Figure 1. Geometric representation of the designed system

applied to the SLAM to evaluate its performance and
applicability. Our proposed solution can be qualified as
a Mono-SLAM, but to render it more useful, this Mono-
SLAM must be associated with another sensor, which is
the IMU, in order to overcome the scale drift. The most
critical part of the visual SLAMs based on features of type
points, is the matching process. However, in literature,
there is a huge development of detector-descriptors [27],
[28]. The most appropriate are those dealing with real-
time constraint as in [29], [30], [31]. These modern
approaches are based on the binary descriptor of patches
to provide an identifier of each feature. In our work, we
rely on the matching step in our previous descriptor [32]
because it is reliable, efficient, and gives a considerable
recognition rate. To enhance the SLAM robustness, it is
crucial to handle the dynamic environment by taking into
consideration the detected object in motion as in [33],
[34]. To detect moving objects, semantic segmentation is
suitable with the SLAM technique. Moreover, to avoid
utilizing these objects in pose and map estimation as in
[35], [36], [37]. It is possible to avoid using unstable
features to increase the robustness of our SLAM based
on dynamic object removal using CNN by involving the
model given by [38] to detect and avoid moving objects.
As a consequence, the robust filter estimates the pose
correctly based just on static point features.

3. METHODOLOGY
A. The geometric representation

The problematic treated by our paper is the localiza-
tion of an MAV navigating through an unknown environ-
ment, using its sensors. In this work, it is assumed that the
MAV embedded a monocular camera and IMU. The MAV
explored the area of navigation by acquiring frames using
the camera and the acceleration plus angular rate using
IMU. The features are coded using the coordinates of the
MAV since the first acquisition by including the inverse
depth representation. For more details, see Figure 1.

B. An overview of the designed system
The elaborated SLAM system is given by the synoptic

diagram of Figure 2. It is divided into four essential steps;
prediction, observation, updating, and map management.
The details of all the boxes are illustrated by the following
subsections.

Figure 2. Overview of the designed system

1) The state vector
The full state vector is constituted of two parts, the

first part is the camera motion vector xv of 13 elements.
These elements are: the Cartesian coordinates of the
camera rWC , and the quaternion defined by the camera
orientation qWC in the navigation frame. Also, the linear
and angular velocities vW , ωC . The second part is the
features vector. Each point is coded with six parameters
(1). The detail of the geometric representation is given by
Figure 1.

Υi = (xiyiziθiϕiρi)T (1)

The Cartesian coordinates of a point can be repro-
duced by the following equations (2,3).

( X iYiZi)T = ( x iyizi)T +
1
ρi

m (θi, ϕi) (2)

m (θi, ϕi) = (cos (ϕi) sin (θi) ,− sin (ϕi) , cos (ϕi) cos (θi))
(3)

The vector Υi defines the ray realized by the camera
position rWC for the first time of a feature observation
plus a unit directional vector m (θi, ϕi) multiplied by the
inverse direct distance between the camera center and the
point ρi = 1/di. The angles θi and ϕi are successively the
azimuth and the elevation of a feature represented in the
world frame. The full state vector is the concatenation of
the camera motion vector and the observed feature vectors
as given by (4).

Y =
(
XT

v ,Υ
T
1 ,Υ

T
2 , ...,Υ

T
n

)T
(4)

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


1066 Elhaouari Kobzili, et al.: Robust IMU-Monocular-SLAM For MAV Navigation ...

2) Measurement and matching
To execute the SLAM process, the MAV must be

able to acquire and track the appropriate landmarks to
locate itself and to build a map of the explored area. Our
designed SLAM is a point-based landmark. To keep a
track, the selected key points must be stable and invariant.
The points are extracted from the images of the monocular
camera which is embedded on the MAV. Since it is using
a monocular camera, the key points (corners) are defined
in two dimensions of coordinates (ud, vd)T . In this paper,
we based on our work on [32] to detect the invariant
points. The key points detected are in a multi scale using
FAST and No maxima suppression [39]. For the matching
process, we opt to involve the hamming distance between
binary descriptors [32] of the point’s patches.

The observation model used in our developed SLAM
is given by (5).

hC
ρ = RCW

(
ρi

((
x iyizi

)T
− rWC

)
+ m (θi, ϕi)

)
(5)

In fact, based on a monocular camera, we observe the
feature in the image plane. However, a pinhole camera
model is applied as given by (6).

hu = (uu, vu)T =

(U0 −
f

dx
·

hC
x

hC
z

)
,

V0 −
f

dy
·

hC
y

hC
z

T

(6)

The previous model is valid, when it is assumed a
pure projective model. To deal with the distortions of real
lenses, a radial distortion model (7) is involved by the
same manner of [8].

hd = (ud, vd)T = f (uu, vu) (7)

The equation of measurement is defined by the fol-
lowing equation (8).

Ym,k = HZk (8)

where Zk is the measured vector of the observed
feature, each point being given by distorted coordinates in
the image plane (ud, vd)T , and H is the observation matrix
given by (9).

H =
∂hC

1

∂Y
, ...,

∂hC
i

∂Y
, ...,

∂hC
m

∂Y

T

(9)

3) Initialization
The initialization of the pose is defined by the first

position of the MAV with respect to the geometric sets of
the sensors (matrix of transformation relies to the Camera
and the IMU). The initial velocity and angular rate are set
by the user to be close to the operating point. In case of
EKF, the probability of pose can be initialized based on

the intrinsic characteristic of IMU based on [40]. In case
of SVSF, the posterior error E0/0 is initialized by taking
the maximum limit of the system’s incertitude.

The feature initialization follows the same manner of
[8], however, from the first observation, it is impossible to
detect the feature depth despite many efforts in this prob-
lematic [2], [18]. For, this reason, we suppose at first a
very weak depth (near to the camera), at least any detected
feature, participate at the start in the pose orientation, and
smoothly the quality of depth is improved.

The initial parameters of a new observed feature
included in the full state vector is given by (10).

Υ̂i

(
r̂WC , q̂WC , h, ρ0

)
=

(
x̂i, ŷi, ẑi, θ̂i, ϕ̂i, ρ̂i

)T
(10)

Any observed feature is initialized in the first time by
the parameters of the actual estimated pose (11).

(x̂i, ŷi, ẑi)T = r̂WC (11)

The initial angles θ̂i and ϕ̂i are obtained by using the
following equations (12,13).

(
hW

x , h
W
y , h

W
z

)
= RWC · (uu, vu, 1)T (12)

(θi, ϕi)T =(
arctan ( h )W

x , hW
z , arctan

(
−hW

y ,

√(
hW

x

)2
+

(
hW

z

)2
))T

(13)

The initial value of ρ0 is defined by suggesting that at
first the detected feature is closer to the camera front. The
initial value of ρ0 is not very important in the accuracy of
filters [8]. The standard deviation σρ set by knowledge of
the explored environment (to define the range of features).
The noise covariance matrix R of features is obtained
from the standard deviation in the image plan. In case
of SVSF the initial posterior error E0/0 is set to be the
maximum value of the standard deviation in the image
plan.

4) The prediction model
At first, the camera motion prediction is supposed as

a constant angular and linear velocity model given by
(14) as in our previous work [41]. In this situation an
up to scale trajectory was obtained, but in case of real
navigation the pose gets by just a monocular camera is
not suited due to the lack of a metric localization despite
the use of our work of scale recovering [20], [42]. In this
optic, the utilization of a second sensor is not avoidable,
however, to considerate the prediction model based on the
inertial measurement unit (IMU) is better than involved
this sensor measurement at the back end of a Mono-
SLAM [20], [42].
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Xv =


rWC

k+1
qWC

k+1
vW

k+1
ωC

k+1

 =


rWC
k +

(
vWC

k + VW
k

)
∆T

qWC
k × q

((
ωC

k + Ω
C
)
∆T

)
vW

k + VW
k

ωC
k + Ω

C

 (14)

The state vector of the camera Xv is constituted of the
following terms: rWC is the Cartesian coordinate of the
camera center, qWC is the quaternion defined the camera
orientation in the world. The linear and angular velocity
is vW , ωC . This last produces at each step, an impulse
of linear velocity VW = aW∆T,ΩC = αC∆T . The state
prediction is based on the inertial navigation system (INS)
mechanization using IMU measurements given by (15).

ab
IMU =

(
ax, ay, az

)
, ωb

IMU = (p, q, r) (15)

Before using this measurement, it must be filtered
because it is very noisy and by consequence keep the
position reliability. For this reason, we were based on an
ameliorated version of a low-pass filter [43]. The Figure 3
gives a sample of the accelerations and angular velocities
filtered.

Now, the predicted pose at each step can be cal-
culated based on (16,17) by time integration. Where
RollI , PitchI ,YawI are the angles calculated by time inte-
gration.

an
IMU,k = Cn

b (k − 1) ab
IMU (k) + gn (16)

ωn
IMU,k = En

b (k − 1)ωb
IMU (k) (17)

Where Cn
b (k − 1) , En

b (k − 1) represent the direction
cosine, and the rotation rate transformation matrixes
between the body and the navigation frame. The terms
an

IMU,k, ω
n
IMU,k represent the acceleration, and the angular

velocity vectors in the navigation frame. The angles, roll
and pitch can be calculated more accurately based on
the complementary filter as in [43] using (18,19), where
aRoll, aPitch are the roll and pitch estimated with the
accelerometers measurements as given by (20,21), but
the yaw angle cannot be evaluated with just the use of
the accelerometer due to the definition of z axis in the
direction of the gravity.

Roll = µ · RollI + (1 − µ) · aRoll (18)

Pitch = µ · PitchI + (1 − µ) · aPitch (19)

aRoll = arctan2
(
ay,

√
a2

x + a2
z

)
(20) Figure 3. The filtered accelerations and angular velocities
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aPitch = arctan2
(
−ax,

√
a2

y + a2
z

)
(21)

The lower the parameter µ the more the Roll/Pitch
listens to the accelerometers. We mention that, the gy-
roscopes are more reliable on the short term, however
a high µ is recommended. We notice that the angles
Roll, Pitch,Yaw are converted to the quaternion represen-
tation. The complete prediction model in the case of the
use of IMU measurement is given by (22).

Xv =


rWC

k+1
qWC

k+1
vW

k+1
ωC

k+1

 = f
(
an

IMU,k, q
WC
k ,∆T

)
(22)

5) The Map management
During the MAV displacement, the embedded camera

observes new features which are added immediately to
the map constructed. These points contribute on pose
estimation, particularly for the orientation at the start. For
each feature, we associate two counters, one for prediction
and other for measurement. The following pseudo code
sketches the steps of the map management.

Initialization
Prediction counter = 0.
Measurement counter = 0.
Number o f f eatures detected = 0.
number max per f rame = defined by user.
Predict threshold = defined by user.

For each new frame
Detect all features.
For all features belongs the frame
If (the feature is not associated) && (the number of
feature detected ¡ number max per frame)
Add the new feature.
Number o f f eatures detected =
Number o f f eatures detected+1.
Else
Delete the new feature.
End
Predictioncounter = Prediction counter + 1.
Measurementcounter = Measurement counter + 1.

If (Measurement counter ¡ half Prediction counter)&&
(Prediction counter ¿ Predict threshold) Delete the feature.
Prediction counter = 0.
Measurement counter = 0.
Else
Maintain the feature.
End.

End.
Number o f f eatures detected = 0.
End.

4. STATE ESTIMATION
The state vector estimation is based on two filters

EKF and SVSF. All the stages of the SLAM designed
turn into a closed mechanism. The following sub sections

will summary the process of the IMU-Mono-SLAM in
case of the classical solution (EKF), and in case of our
contribution (SVSF).

A. EKF monocular slam
The EKF is involved in all the steps of IMU-Mono-

SLAM based on the equations (23-27) of prediction,
observation, and updating.

Ŷk =
(
XT

v + nk,Υ
T
k,1,Υ

T
k,2, · · · ,Υ

T
k,n

)T
(23)

P− = FPkFT + FQFT (24)

With F is the Jacobian matrix of the prediction system,
and nk is the process noise. The matrix P− defines the
prior covariance matrix. The updating of the full state
vector is based on (25-27).

KKalman
k = P−k HT

(
HP−k HT + R

)−1
(25)

Yk = Ŷk + KKalman
k

(
Ŷk − Ym,k

)
(26)

Pk =
(
I − KKalman

k H
)

P− (27)

Where KKalman
k is the Kalman gain. The matrix Pk

defines the posterior covariance matrix. The matrix H is
the Jacobian matrix of the observation model. The term
Ym,k is the observation vector of features extracted from
the acquired images.

B. SVSF monocular SLAM
In 2007 S. Habibi [15] developed on the base of

variable structure theory with the concept of sliding mode
a new predictor corrector filter named SVSF. The base of
this filter is a prior and posterior errors between prediction
and observation. In the SVSF formulation, it is supposed
to exist of a subspace and a smoothing boundary layer
to order the estimation of the state vector element to
stay between a bounded region. This assumption carries
up the estimation process to be robust and stable as it
was proved in [15]. The Figure 4 shows an overview of
the SVSF convergence. The major advantages of SVSF
are the robustness against perturbation and modeling
assumption. The linearization is not necessary, and it does
not need a noise model. The limitation of SVSF is the
lack of optimality especially in the Gaussian case, the
chattering, and the difficulty of defining the superior limits
of incertitude.

In the case of SVSF the prediction model is the same
of the EKF (1). In case of SVSF, the prediction model lin-
earization is not necessary. The full state vector elements
are initialized by Y0 and the posterior error of estimation
is initialized by E0/0. The SVSF needs a prior (28) and
a posterior (31) errors to calculate the SVSF gain. The
observation vector Ym,k/k−1 is calculated based on the
observation equations defined in the subsection. 3-B.
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Figure 4. Principle of SVSF [15]

Ek/k−1 = Ŷk − Ym,k/k−1 (28)

The updating of the full state vector in case of SVSF
is given by (29-31).

KS VS F
k = H+diag

[
(
∣∣∣Ek/k−1

∣∣∣
Abs + γ

∣∣∣Ek−1/k−1
∣∣∣
Abs)

◦

sat(ψ̄−1Ek/k−1)
]
·
[
diag(Ek/k−1)

]−1 (29)

Yk/k = Ŷk + KS VS F
k Ek/k−1 (30)

Ek/k = Ŷk − Yk/k (31)

Where Ek/k−1and Ek/k represent the prior and the
posterior errors, KS VS F

k is the SVSF gains at step k, and
H+ is the pseudo inverse of the observation matrix which
is constructed from the observation matrix of EKF (9)
by extracting the rows of just the observed features at
the step k. The symbol ψ̄ defines the diagonal matrix of
smoothing boundary layer widths (32) (The selection of
ψ̄ reflects the level of uncertainties of the system and the
measurement). The parameter γ ∈ Rm×m, 0 < γ ≤ 1 is a
diagonal matrix. Its elements define the convergence rate
of the state vector elements. It is supposed γ = 0.5.

ψ̄−1 =


1/ψ1,1 · · · 0
...

. . .
...

0 · · · 1/ψm,m

 (32)

The operator ◦ is the schur function (it is an element-
by-element multiplication of two vectors). The function
sat is a saturation (it is possible to use the sgn or tangent
functions to reduce the chattering phenomenon of the state
vector elements, but these functions are not suited for
real-time processing).

5. SCENARIO OF SIMULATION AND RESULTS
To perform the simulation of the designed IMU-

Mono-SLAM, we follow these steps. We suppose that
the MAV navigates in a 3D textured environment. The
MAV is embedded by two sensors (Camera and IMU).
To be near the reality, we suppose that the MAV follows
an arbitrary trajectory as given by [40]. During the nav-

Figure 5. Simulation of the camera model

igation phase, the camera acquires features according to
the model of simulation presented in Figure 5. However,
the detected features are a 3D points dispatched randomly
around the proposed trajectory. So, to qualify a 3D point
as a feature, it must verify the following conditions. The
processed point must be in front of the camera within a
distance inferior than a fixed distance defined by the user.
The point must also be between two angles that represent
the camera view angle. Before doing the previous steps,
it is necessary to transform the 3D points to the camera
reference according to the transformation matrix between
the body, the MAV, and the camera frames. Then, a view
camera model is applied on a candidate feature in order
to reject those outside the image size (image of size
320x240).

In the simulation the matching step is ignored despite
the sensibility of any SLAM in front of this step, to verify
the quality of the proposed approach, it is supposed that
the association process is assured based on tracking each
acquired feature by a unique identifier.

To render the simulation consistent, the feature is
affected by a no Gaussian noise in the image plan. This
noise allows to verify the efficiency of the proposed
solution. We did not mention the Gaussian simulation,
because certainly the EKF is more optimal than SVSF in
this case. In fact, any proposed solution must be tested
in the worst conditions to confirm the robustness quality.
The results of the simulation are given by the Table I
and Figure 6. It is observable that the IMU-Mono-SLAM
based on SVSF provides a better pose estimation com-
pared to EKF. The SVSF shows a considerable accuracy
and robustness against no Gaussian noise compared to
EKF. From the Table I it is observable that the root-
mean-square error (RMSE) of the obtained map based on
SVSF is more consistent than the map built by the EKF
due to the concept of sliding mode which provides the
robust action against uncertainty. The simulation results
give for us, an idea about the performance of the designed
SLAM despite neglecting the association process which
is considered as an essential task for any SLAM.

6. SCENARIO OF EXPERIMENTATION AND RE-
SULTS
To validate the designed IMU-Mono-SLAM experi-

mentally, we follow this method. We use the data of a
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TABLE I. Mean RMSE of the simulated trajectory and the map
using EKF and SVSF

X(m) Y(m) Z(m) XYZ
(m)

Map
(m)

EKF 0.212 0.195 0.162 0.331 0.302
SVSF 0.104 0.127 0.062 0.175 0.293
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Figure 6. The simulation of the 3D MAV trajectories with maps
of Ground truth, EKF and SVSF

MAV (an AscTec Firey hex-rotor helicopter) presented in
a well-known dataset [40] which is represented by the
picture of Figure 7. The environment of navigation is
a large industrial machine hall given by Figure 8. This
MAV embedded two monochromes front-down cameras
type MT9V034 of a frequency 20 Hz (20 frame/s) and an
IMU type ADIS16448 technology MEMS of a frequency
200 Hz. The Figure 9 represents a synoptic configuration
of the sensors sets. The standard deviations of noises
and biases are mentioned for each sensor within the files
provided for the collected data. In the file, we can find
also the transformation matrixes of sensors with respect to
the body frame. For more precision about all the system
of data collection refer to [40]. In our work, we just used
a two sensors of this MAV (the couple Camera and IMU).

To provide the experimental comparison between our
approach based on SVSF and EKF, we propose the
Figure 10 and Figure 11. These figures show the path
followed by the MAV in 3D using both filter SVSF and
EKF with respect to the real trajectory (ground truth)
followed by the robot. The path of IMU-Mono-SLAM
based on SVSF is concisely following the ground truth,
with small error compared to IMU-Mono-SLAM based
on EKF Figure 11. The EKF fails catastrophically with
false matching because a bad association in case of EKF
carries the filter to instability which is not the case for
SVSF filter. In the two cases of SLAM using SVSF or
EKF, the building map is sparse, it needs to be improved
in term of 3D structure. From Table 6, we learn that the
RMSE obtained along the traveled trajectory for SVSF-
SLAM is smaller compared to EKF-SLAM. From Table I
and Table 6, the overall RMSE for SVSF and EKF in the
simulation is better than those presented in experimental
results. This is due to the neglecting of a primordial task
which is the matching process.

Figure 7. The MAV picture used for dataset collection [40]

Figure 8. A sample of a frame took from the dataset [40]

Figure 9. A The synoptic sets of the MAV sensors [40]
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Figure 10. The experimental of the 3D MAV trajectories with
maps of Ground truth, EKF and SVSF.
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Figure 11. The error of trajectories along X,Y, and Z in case of
EKF, and SVSF.

TABLE II. Mean RMSE of the experimental trajectory using EKF
and SVSF

X(m) Y(m) Z(m) XYZ
(m)

EKF 0.299 0.254 0.227 0.453
SVSF 0.114 0.129 0.070 0.186

7. THE REAL TIME EVALUATION
Our designed SLAM is running on a computer of the

following characteristic: Intel(R) Core (TM), Processor
i5 of frequency 2.4 GHz, 8 Go RAM. The dataset of
evaluation [40] provides data with different frequencies
of acquisition. However, the frequency of IMU is 200 Hz
and the camera rate is 20 Hz. Our SLAM algorithm
functions in real-time with the following assumptions: the
image size is 320×240, the measurement vector is limited
to 15 features by image, and a full vector size depends on
the number max of the measured vector. The latter is the
power of the SVSF because the state vector updating is
partial. This means that the feature observed is updated,
but those not observed did not change. In case of EKF the
updating is high computational because at each iteration
all the state vector is corrected. The time available to do
all the steps of our SLAM is 50 ms (about 20 images per

second). In case of our SLAM, the time of processing is
bonded, we can treat at each iteration a vector of size max
103 elements (13 elements for the camera state vector
and 90 elements to code 15 features of size 6 of each
one). The processing time depends just on the predefined
number of features per image at each iteration. But, in
case of EKF, the environment of navigation must be
smaller to not exceed the capacity of features supported
by the designed algorithm. Therefore, our IMU-Mono-
SLAM can be utilized in a large outdoor environment
with the assumption of feature’s number limitation per
image. The disadvantage of our approach resumes on the
lack of loop closing sensitivity. The loop closing task is
not immediate compared to EKF-SLAM.

8. CONCLUSION
In this paper, we elaborate a new SLAM for an MAV.

To this end, a SLAM based on a filtering scheme is
enhanced by the fusing of the IMU data and a monocular
camera using the SVSF filter mechanism. This new filter
was involved to improve the efficiency of the designed
SLAM in terms of accuracy and robustness. The IMU
data have been used essentially to surmount the problem
of scale drift. We compare our solution with available
numerical simulations and experimental data [40] and
good agreement has been obtained. In our approach, the
full state vector is updated for just some elements, which
brings us to realize a real-time IMU-Mono-SLAM. The
EKF map is limited to a small area of navigation, which is
not the case for our approach. Our solution can be easily
used in an outdoor environment. Our SLAM suffers from
the sensitivity of the loop closing compared to EKF (it
closes the loop implicitly). As future work, we suggest
using the adaptive version of SVSF (ASVSF) [24], [25]
to provide an idea about the uncertainty of the pose and
the built map. It is necessary to enhance our SLAM for
loop closing. The map obtained is based on points; it
is not dense and it cannot be competitive compared to
the recent SLAMs. This kind of map limits the reuse for
another task of navigation, Therefore, it must be dense
for an ulterior autonomous navigation mission.
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