&P International Journal of Computing and Digital Systems
g > ::} ISSN (2210-142X)
= Int. J. Com. Dig. Sys.13, No.1 (May-23)

Ay

oy

http://dx.doi.org/10.12785/ijeds/130194

Improving Performance of Deep Learning Models Using Input
Propagation
Mahalingam P. R.! and Dheeba J.!
1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Received 31 Mar. 2022, Revised 2 May. 2023, Accepted 14 May. 2023, Published 30 May. 2023

Abstract: Artificial Neural Networks (ANNs) act by fitting decision boundaries between different classes of data, thereby performing
classification. They approximate the decision hyperplane into a weighted sum of inputs, thereby making the decision simpler. This
paper explores the working of ANNs in a simple scenario where the decision boundary is quadratic, finds that weighted sum won’t
be enough to perform non-linear classifications since decision boundaries remain linear in nature. To overcome the limitations of the
existing model, an Input-Propagated Artificial Neural Network (IP-ANN) is proposed, which learns nonlinear functions directly by
incrementally applying input values on the network directly. The performance of the proposed model is compared with the regular ANNs,
and experimental analysis shows that the regular ANN has obtained an accuracy of 72.36%, while IP-ANN achieved an accuracy of 98.5%.

Keywords: Machine learning, Artificial Neural Networks, Deep Learning, Polynomial Neural Networks, Input propagation.

1. INTRODUCTION

Artificial Neural Networks (ANNs) has been a steady
choice for researchers around the world for applications
using machine learning. ANNs has performed well in cloud
based classification[1] , clinical predictions[2] , and disease
predictions[3], [4]. One of the attractive features of ANNs
is the relatively small prediction time (even though training
can be slow, testing at real time is fast), which enables them
to be integrated into a variety of software and hardware
applications. Modelled after biological neural networks, an
ANN contains a series of “artificial neurons” which are
arranged into layers, with each layer fully collected to the
nearby layer like a bipartite graph. The connections are
appropriately weighted, and each neuron performs some
kind of aggregation and normalization to give the output.
When a network is trained, it adjusts the weights between
layers so that the output error is minimized as much as
possible.

ANNs are lucrative because of the huge variety of
mathematical functions they can learn from the input data.
But conventional ANNs suffer from some limitations of
linearity, which can severely hamper their utility in certain
scenarios. In this paper, a new model is proposed that can
rectify the problem of ANNs where non-linear decision
boundaries are not fit properly. A special dataset is syn-
thesized for this purpose.

Ample work has been found relating to performance

improvement of ANNSs in nonlinear datasets. Most of them
have concentrated on the mathematical model, which has
given rise to polynomial neural networks. Some other
methods have been found to use nature-inspired algorithms
to modify the training regime. In this paper, the approach
is focused on modifying the architecture of regular ANN,
and incorporating an additional mathematical step into the
neuron.

The main objective of the present work is to create a
model that can overcome the limitations presented by deep
networks constructed out of conventional artificial neurons.
To this end, our contributions in IP-ANN are as follows.

o Creation of a new model - After understanding the
pitfalls of the existing deep network architecture,
a new neural model is proposed that performs an
additional forward propagation of input to all layers
in the network, enabling it to learn higher order
polynomial functions with minimal rework.

e Analysis on hypothetical dataset - Once the model is
explored, a hypothetical dataset is introduced, which
requires a quadratic decision boundary for proper
classification. The same is used for training a regular
deep network and an IP-ANN, and it is observed that
IP-ANN performs much better.

e Specific use cases - Once the working is verified
with the hypothetical dataset, the same is studied by

E-mail address: prmahalingam @ gmail.com, dheeba.j@vit.ac.in

http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/130194
http://journals.uob.edu.bh

2,

%
%y

< s

1166

Mahalingam P. R., et al.: Improving Performance of Deep Learning Models Using Input Propagation

giving specific use cases as input. The domain under
consideration is healthcare data, with focus placed on
cardiovascular diseases.

e Performance - The performance of IP-ANN is further
analyzed with a wider range of benchmarked datasets,
and it is observed that it is consistently performing at
par, or better than, deep networks. The caveat of this
model is also analysed, which is the increase training
time with number of features.

o Recommendations - The study ends with a set of
recommendations on when the model can be used,
and how further studies may be conducted to improve
the training speed of the model.

The rest of the paper is organized as follows. Section
2 gives a background study of the concept. Section 3
deals with an exploration of how conventional ANNs model
nonlinear functions using approximation, and Section 4
introduces a novel concept called “Input-propagated ANNs”
(IP-ANNs) which is aimed at enhancing the performance
of conventional ANNs by taking the assistance of inputs
at each layer. Section 5 compares the performance of IP-
ANN against conventional ANNs in a variety of situations,
and Section 6 discusses a specific use case in the form of
medical data. Closing remarks and future scope is discussed
in Section 7.

2. BACKGROUND

Artificial Neural Networks are good at approximating
nonlinear functions[5] when large datasets are available.
This is because decision boundaries are learnt and evolved,
and unless there is enough data it may not be optimal. The
use of large datasets are necessary because ANNs work with
largely linear combinations, followed by nonlinear transfer
functions (like sigmoid). A number of attempts have been
made in improving the performance of ANNs in the case of
nonlinear decision boundaries. This is since majority of real
world applications cannot be modelled as linear functions.
Functions like sigmoid, tanh, ReLU, etc. incorporate a good
level of nonlinearity by making the output a function of
the input. But that may not be enough if the boundary is
extremely nonlinear.

Wau et al[6] proposed an ANN weight adjustment algo-
rithm based on Beetle Antennae Search. They work on the
hidden-output matrix and adjust them in such a way that
there is rapid convergence towards the global optimum. It
used a state space search with step size based on antenna
length of the beetle. This algorithm was observed to give
an acceptable level of accuracy without overfitting. Meng
et al[7] proposed a self-adaptive RBF classifier based on
fuzzy c-means and quantum-inspired PSO for transformer
fault analysis. It extends the regular ANN to accommodate
a set of neurons in the hidden layer to exclusively transfer
the input data to the output layer. Hence linearity is ensured
by the input, while RBF adds an element of nonlinearity.

Thiria et al[8] discussed about a method where nonlinear
transfer functions are learnt using ANNs after appropriate
flattening of multidimensional input at the first hidden layer.
This was demonstrated in the case of transfer functions
related to scatterometers. Hoekstra and Duin[9] mapped
the shape of a classification function to the generalization
capability of the corresponding classifier. The paper intro-
duced a nonlinearity measure which is then used to perform
interpolation and scaling of the dataset. It can be thought
of as embedding the nonlinearity within the output classes
themselves to avoid locating the same during training.
Huang and Ma[10] gave a comprehensive mathematical
analysis of neural networks, and it shows how any why
ANN propagations are based on matrix operations. Ali et
al[11] proposed an implementation that takes the assistance
of ontology for prediction of heart diseases. Makantasis et
al[12] also explore the matrix algebra implementation of
neural networks and weights, with focus on nonlinearity
using activation functions. Martin et al[13] discussed about
nonlinear function approximation using kernel functions.

There has been a good amount of work related to
polynomial neural networks. Ivakhenko[14] did a detailed
study on complex decision surfaces and identified that they
can be approximated by a set of polynomials. The work
highlighted the requirement of multilayer networks to im-
plement approximations of polynomial decision functions.
It works by taking nonlinear functions and working pairwise
when it comes to inputs at each layer, thereby generating
approximations from partial descriptions. The coefficients
are identified by solving smaller equations with only those
pair of unknowns, and minimizing mean squared error of
the system. It eventually generates a set of optimization
equations, which can approximate the nonlinear system to
a good extent. Following up on this concept, Oh et al[15],
[16], [17], [18], [19], [20] and Maric[21] have built a
number of models that use Group Method of Data Handling
(GMDH) to generate approximations. They have proposed a
model called the Polynomial Neural Network (PNN) which
entails the process followed in GMDH and generates partial
descriptions, but gives the additional flexibility of allowing
linear, quadratic, or cubic transformations at each level of
the partial description. Hence in a layer the data may get
raised to an appropriate power, giving nonlinearity. They
later expand the concept by allowing Genetic Algorithms to
decide the polynomial power at a node, and add fuzziness to
the model. They also perform yet another expansion where
wavelets are used for faster convergence. They also propose
models where PNN generates virtual inputs, that are later
processed by generating multiple local models, and using
Fuzzy C-means clustering for final output generation.

Some other applications proposed for PNN are as fol-
lows. Ghazali et al[22] used a modified PNN, which has an
additional internal layer to find the product of sum terms.
This enables multiple linear terms to be combined to have
higher order polynomials. Al-Tahrawi and Al-Khatib[23]
noted that PNNs are able to preserve context because of

http://journals.uob.edu.bh

http://journals.uob.edu.bh

1167

¥ To
x -10.0000 10.0000

z -0.499703 1.49912

Figure 1. Plot of sigmoid output for a linear input expression.

partial descriptions, and used them to classify Arabic text.
Kileel et al[24] explored PNNs in the perspective of deep
polynomial neural networks by using polynomial activation
functions. A different treatment is given by Piazza et al[25].
They propose a regular neural network, but have a complex
activation function which considers a number of possible
activations internally, and gives an additional coefficient
vector to add all activations together to generate the output.
Hence a number of possibilities are taken simultaneously,
and by the time training is complete, there will be a proper
weight to each level of nonlinearity as propagation happens
through the layers.

All the above neural models result in generating a linear
combination of inputs that can be sent to a sigmoid or
tanh activation function for producing the output. If the
expression

sig(x +y)

is plotted, the graph looks like the one given in Figure
1. While the plot looks non-linear, the predictive power is
demarcated by a line that forms the surface of the sigmoid
function. The performance greatly changes if the input
expression for sigmoid changes from linear to quadratic.
The plot of

sig(x® +y%)

looks like the surface in Figure 2. The classification surface
resembles a hat, which is a nonlinear surface in itself.
This difference is to be leveraged in order to improve deep
networks to IP-ANN.

&) From To

x -10.0000 10.0000
z 0.252653 1.24912

Figure 2. Plot of sigmoid output for a quadratic input expression.

3. ARTIFICIAL NEURAL NETWORKS AND LIN-
EARITY

Conventional ANNs[26] do a good job in learning fairly
complex patterns, but the behavior is quite linear in nature.
Appropriate activation functions are required to expand the
decision boundary beyond that. The next section deals with
evaluating the performance of a standard ANN using a
synthetic dataset.

A. Dataset synthesis and preprocessing
Consider a dataset that contains two attributes ‘x’ and

‘y’, and a function ‘f” that simulates a circle which is
centered at (50,50), and has a radius of 30. Any point that
is inside the circle is marked as f=1, while those outside
are marked as 0. The dataset is built using points from (0,0)
to (100,100), which makes a total of 10201 points. There
will be 7380 points marked as O (since outside the circle),
and 2821 points marked as 1 (on the circle, or inside it).
The curve given by Eqn. 1 will act as the separator line.
A classifier should be able to learn this curve and perform
classification properly.

(x — 50)% + (y — 50)* = 307 (D
The input is compressed into the range [0,1] by dividing all
numbers of X and Y by 100. This revises Eqn. 1 as follows.
100> +y* —x—y+0.5)=9)

Eqn. 2 can be visualized as in Figure 3.

B. Standard ANN architecture

A regular ANN works with a set of artificial neurons,
which work with a set of “weights” and “biases” to generate
a biased weighted sum of inputs. The basic architecture

http://journals.uob.edu.bh

http://journals.uob.edu.bh

%
S,

)

u,:,,
%,
Y

e

WCH
1168 1"""~‘j Mahalingam P. R., et al.: Improving Performance of Deep Learning Models Using Input Propagation

10 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

.8 10

I I

00 02 04 06

Figure 3. Visualization of function in Eqn 2 generated using Python.

Bias

5
3
f('zx‘w-i-b) g

—

From previous layer
N —
&

Figure 4. Architecture of an artificial neuron.

followed from an implementation perspective is given in
Figure 4, taking the number of inputs as ‘n’ for the neuron.

From Figure 2, the equation for a neuron can be written

as:
y=fQ (xxw)+b) 3)

where x is the input vector, w is the weight vector, b is the
bias vector, f is the activation function, and y is the output.
The operation * denotes pairwise multiplication.

The main aspect to be considered is that the equation to
be learned is a proper polynomial. An ANN is set up with
the following configuration:

e Input layer : 2 neurons (for x and y)

e Hidden layer 1 : 2 neurons (first level preprocessing
for x and y) with ReLU activation

e Hidden layer : 4 neurons (to approximate a bounding
box) with ReLU activation

-0.11664004

+0.4383245
-0.04244679

-0.37876734

+0.4553656

Figure 5. Standard ANN designed for the given dataset.

e Qutput layer : 1 neuron (binary classification) with
Sigmoid activation

After training for 500 epochs on the dataset with a
stratified train-test split of 75-25, the network took values
as in Figure 5.

On deriving the values, it can be seen that they can
be stretched into a long polynomial, which represents the
function F. The derivation is done using node-level outputs,
assuming that Nij represents node i at layer j. Layers
are numbered from O so that Input layer is marked as 0.
Similarly, nodes are marked from O.

Layer 0

NOO® = x
N1® =y

Layer 1

NO1 = -0.04244679x - 0.8565261y + 0.4383245
N11 = 0.07387437x + 0.45352066y - 0.45394316

Layer 2

NO2 = 0.04310034503x + 0.38321658048y -
.41681324999

-0.0226247852x + 0.21373712604y +
.03399540862

-0.0567853294x - 0.186025244y +
.3005096980056

-0.0701218201x - 0.904270767y +

.02736464011267

N12

N22

N32

mll ol oll &l

Layer 3

NO3 = sig(0.0814710961556924x + 0.79549252511807y -
1.40402778921863)

The input to sigmoid remains a linear function of X and
Y, and the sole nonlinearity in the model is introduced by

http://journals.uob.edu.bh

http://journals.uob.edu.bh

¥

1%

@%

Sy s
%r.k)
Int. J. Com. Dig. Sys. 13, No.1, 1165-1175 (May-23) " 1169
0.725 A
0.700 - ——— hozuracy
e |08
0.675 A
0.650
0625
06001 f_
0575
0.550 A
0.525 1
0.0 02 04 06 08 0 100 200 300 400 500
Fi 8. Traini d loss for standard ANN.
Figure 6. Raw decision boundaries for Standard ANN. reure raining accuiracy and foss for standar
2
i %4;
[X1 i %
08 . in
06 5
&
&/
04 é\ %
§
&
02
Xy
A xrwt Fitm+b)
0.0 To next layer
0.0 02 0.4 06 08 \ o

Figure 7. Binarized decision boundaries for Standard ANN.

the final activation function. Here, effect of ReLU has been
ignored (since the value is rarely going to be negative in the
given example). The function’s decision boundary doesn’t
resemble the function given in Eqn. 1. Figure 6 shows the
decision boundary for the system in raw sigmoid output,
and Figure 7 shows the same boundary after binarization
with values greater than 0.5 denoting 1, and O otherwise.

The plot in Figure 6 shows a number of bars, which
indicate a strong linear relation expressed in terms of inputs.
After binarization, there is only one color in the contour
plot, which means that the entire model got overfit to a
single output. The accuracy and training loss have been
plotted in Figure 8.

The training accuracy nearly levelled off at 72%, and
the testing accuracy was found to be 72.36%. Even though
72% seems to be a good number, the dataset is highly im-
balanced, and out of 10201 entries, 72.34% are represented
by the value 0. Hence it simply denotes an overfit to class
0, which started after the first few epochs itself.

]

Bias

Figure 9. Neuron in IP-ANN.

4. INPUT PROPAGATED NETWORKS

The basic problem with the regular ANN architecture
is evident from the previous section. There is no proper
method by which nonlinearity can be introduced into the
system. Considering suggestions from refs. [14] and [25], a
new artificial neuron is proposed, which enables inputs to
be propagated along the network to all layers. The neuron
will indirectly generate a partial description at each layer,
by iteratively incorporating inputs to the decision boundary.
The inputs will play a part in the output generated by each
neuron, and consequently cause nonlinear functions to be
learnt by the network. The ANN which uses the new neuron
is being named IP-ANN (Input-Propagated Artificial Neural
Network).

A. Architecture of the IP-ANN neuron

The structure of a neuron in IP-ANN is given in Figure
9. To propagate the input along the network, the entire input
is transferred to each node, along another set of coefficients,
called “multipliers”. The network will also be designed such
that all layers will contain exactly N nodes (where N is the
input dimension), and only the output layer is allowed to

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Mahalingam P. R., et al.: Improving Performance of Deep Learning Models Using Input Propagation

X2.2573304
-1.1982924

x2.8481388
+1.9823636

1.0453687 1.6832653

-5.130775

-0.7967186

-0.5536646

-1.4390675

0.22605942 -0.83015114

-1.0618674 1.8373871
x2.046884

+1.1028783

x3.2038908
-2.3102136

Figure 10. IP-ANN for the dataset in Section 3.

have a different specification, based on the type of output
expected (one node + sigmoid, if it is binary, k nodes +
softmax if multiclass). The multipliers are tuned in such a
way that only mj is non-zero for the jth node in a layer.
Others will be set to 0. Hence it becomes just like the
bias vector, with exactly N multipliers playing a part in
each layer. The output of each neuron now changes as in
Equation 4.

y=fOQ Goew)+ Y em) +b) &)

Here, there is an additional term consisting of the input
vector i, and multiplier vector m. Since the multiplier vector
is non-zero for exactly one value only, the sum will be
simply ij*mj for the jth node in the layer. This helps
incorporate the effect of input X in all layers, progressively
raising them to higher powers. The network is now able to
learn the polynomial terms by itself. The partial description
is no longer in terms of the input variables, but in terms of
order of the polynomial.

B. Testing the IP-ANN

An TP-ANN model to train on the dataset synthesized
in Section 3 requires two nodes in all hidden layers to
accommodate x and y. The output layer needs to have
one node with sigmoid activation to accommodate binary
classification. In the first hidden layer, there will be 4
weights connecting to the layer, just like in normal ANNs.
Similarly, the bias vector contains two values, one per node.
When it comes to the multiplier, only m1 of node 1 is
non-zero, while only m2 of node 2 is non-zero. Hence it
effectively reduces to just 2 multiplier values, with node 1
affected by X, and node 2 affected by Y. The architecture is
given in Figure 10. Multipliers will be trained in the same
way as done for weights and biases.

Proceeding as with conventional ANN, the following
values are obtained.

Layer O

NOO® = x
N10 =y

Layer 1

10 4

Accuracy
Loss

0.8

0.6 1

044

0.2 1

0.0 4

0 100 200 300 400 500

Figure 11. Training accuracy and loss for IP-ANN on the dataset
given in Section 3.

I}
N

NO1 .35974254571848%x"2
1.24980393298384%xy
1.1982924

0.46271740984728%xy

-2.1735193911816%y"2

+ 1.1028783

N11

Layer 2

NO2 = 11.313014499$x"3
7.0417587594$x "2y
+ 4.93207447129%xy "2
- 8.24743433489%x

+ 1.9823636
-6.27623934146$x "2y
+ 6.04803964042%xy"2
12.79504705638y"3
+ 9.679524922248y
2.3102136

N12 =

Layer 3

NO3 = sig(-58.0445319661$x"3
-55.8700463881$y"3
+8.72424849358x "2y
+1.103624472$xy "2
+42.3157298996$x
+42.2660037154%y
-21.6977622621)

Contrary to the regular ANN, this expression is nonlin-
ear in nature, and it is given as the input to sigmoid. This
can generate a better result, and the accuracy-loss plot is
shown in Figure 11.

The accuracy is found to reach values close to 100%.
Model inspection shows an accuracy of 98.6% on training,
and 98.5% on validation. So the model is able to give a
good classification, as well as avoid overfitting to a single
class. The decision boundaries of the classifier are plotted
in Figure 12 and Figure 13.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

%
S,
35?-.4, J:JX

9% NNk
Int. J. Com. Dig. Sys. 13, No.1, 1165-1175 (May-23) " 1171
10
08 - 08 1 =TT
» T,
06 D 6 B f -
. 1
04 1 04 1 . s
02 1 02 T -
0.0 - : = r 0.0 : . . .
0.0 02 0.4 06 08 0.0 0.2 04 06 0.8 10
Figure 12. Raw decision boundaries for IP-ANN. Figure 14. Error region for IP-ANN on data given in Section 3.
In the standard ANN, ReLU was used in all hidden layers
as activation function, and output layer was same as that
081 in the IP-ANN model. The models were compared for four
datasets. The architecture is described in Table 1.
0.6 1 . .
Performance was measured with 10-fold cross valida-
tion. The results are summarized in Tables 2 to 5.
04
IP-ANN has performed at par, or better than standard
ANN in all cases. The difference is evident in binary
021 datasets, while it is difficult to find in MNIST (considering
the dataset has 784 training attributes after flattening, both
0.0 > > > > models could have reached the upper limit of accuracy for
0.0 0.2 0.4 06 0.8

Figure 13. Binarized decision boundaries for IP-ANN.

As observed in the regular ANN, there are a number
of bands, each showing a small range of values. But the
noticeable difference is that all of them are centred around
the original region of interest, and are highly compressed in
nature. So the classifier is able to give a good performance.
The binarized output from sigmoid makes the decision
boundary even more precise.

The decision boundary closely follows the original one,
and except for a small region amounting to nearly 2%,
classified the inputs correctly. Figure 14 shows the mis-
classification region, which is a plot of the model’s error.
The misclassification evidently occurred at the boundary,
and other regions are quite accurate.

5. PERFORMANCE COMPARISON

The IP-ANN model was tested for stability and perfor-
mance using a variety of datasets. The datasets covered the
case of binary classifiers as well as multiclass classifiers. No
activation function was used in any of the hidden layers, and
the output layer contained a sigmoid activation function for
binary classification problems, and softmax for multiclass
classification problems. The performance was measured
against a standard ANN with the same number of layers.

that dataset, without overfitting).

One aspect that should be kept in mind is that [P-ANN
needs the same number of nodes in all layers, and the
number is equal to the number of input features. Hence the
training will be slower than normal for datasets having a
large number of features, and large batch size. The training
time per epoch is listed in Table 6.

For heart disease datasets which contain less than 20
features (no feature selection was done prior to training),
the training time is nearly the same. The additional effort
to modify the multipliers had negligible effect. For MNIST
and Fashion MNIST, the training time is more than 4 times
that of a standard ANN, since the hidden layer contains 784
nodes in IP-ANN whereas it is only 128 for standard ANN.
The “tapering” effect cannot be incorporated into IP-ANN
in the current design.

6. EXAMPLE APPLICATION ON MEDICAL DATA

Neural networks has been used in a number of domains
like structural analysis[29], [30], mechanical predictions,
healthcare[31], etc. because of its versatility. In order to
further analyse the impact of input propagation, a com-
parison is being made between input-propagated networks
and conventional deep networks with respect to three heart
disease datasets:

1) Heart disease clinical dataset[32]

http://journals.uob.edu.bh

http://journals.uob.edu.bh

%
% Gle g
1172 “«=>" Mahalingam P. R., et al.: Improving Performance of Deep Learning Models Using Input Propagation
TABLE I. Testing configuration on different datasets.
Dataset Description Standard ANN IP-ANN
2 hidden layers 2 hidden layers with
with configuration (13, 13). configuration (13, 13).
ReLU used in hidden layers, No activation used in hidden
Cleveland 14 attributes, sigmoid at output. 100 epochs layers, sigmoid at output. 100

Heart Disease dataset[27]

binary classification

for training.

epochs for training.

Heart failure
clinical data [28]

14 attributes,
binary classification

2 hidden layers

with configuration (13, 13).
ReLU used in hidden layers,
sigmoid at output. 100 epochs
for training.

2 hidden layers with
configuration (13, 13).

No activation used in hidden
layers, sigmoid at output. 100

epochs for training.

Fashion MNIST

28x28 matrix of
images, flattened to 784

attributes. 10 output
classes

1 hidden layer with 128

nodes, ReLLU activation at hidden
layer, softmax at output.

5 epochs for training.

1 hidden layer with 784
nodes, no activation at hidden
layer, softmax at output.

5 epochs for training.

MNIST

28x28 matrix of
images, flattened to 784

attributes. 10 output
classes

1 hidden layer with 128

nodes, ReL.U activation at hidden
layer, softmax at output.

5 epochs for training.

1 hidden layer with 784
nodes, no activation at hidden
layer, softmax at output.

5 epochs for training.

TABLE II. Training accuracy

Dataset Standard ANN IP-ANN
Cleveland heart dataset 88.19% 95.78%
Heart failure clinical data 86.36% 93.39%
Fashion MNIST 89.07% 89.86%
MNIST 98.67% 99.10%
TABLE III. Training loss
Dataset Standard ANN IP-ANN
Cleveland heart dataset 0.283 0.134
Heart failure clinical data 0.308 0.169
Fashion MNIST 0.299 0.273
MNIST 0.044 0.034
TABLE IV. Testing accuracy
Dataset Standard ANN IP-ANN
Cleveland heart dataset 80% 83.33%
Heart failure clinical data 79.31% 86.21%
Fashion MNIST 86.53% 87.11%
MNIST 97.6% 97.6%

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1165-1175 (May-23) "«

TABLE V. Testing loss

Dataset

Cleveland heart dataset
Heart failure clinical data
Fashion MNIST

MNIST

Standard ANN IP-ANN
0.548 0.498
0.529 0.329
0.422 0.360
0.087 0.080

TABLE VI. Training Time per epoch (Batch size = 128).

Dataset

Cleveland heart dataset
Heart failure clinical data
Fashion MNIST

MNIST

Standard ANN IP-ANN
1ms 1ms
1ms 1ms

5s 22s
5s 23s

2) Framingham heart disease dataset[33]
3) Cleveland heart disease dataset[34]

All analysis is done considering 7 layers, with all layers
containing the same number of neurons, decided by the
number of features in the input dataset. Comparison is
done based on F-score as well as Matthew correlation
coeflicient[35], with 10-fold cross validation. The results
are given in tables 7 and 8.

The analysis shows that Framingham dataset doesn’t
seem to be a good choice for classification using neural
networks. But in all cases, input propagation was able to
give a better performance compared to conventional deep
networks.

7. CONCLUSION AND FUTURE SCOPE

A novel model has been introduced that can approximate
non-linear functions with good degree of accuracy. While
regular ANNSs rely on the activation function to generate a
complex hyperplane, input propagation enables the same to
be done on a much larger scale, with much better accuracy.

In general, the model has performed at par, or better
than, existing ANN architectures. With an improvement
in accuracy by up to 10%, the model can be used for a
number of practical problems. The model has been built
to ensure minimal modifications in the current training
process. Accordingly, only one set of multipliers have been
added. But the effect produced by this minor change far
outweighs the additional effort. In future efforts have to be
taken to taper the layers towards the output so that training
time is improved.

Despite the higher training time as given in Table 2,
training is a one-time process, and IP-ANN should perform
better compared to a standard ANN architecture. This
can be extended in future by giving additional nonlinear
functions of the input (log, exponential, etc.) to the neu-

rons. Similarly, the possibility of using GPUs[36] may be
explored to improve training time on large datasets. Fused
activation functions[37] may also improve the performance,
but to a smaller extent, since the presence of activations is
less in this model. Other possibilities would be making the
model flexible by modifying the input vector given to all
layers, which requires further analysis in terms of balancing
propagation and manipulation of the input. In practice, the
model can be used for mission critical applications, in-
cluding healthcare. The same has been demonstrated using
two heart disease datasets, where the accuracy improved by
more than 7%.

8. ACKNOWLEDGMENTS

This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit
sectors.

REFERENCES

[1] J. Lee, R. C. Weger, S. K. Sengupta, and R. M. Welch, “A neural
network approach to cloud classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 28, no. 5, pp. 846-855, 1990.

[2] W. Penny and D. Frost, “Neural networks in clinical medicine,”
Medical Decision Making, vol. 16, no. 4, pp. 386-398, 1996.

[3] N. Rajesh, T. Maneesha, S. Hafeez, and H. Krishna, “Prediction
of heart disease using machine learning algorithms,” International
Journal of Engineering and Technology (UAE), vol. 7, no. 2.32, pp.
363-366, 2018.

[4] S. Ambekar and R. Phalnikar, “Disease risk prediction by using con-
volutional neural network,” in 2018 Fourth international conference
on computing communication control and automation (ICCUBEA).
IEEE, 2018, pp. 1-5.

[S] L. Hadjiiski, P. Geladi, and P. Hopke, “A comparison of modeling
nonlinear systems with artificial neural networks and partial least
squares,” Chemometrics and intelligent laboratory systems, vol. 49,
no. 1, pp. 91-103, 1999.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

0
) ,“}5

A7)

)

410 Alisy;

Lle i
1174 "j Mahalingam P. R., et al.: Improving Performance of Deep Learning Models Using Input Propagation
TABLE VII. F-score
Dataset DNN IP-ANN
Cleveland heart dataset 0.76 0.81
Heart failure clinical data 0.61 0.67
Framingham dataset 0.13 0.16
TABLE VIII. Mathew Correlation Coefficient

Dataset DNN IP-ANN
Cleveland heart dataset 0.57 0.67
Heart failure clinical data 0.44 0.48
Framingham dataset 0.13 0.19

[6] Q. Wu, Z. Ma, G. Xu, S. Li, and D. Chen, “A novel neural [16] S.-K. Oh, W. Pedrycz, and H.-S. Park, “Genetically optimized fuzzy

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

network classifier using beetle antennae search algorithm for pattern
classification,” IEEE access, vol. 7, pp. 64 686—64 696, 2019.

K. Meng, Z. Y. Dong, D. H. Wang, and K. P. Wong, “A self-adaptive
rbf neural network classifier for transformer fault analysis,” IEEE
Transactions on Power Systems, vol. 25, no. 3, pp. 1350-1360, 2010.

S. Thiria, C. Mejia, F. Badran, and M. Crepon, “A neural network
approach for modeling nonlinear transfer functions: Application
for wind retrieval from spaceborne scatterometer data,” Journal of
Geophysical Research: Oceans, vol. 98, no. C12, pp. 22 827-22 841,
1993.

A. Hoekstra and R. P. Duin, “On the nonlinearity of pattern clas-
sifiers,” in Proceedings of 13th international conference on pattern
recognition, vol. 4. 1EEE, 1996, pp. 271-275.

D.-S. Huang and S.-D. Ma, “Linear and nonlinear feedforward
neural network classifiers: a comprehensive understanding,” Journal
of Intelligent Systems, vol. 9, no. 1, pp. 1-38, 1999.

F. Ali, S. El-Sappagh, S. R. Islam, D. Kwak, A. Ali, M. Imran,
and K.-S. Kwak, “A smart healthcare monitoring system for heart
disease prediction based on ensemble deep learning and feature
fusion,” Information Fusion, vol. 63, pp. 208-222, 2020.

K. Makantasis, A. Doulamis, N. Doulamis, A. Nikitakis, and
A. Voulodimos, “Tensor-based nonlinear classifier for high-order
data analysis,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 2221-
2225.

C. A. Martin, R. I. Pinillo, A. Barasinski, and F. Chinesta,
“Code2vect: An efficient heterogenous data classifier and nonlinear
regression technique,” Comptes Rendus Mécanique, vol. 347, no. 11,
pp. 754-761, 2019.

A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE
transactions on Systems, Man, and Cybernetics, no. 4, pp. 364-378,
1971.

S.-K. Oh and W. Pedrycz, “The design of self-organizing polynomial
neural networks,” Information Sciences, vol. 141, no. 3-4, pp. 237-
258, 2002.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

polynomial neural networks,” IEEE Transactions on Fuzzy Systems,
vol. 14, no. 1, pp. 125-144, 2006.

W. Huang, S.-K. Oh, and W. Pedrycz, “Fuzzy wavelet polynomial
neural networks: analysis and design,” IEEE Transactions on Fuzzy
Systems, vol. 25, no. 5, pp. 1329-1341, 2016.

S.-K. Oh, W. Pedrycz, and B.-J. Park, “Polynomial neural networks
architecture: analysis and design,” Computers & Electrical Engi-
neering, vol. 29, no. 6, pp. 703725, 2003.

S.-K. Oh, W.-D. Kim, B.-J. Park, and W. Pedrycz, “A design of
granular-oriented self-organizing hybrid fuzzy polynomial neural
networks,” Neurocomputing, vol. 119, pp. 292-307, 2013.

S.-B. Roh, S.-K. Oh, and W. Pedrycz, “Design of fuzzy radial
basis function-based polynomial neural networks,” Fuzzy sets and
systems, vol. 185, no. 1, pp. 15-37, 2011.

I. Maric, “Optimization of self-organizing polynomial neural net-
works,” Expert systems with applications, vol. 40, no. 11, pp. 4528-
4538, 2013.

R. Ghazali and D. Al-Jumeily, “Application of pi-sigma neural
networks and ridge polynomial neural networks to financial time
series prediction,” in Artificial Higher Order Neural Networks for
Economics and Business. 1GI Global, 2009, pp. 271-293.

M. M. Al-Tahrawi and S. N. Al-Khatib, “Arabic text classification
using polynomial networks,” Journal of King Saud University-
Computer and Information Sciences, vol. 27, no. 4, pp. 437-449,
2015.

J. Kileel, M. Trager, and J. Bruna, “On the expressive power of
deep polynomial neural networks,” Advances in neural information
processing systems, vol. 32, 2019.

F. Piazza, A. Uncini, and M. Zenobi, “Artificial neural networks with
adaptive polynomial activation function,” in Proc. of the IJCNN,
vol. 2, 1992, pp. 343-349.

M. E. Ulug, “Artificial neural network method and architecture,”
Apr. 18 1995, uS Patent 5,408,588.

R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J.-J. Schmid,

http://journals.uob.edu.bh

http://journals.uob.edu.bh

i)

W

X

30l

Lle Baay
Int. J. Com. Dig. Sys. 13, No.1, 1165-1175 (May-23) “’fwj 1175

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Sandhu, K. H. Guppy, S. Lee, and V. Froelicher, “International
application of a new probability algorithm for the diagnosis of
coronary artery disease,” The American journal of cardiology,
vol. 64, no. 5, pp. 304-310, 1989.

D. Chicco and G. Jurman, “Machine learning can predict survival
of patients with heart failure from serum creatinine and ejection
fraction alone,” BMC medical informatics and decision making,
vol. 20, no. 1, pp. 1-16, 2020.

M. H. Rafiei, W. H. Khushefati, R. Demirboga, and H. Adeli,
“Supervised deep restricted boltzmann machine for estimation of
concrete,” ACI Materials Journal, vol. 114, no. 2, p. 237, 2017.

M. H. Rafiei and H. Adeli, “A novel machine learning-based
algorithm to detect damage in high-rise building structures,” The
Structural Design of Tall and Special Buildings, vol. 26, no. 18, p.
e1400, 2017.

U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli,
“Deep convolutional neural network for the automated detection and
diagnosis of seizure using eeg signals,” Computers in biology and
medicine, vol. 100, pp. 270-278, 2018.

D. Chicco and G. Jurman, “Machine learning can predict survival
of patients with heart failure from serum creatinine and ejection
fraction alone,” BMC medical informatics and decision making,
vol. 20, no. 1, pp. 1-16, 2020.

A. B. Fernandez, M. J. Keyes, M. Pencina, R. D’Agostino, C. J.
O’Donnell, and P. D. Thompson, “Relation of corneal arcus to
cardiovascular disease (from the framingham heart study data set),”
The American journal of cardiology, vol. 103, no. 1, pp. 64-66,
2009.

A. K. Garate-Escamila, A. H. El Hassani, and E. Andres, “Classi-
fication models for heart disease prediction using feature selection
and pca,” Informatics in Medicine Unlocked, vol. 19, p. 100330,
2020.

D. Chicco and G. Jurman, “The advantages of the matthews

correlation coefficient (mcc) over fl score and accuracy in binary
classification evaluation,” BMC genomics, vol. 21, pp. 1-13, 2020.

[36] N. Lopes and B. Ribeiro, “An evaluation of multiple feed-forward
networks on gpus,” International journal of neural systems, vol. 21,
no. 01, pp. 3147, 2011.

[37] M. Asaduzzaman, M. Shahjahan, and K. Murase, “Faster training
using fusion of activation functions for feed forward neural net-
works,” International journal of neural systems, vol. 19, no. 06, pp.
437-448, 2009.

Mahalingam P. R. received his B.Tech
(2010) in Computer Science and Engineer-
ing, and M.Tech (2013) in Computer sci-
ence and Engineering (Information Systems)
from Mahatma Gandhi University, Kerala.
He is presently pursuing PhD in Healthcare
Data Analytics at School of Computer Sci-
ence and Engineering at Vellore Institute of
Technology, Vellore. His research interests
include machine learning, data analytics,
blockchain, cloud computing, and evolutionary algorithms.

Dheeba J. received her B.E (2005), M.E

(2008) and Ph.D (2013) in Computer sci-

ence and Engineering from Anna Univer-

i sity, Chennai. She is presently working as

) Associate Professor in School of Computer

Y i Science and Engineering at Vellore Institute

'[b "i of Technology, Vellore. Her research inter-

W ests include medical image analysis, Ma-
l J chine learning approaches and evolutionary

algorithms.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

	INTRODUCTION
	BACKGROUND
	ARTIFICIAL NEURAL NETWORKS AND LINEARITY
	Dataset synthesis and preprocessing
	Standard ANN architecture

	INPUT PROPAGATED NETWORKS
	Architecture of the IP-ANN neuron
	Testing the IP-ANN

	PERFORMANCE COMPARISON
	EXAMPLE APPLICATION ON MEDICAL DATA
	CONCLUSION AND FUTURE SCOPE
	Acknowledgments
	References
	Biographies
	Mahalingam P. R.
	Dheeba J.

