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Abstract: Steganalysis methods have developed to attack steganography, a technique used to hide secret information in a digital media.
The traditional way of steganalysis is performed as feature extraction followed by classification. With the popularity of Deep Learning
(DL) in the field of computer vision, researchers started applying deep learning for steganalysis problems also. Soon they found promising
results with DL as it automates the feature extraction step and classification results can be used to better learn the features. Thus, the
tedious task of manual extraction of features with a separate classification step is unified in deep learning giving optimistic results. This
work provides a better insight into steganalysis evolution using deep learning and provides a broad review on how researchers have
successfully applied Convolutional Neural Network (CNN) by using steganalysis specific activation functions, different convolutional
layers and others. Researchers have compared their results with each other as well as state-of-the-art before deep learning (Rich Models
+ Ensemble Classifier). Initially, CNNs were created from scratch in the field of steganalysis but later researchers moved to highly
efficient pretrained networks such as SRNet, ResNet and EfficientNet and found significant improvement in results on more challenging
datasets such as ALASKA-I and ALASKA-II. The reason for such improvement is that pretrained networks are already trained on a
very large dataset of images for some classification tasks and thus can be finetuned easily to other classification tasks with improved
results.
Keywords: Steganography, Steganalysis, Convolution Neural Network, Deep Learning, Rich Models, Ensemble Classifier, Pretrained
Networks, Spatial Domain, JPEG Domain.

1. INTRODUCTION
With the tremendous growth of communication over the

internet through images, audio, video and other means, its
misuse has been started in the form of hiding information
in the above media. Steganography is the name given to
such a technique. There are various such methods avail-
able publicly in which pixels of the images are changed
such a way that distortion in the image is hard to detect
[1][2][3]. Forensic experts need some technique to detect
steganography as various criminal activities could take
place by hiding important information in digital media.
Steganalysis then comes into the picture to detect the
changed image through steganography. Initially, Specific
Steganalysis was targeted to detect known steganographies
[4]. Soon Universal Steganalysis was developed to detect
any kind of steganography with its dual strategy of feature
extraction and classification [5][6]. Thus, with this approach
information hidden through any steganography algorithm
can be easily perceived. However, with the emergence of
content adaptive steganographies in which information is
concealed in such regions of images where the distortion

between cover and stego image is minimal [7][8], higher-
order statistical features need to be extracted. This gives
rise to universal steganalysis extracting high dimensional
features such as by Fridrich and Kodovsky [9], in Spatial
Rich Model (SRM) features of the spatial domain and by
Kodovsky and Fridrich [10] in J+SRM features of the trans-
form domain. SRM features are extracted in the form of 106
submodels, each submodel with approximately 300 features,
giving a total of 34671 features. The various variants of
SRM such as Projection Spatial Rich Model (PSRM) by
Holub and Fridrich [11], maxSRM by T. Denemark et al.
[12] and others are also used for providing better results.
The manual designing of such high-dimensional features
followed by extraction is quite challenging. Moreover, it
burdens the classification task in universal steganalysis. This
redirected the researchers towards finding a way of automat-
ically getting out of useful features from images through
deep learning. Deep learning (DL) has already proven its
potential in various other fields as computer vision, pattern
recognition, and image classification. Researchers found
the twofold benefit of using deep learning in the field
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of universal steganalysis. The two disconnected steps of
feature extraction and classification get connected in deep
learning as information from the classification step can be
used to guide feature extraction. This guidance helped the
researchers in attaining more useful features as compared
to manual features. Tan and Li [13] made use of the Con-
volution Neural Network (CNN), one of the deep learning
methods for classifying stego and cover images. After him,
almost all researchers have made use of CNN in the field
of steganalysis. Before the application of deep learning for
steganalysis problems, Rich Model features such as SRM
and its variants along with Ensemble Classifier (EC) [14]
were giving the best results for various content adaptive
steganographies. So, researchers using deep learning for
steganalysis problems have compared their results with
these state-of-the-art methods.

The main contribution of this review is to gain an insight
on how deep learning has evolved over time for both spatial
domain and transform domain steganalysis. Researchers
have customized CNNs and put forward different activation
functions such as Gaussian neuron (GN), Truncated linear
Unit (TLU) and others for addressing the minute differences
of cover and stego images in steganalysis. Similarly differ-
ent preprocessing filters were used for gaining advantage
in steganalysis domain. To improve the results, researchers
first have created these customized CNNs but later moved to
pretrained networks and found significant improvement in
results. The pretrained networks are highly efficient as they
are trained on millions of images for some classification
problems. These pretrained networks are then finetuned for
steganalysis.

The rest of the paper is organized into sections 2-10 as
follows: Section 2 discusses why CNN is mainly used for
steganalysis. Section 3 gives steganalysis in spatial domain.
Section 4 gives steganalysis in transform domain. Details of
deeper CNN networks for steganalysis is provided in section
5. Section 6 discusses an insight of how steganalysis moves
from assumptions to reality. Section 7 explains benefits
of using pretrained networks for steganalysis. Section 8
discusses how steganalysis can be used for images of arbi-
trary size. Section 9 presents open challenges and emerging
directions in this area and Section 10 concludes the review.

2. CREATING CNN FROM SCRATCH FOR STE-
GANALYSIS PROBLEMS
The very first researchers applying deep learning for

steganalysis problems [13] pointed out that CNN exhibited
the same structure as that of the popular SRM framework
in the same field. The various steps in the SRM framework
are: A total of 39 filters are used for calculating the
noise residuals from each image. The filters are manually
designed in SRM by its researchers. Each filter act as a
predictor of the central pixel from the neighbouring pixel.
The residual is then obtained by subtracting the original
value of the pixel from the predicted value. In this way
residuals of all the pixels are calculated using 39 such filters,

the purpose of which is to capture the dependencies among
the neighbouring pixels in every possible way. Applying
filters is equivalent to the convolution of filters with the
image. This operation is very much similar to applying
filters in the convolution layer of CNN.

After calculating the residuals of the images, quanti-
zation and truncation operations are performed to bring
non-linearity into the SRM model. Finally, the feature
submodels are constructed from the 4th order co-occurrence
matrices calculated with the quantized and truncated resid-
uals obtained. This step can be a possible analogue with
the calculation of pointwise sigmoid nonlinearities in the
convolution layer of CNN followed by the average/max
pooling and subsampling layer.

The better performance of the SRM model as compared
to other features like Subtractive Pixel Adjacency Matrix
(SPAM) [6] is due to a diverse set of special structured
filters. Since the SRM filters are handcrafted so a possible
advantage of CNN can be that filters are learnable in CNN
with the help of training data. Thus, if a large and diverse
set of images are used to train CNN, the filters learned can
better capture the nuances of cover and stego images as
compared to the fixed filters.

3. STEGANALYSIS WITH CNN IN SPATIAL DO-
MAIN
The authors, Tan and Li [13] put forward a nine-layer

3-stage CNN network with 40 trainable filters to keep
resemblance with SRM filters at the first stage of CNN.
With the limitations of hardware they had, and extensive
experimentation with their CNN, they found that using
random initializations in CNN could make CNN stuck in
local optimum and even result in CNN diverging to poor
solutions. So, they multiplied their 40 kernels initialized
with random values at the first stage with edge detector
kernel K5 used in SRM with the thought that it would help
in better convergence of their network. This was thought
of due to the success of the filters of SRM in Universal
Steganalysis because of their well thought special structure
provided by the SRM researchers. The second consideration
was to incorporate Stacked Convolutional Auto Encoders
(SCAE) for unsupervised pretraining of CNN. With both
the above measures including in their CNN, they found
improved results as compared to their basic CNN. Also,
the performance surpassed SPAM performance but was still
far behind performance achieved by the SRM model. The
author attributed this to the lack of infrastructure and GPU
facilities they had and believed once they would overcome
this limitation, deep learning could provide better results
than SRM which they initially believed theoretically. Soon
after them, Qian et al. in [15] came up with a customized
CNN model known as Gaussian Neuron CNN (GNCNN).
They have made various changes to the basic CNN model
which are essential for steganalysis problems. Firstly, they
have added an image processing layer before the actual
CNN network. They also believed that applying CNN with
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random initialization of filters would not serve any purpose
for steganalysis problems as they were completely different
from other computer science problems for which CNN
proved their potential.

A. Adding Image Processing Layer before CNN for Ste-
ganalysis
The purpose of this layer is to initialize filters of the

initial layer of CNN with values used in SRM filters instead
of random values. Thus, in deep learning also, directly
providing cover and stego images make CNN convergence
difficult so noise residuals of both cover and stego images
are given as input to the initial convolution layer and
subsequent features are learnt on these noise residuals so
that clear difference between cover and stego images can be
found. Thus, each CNN is preceded by an image processing
layer which convolves input images with different filters to
calculate these residuals. Initial weights in these filters are
the same as those used in SRM filters. Some researchers
have kept the initial weight of these filters fixed in the image
processing layer which are not changed during training
of CNN. While many other researchers have used these
weights initially, though instead of keeping them fixed,
they are also tuned during CNN training. Fig. 1 below
summarizes the difference between traditional learning and
deep learning for steganalysis problems.

Figure 1. Difference between traditional and deep learning for
steganalysis

In the image processing layer used by Qian et al. [15],
the image is first convolved with a high pass filter which is
similar to one of the filters used in SRM. This is required
to strengthen the weak stego signals. Authors have kept this
filter fixed during CNN training and then subsequent CNN

layers help to aggregate stego signals from local to global.
The KV kernel used as a filter by the authors in the image
processing layer is provided by ( 1) as:

KKV =
1
12


−1 2 −2 2 −1
2 −6 8 −6 2
−2 8 −12 8 −2
2 −6 8 −6 2
−1 2 −2 2 −1

 (1)

After the generation of an initial noise residual in the
image processing layer, the various convolution operations
in consecutive convolutional layers capture dependencies
among a larger neighbourhood in a hierarchical fashion to
make accurate predictions. Each convolution layer is gener-
ally represented by three kinds of operations: Convolution,
non-linearity, and pooling in a sequential fashion which is
described below in ( 2):

Xl
j = pool

 f ∑
i

Xl−1
i ∗ Kl

i j + bl
j

 (2)

where Xl
j is the jth feature map in layer l, pool() denotes

pooling, f () represents non-linearity, Xl−1
i is the ith feature

map in layer l−1, kl
i j is trainable convolution filter or kernel

between jth output feature map and ith input feature map
and bl

j is a bias parameter for the jth output feature map.

The typical structure of CNN for steganalysis problems
having an input image size of 256*256 provided in [15] is
described in Fig. 2.

Figure 2. A typical architecture of CNN for steganalysis

Generally, the activation functions used in CNN are
sigmoid and different forms of it, but authors in [15] have
provided Gaussian Neuron (GN) activation function cus-
tomized for steganalysis problems. GN function is defined
with the help of ( 3):

f (x) = e
−x2

σ2 (3)

where σ defines the width of the Gaussian curve.

The final operation in the convolution layer is pooling
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which helps to move to a global area in subsequent convo-
lution layers. For steganalysis problems, authors have found
average pooling better than max pooling operation. Finally,
the authors have used 2 fully connected layers followed by a
softmax activation function for classification or classifying
the initial input images into two classes as cover and stego.
Authors have concluded that on the BOSSBase 1.01 dataset
[16], the performance of their architecture is much better
than the SPAM model but 2 -3 percent lower than the SRM
model, however, for more diverse ImageNet database [17],
results of the SRM model and GNCNN architecture are ap-
proximately same. They have demonstrated their results on
images using wavelet obtained weights (WOW) [7], highly
undetectable steganography (HUGO) [8], and universal
wavelet relative distortion in spatial domain (S-UNIWARD)
[18] stego algorithms. Thus, authors have concluded that
deep learning architecture can handle large diverse datasets
and since steganalysis is completely different from other AI
tasks, deep networks can be better than handcrafted features
if steganalysis properties are explored more to customize
deep networks.

Further Qian et al. [19] applied deep transfer learning.
First, they have learned the feature representation by train-
ing CNN on stego images with a higher payload. After this,
the same CNN networks are used to refine the features for
stego images with a lower payload. They have demonstrated
that feature learning can be improved with pretrained CNN
networks and proved their results on stego images converted
by WOW and S-UNIWARD stego algorithms.

Xu et al. [20] also observed that the architecture of CNN
used for various computer vision tasks might not be suitable
for steganalysis work. Thus, they also customized the CNN
architecture incorporating the knowledge of steganalysis.
They have used the same high pass filter as used in [15] to
compute the noise residuals of all images. Their architecture
involves five groups of convolution layers. In the first group
of convolution layers, various trainable filters are applied
on the noise residual of the input image in the convolution
layer to generate initial feature maps. After that, ABSolute
(ABS) layer is applied on the feature maps generated in the
previous step. The purpose of the ABS layer is to leverage
the sign symmetry present in the noise residual of the input
image. The output of the ABS layer is provided to the
Batch Normalization (BN) Layer, the aim of which is to
prevent CNN from falling into local minima by reducing the
magnitude spread of the input data to limit their magnitude
range to zero mean and unit variance. BN layer is followed
by TanH activation layer and then average pooling layer.
In the second group, the ABS layer is not present. In
the next three groups, the Rectified Linear Unit (ReLU)
activation layer is used in place of the TanH activation layer.
In the last group, the global average pooling operation is
performed to reduce the overall features to 128-D followed
by a fully connected (FC) layer and then a softmax layer to
classify the given input into two classes. On the BOSSBase
1.01 dataset, their CNN proved competitive with the SRM

method against two steganographic algorithms HILL [21]
and S-UNIWARD [18] . Their future work would be to
improve their network by incorporating selection channel
knowledge during embedding operations of various content-
adaptive steganographies. Due to this selection channel
knowledge models such as maxSRM and others have higher
accuracy than the SRM model as well as various CNN
discussed till this point.

Xu et al. further have used this CNN in their ensemble
method [22]. Instead of using a single CNN they have
trained many CNNs on different random subsamples of
training images and then develop new features by combin-
ing some intermediate representations of features of these
CNNs. They have found better results of the ensemble over
using single CNN on S-UNIWARD stego algorithm at a
payload of 0.4bpp using BOSSBase 1.01 dataset. Qian et
al. in [23] further experimented with CNN to produce their
results using five steganographic techniques HUGO, WOW,
S-UNIWARD, MiPOD [24], and HILL-CMD [25]with ran-
dom embedding keys on cover images. Their network archi-
tecture included an image processing layer, five convolution
layers, and 3 fully connected layers. They tried different
activation functions in convolution layers as ReLU, TanH,
Gaussian, and 1-Gaussian, and found better results with 1-
Gaussian. They used the dropout technique for the regular-
ization of fully connected layers [26]. ReLU was used for
the first two fully connected layers and softmax was used
after the final layer. Their first contribution was to provide
the feature visualization after each convolution layer to
prove that the generated features effectively captured the
stego noise after CNN training. Their next contribution was
to use four different kinds of kernels picked from SRM
work in the image processing layer to train many CNNs,
one CNN with one kind of filter kernel. They then combined
the output of these CNNs to give the final prediction. Thus,
their combination strategy worked better due to different
noise residuals captured in the image processing layer.
Their final contribution was to handle images of arbitrary
sizes by extracting fixed size patches from each image.
They also augmented their dataset to effectively train CNN.
They compared their results with SRM [9] + EC [14] and
maxSRMd2 [12] + EC [14] and found that their results
were close to the results of these methods but could not
outperform them. This they attributed to the use of only
four kinds of residual filters K 5*5, while about 30 basic
linear filters were used by SRM and maxSRMd2 to calculate
the noise residuals. Moreover, the incorporation of selection
channel information as in maxSRMd2 could also boost the
performance of their network. Authors, Ye et al. in [27]came
up again with customized CNN. Their major addition was
using the complete filter bank used in SRM in the initial
convolution layer to compute all the noise residuals which
greatly helped to suppress the image content and improved
Signal to Noise Ratio (SNR) (stego signal to image content).
Additionally, these initial filters were also trainable like
other parameters of the network. Next, they incorporated
Truncated Linear Unit (TLU) as an activation function in the
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first convolution layer which suited steganalysis problems.
In all other layers, a ReLU activation unit was used. They
also incorporated selection channel information in their
network and all these additions helped the network to learn
better, resulted in superior performance than SRM and
maxSRMd2.

Yedroudj et al. in [28] also used all the basic 30 filters
of SRM having size 5*5 in the initial convolution layer but
weights in these filters were kept fixed and they were not
tuned during the CNN training. The filters whose size were
3*3 in SRM were padded with zeros to make them 5*5.
Like XuNet [20], they used 5 convolution layers, made use
of the ABS layer and BN layer in each convolution layer.
Like YeNet [27], they used the TLU activation function in
the initial convolution layer. Unlike XuNet they used a scale
layer accompanied by a BN layer and they found improved
results with this inclusion. Also, to further increase the per-
formance of the network BOSSBase1.01 dataset was aug-
mented first with the BOWS2 dataset [29] and then both the
datasets were further virtually augmented with rotations and
flips. Against WOW and S-UNIWARD steganographies,
their network achieved lower detection error as compared to
SRM+EC, XuNet and YeNet. Further, Zhang et al. in [30]
incorporated many changes to the CNN network to boost
performance. Firstly, they used all the basic 30 filters of
SRM in the initial image processing layer but instead of
taking all filters of size 5*5 as in [28], only 5 such filters
were used by them and all other 25 filters were of size
3*3. All these 30 filters were also tuned during network
training. Thus, smaller size of 3*3 helped them to reduce the
parameters of the network as well as to better capture infor-
mation in a local neighbourhood. Secondly, they considered
channel information also, as used in maxSRM by using two
separable convolution blocks to capture spatial correlation
as well as channel correlation. Their network could also
handle arbitrary-sized images by performing Spatial Pyra-
mid Pooling (SPP). The dataset used was BOSSBase 1.01
which was augmented with BOWS2 and further both were
augmented with rotations and flips. Thus, with all the above
additions to their network named as ZhuNet, it was able to
outperform SRM, XuNet, YeNet as well as YedroudjNet
using WOW and S-UNIWARD spatial steganographies on
a reasonable variation of payloads. The structures of these
famous networks are provided in Fig. 3, Fig. 4 , Fig. 5,
Fig. 6, and can be compared directly. They are derived
from their original architectures in a way so that they can
be compared in terms of the structure of filters and outputs,
activation functions, pooling operations and fully connected
modules.

B. An Approach for Steganalysis of Arbitrary Size Images
Training of deep networks for steganalysis problems

requires a substantial amount of GPUs’ memory and thus
it is difficult to train the networks on large sized images.
Hence larger images are generally resized to smaller tiles
of size 256*256 or 512*512 which sometimes leads to
the loss of stego information. Tsang and Fridrich in [31]

resolved the problem of arbitrary image sizes in a unique
way other than the common way of extracting different tiles
of smaller size from large sized images and then results can
be fused or pooled with the help of pooled steganalysis as
done in [32][33]. The network architecture is made scalable
with respect to the input image sizes. YeNet is modified
to extract the features from the last convolution layer and
before the fully connected Inner Product (IP) layer. The 9th
convolution layer of the modified YeNet produces 16 feature
maps of size 7*7 instead of 3*3. Instead of directly feeding
these feature maps to the IP layer, four different statistical
moments are computed from these feature maps and are
considered as the output of the last convolution layer. These
statistical moments like sample variance, sample average,
minimum and maximum contain most of the information
about images like their resolution, size etc. and thus these
are fed to the fully connected IP layer. It is believed and
further proved by the authors that the convolution part needs
not be retrained for bigger size images and only the IP part
of the network needs to be retrained for large size images.

Thus, the first part of the network named as Universal
feature extractor is trained along with IP layer on smaller
sized images obtained by cropping BOSSBase 1.01 images
of size 1024*1024. Then for larger image sizes only IP layer
is retrained. The authors have named this network as TRIP
(fixed Tile detector and Retrained IP layer). According to
square root law [34], payload/change rate is adjusted with
respect to image sizes for constant statistical detectability.
Thus, authors have created another architecture named as
RTRIP (Retrained Tile detector and Retrained IP layer)
in which first part of the network is also retrained for
smaller payloads embedded in large sized images along
with retraining of the IP layer on moments extracted from
large sized images. Results are computed on WOW and
non-adaptive LSBM [2] stego techniques across a wide
variety of payloads and change rates. Results are almost
comparable for both TRIP and RTRIP detectors and authors
have finally provided a size independent detector (SID) for
steganalysis of arbitrary size images. Thus, first part of the
network can be trained on smaller images without need of
retraining on larger size images whereas only IP layers need
to be retrained.

4. STEGANALYSIS IN TRANSFORM DOMAIN
Most of the researches discussed so far involved ste-

ganalysis in the spatial domain, but simultaneously re-
searchers focused on applying deep learning in the trans-
form or Joint Photographic Expert Group (JPEG) domain.
The first representative work in this domain without JPEG-
phase awareness was put forward by Zeng et al. [35] and
with JPEG-phase awareness by Chen et al. [36]. Inspired
by XuNet, Zeng et al. in [35] incorporated deep learning
framework for steganalysis in frequency domain. With ex-
tensive experimentation on ImageNet database, they proved
superior performance of their architecture than XuNet but
comparison was not direct as both were using different
domains. Their architecture consists of two stages. First
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Figure 3. XuNet architecture [20]

Figure 4. YeNet architecture [27]
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Figure 5. YedroudjNet architecture [28]

Figure 6. ZhuNet architecture [30]
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stage is similar to DCTR [37] but it contains fixed 25, 5*5
DCT (Discrete Cosine Transform) kernels followed by 3
different quantization and truncation whereas 64 DCT ker-
nels are used in DCTR. This stage is fixed as the parameters
are not learnable. The output of this stage is passed to 3
identical learnable convolution networks which are finally
merged with 4 fully connected layers. The inputs to the
first stage are decompressed JPEG images of size 256*256.
They found that inclusion of quantization and truncation
step enhanced the performance of the architecture. The
researchers performed modifications in XuNet [20] to make
it successful for JPEG steganalysis. On the other hand,
Chen et al. in [36] split the feature maps into 64 parallel
channels to immerse knowledge of the jpeg phase into
the architecture. Their network design considered JPEG
noise residuals initially provided by Holub and Fridrich in
[37][38] and later refined by using Gabor filters [39][40]
and selection channel knowledge [41]. Xu in [42] used a
deep residual network as explained in [43][44] for steganal-
ysis of JPEG images distorted with the J-UNIWARD [18]
steganographic technique. However, the authors also used
fixed DCT kernels in the preprocessing step of the initial
convolution layer.

Thus, it can be easily observed from the above survey
that to make steganalysis successful with deep learning
techniques, a lot of heuristics were used which were taken
from SRM or J+SRM construction such as the number
of filters and their weights in the image processing layer,
mimicking the quantization and truncation step of SRM by
incorporating activation functions such as TLU, etc. and in-
cluding JPEG phase awareness in the existing architecture.

5. MAKING CNN DEEPER
Bouromand et al. [45] first came up with a deep residual

architecture to overcome these limitations. Instead of using
handcrafted filters, their network architecture included a
broad front part to learn noise residuals automatically by
training the network. Pooling was disabled in this front
part so that stego signals would not get suppressed. With
extensive experimentation and bringing various changes to
their network, authors proved the superior performance of
their work in both spatial and JPEG domain with detection
accuracy much improved in JPEG steganalysis.

They used images of size 256 * 256 from BOSSBase
1.01 and BOWS2 datasets for performing their experiments
and comparing their results. With a wide variety of content-
adaptive steganographies in spatial as well as JPEG domain
on diverse payloads, their architecture performed better than
maxSRMd2, YeNet in the spatial domain, and various state
of the arts in JPEG domain [36][41][42]. However, they
have found that without selection channel knowledge the
detection error of their network is slightly higher on WOW
steganography as compared to YeNet which makes use of
selection channel knowledge. Thus, their network could
perform better after using selection channel information
but since they did not want to use the heuristics, their

future work would be to bring required modifications to
the network. Thus, they have proved that with a minimum
of heuristics they have used in their network for steganalysis
problems, their network generalization ability is much better
than other networks so far developed in this field and thus
can be used to solve diverse problems instead of only
steganalysis.

Li et al. [46] named their network as ReST-Net, have
proposed that increasing the width of CNN as done in the
inception module by Szegedy et al. [47] boosts the network
performance. Authors in [47] did it by using different kernel
sizes but in ReST-Net, authors have incorporated Diverse
Activation Modules (DAM) in which different activation
functions such as ReLU, Sigmoid, and TanH are used in dif-
ferent convolution groups based on which they have named
their network as ReST-Net. Moreover, they have used paral-
lel subnets, the input of which are residual maps generated
from different classes of filters like Linear SRM filters,
Non-linear SRM filters, and Gabor filters. Each subnet is
individually trained with a classification module to optimize
the parameters of the individual subnets on the BOSSBase
1.01 dataset of cover and stego images. Once the parameters
are optimized, their individual classification modules are
discarded and the final features of these pretrained subnets
are concatenated and passed to a new classification module
which will be trained for these features. In this way, authors
have tried to imbibe diversity both concerning filters as well
as activation functions and have proved that performance
is drastically improved over XuNet2 [42] and TLUCNN
version of YeNet [27] with three steganographic methods
as S-UNIWARD, HILL, and HILL-CMD over a variety of
payloads. They have further concluded that their network
performance could be enhanced by considering the structure
of ResNet [43] and Densely Connected CNNs [48].

Pathak et al. [49] have used a pretrained CNN AlexNet
[50] to extract features and then used Levi Flight Based
Grey Wolf Optimization (LFBGWO) to reduce the features.
They have compared their results with other metaheuristic
techniques [51][52][53] and opened the way for using CNN
for feature extraction from images which can then be further
reduced and classified with a variety of methods.

Gowda and Yuan [54] have also used the same LFGWO
for feature selection along with the colorspace approach to
determine if an image is hiding information or not. By using
ColorNet [55], each colorspace generates its feature maps,
and then weighted averaging is applied to achieve a final
feature map. In ColorNet authors have found that images
in different color spaces exhibit some features which are
unique to that colorspace. Thus, if an image is changed
then it can be detected easily by combining features from
different colorspaces. After final features from different
color spaces, LFGWO (meta-heuristic approach) is applied
for reducing the features. The reduced features are then
used to classify an image into cover or stego. The authors
have named their network as StegColNet and have proved
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the better performance of their network than popular color
steganalysis methods as WISERNet [56], DeepCNN or
XuNet2 [42], DHR [27].

Recently authors have also started making use of Dense
CNN in the field of steganalysis. Yang et al. [57] have used
densely connected CNN inspired by DenseNet [48]. Also,
they have used the selection channel information in training
the network as used in SCA-GFR approach [41]. The
authors have named their network as CNN-SCA-GFR and
have proposed an ensemble approach making use of dense
connections combining with the SCA-GFR approach. An
ensemble is created by extracting features from nine CNNs
and SCA-GFR. An ensemble classifier is then applied on
these different feature sets and output probabilities are
then averaged to differentiate between cover and stego.
Authors are able to outperform SCA-GFR approach and
XuNet2 methods of JPEG steganalysis for UERD [58] and
J-UNIWARD steganographies at different payloads. Thus,
Residual and Dense CNNs are two promising architectures
that are currently being explored by researchers in the
field of both spatial and transform domain steganalysis. In
Residual CNN, concept of residual network is used to solve
the vanishing/exploding gradient problem. A sort of skip
connections is used in this network. Dense CNN encourages
the use of feature reuse by connecting each layer to all the
subsequent layers in a feed-forward manner. The benefit is
manifold as it ameliorates the vanishing gradient problem
along with substantial reduction of network parameters by
reusing of features.

6. FROM ASSUMPTIONS TO REALITY
In the above forementioned review authors have incor-

porated different changes in CNN networks to improve
the results but Cogranne et al. [59] in their ALASKA
challenge have explained that before ALASKA challenge
all the steganalysis work was not performed using realistic
assumptions faced by forensic experts in their day-to-
day situations. Authors have observed that most of the
works published in journals like IH-MMSec, IEEE-TIFS
and IEEE-SPL from 2016 to 2019, stego contents are
not detected in environments which are nearer to forensic
context. Authors have found many assumptions in a major
amount of published work which are not true for images
to be processed by forensic analyst. Such assumptions are
more focus on spatial domain steganalysis than JPEG ste-
ganalysis, applying stego algorithms with fixed embedding
rate, average detection error PE is only used as performance
metric under the assumption of same number of cover
and stego images, BOSSBase 1.01 dataset with default
settings is mainly used for carrying out experiments, use
of grayscale images instead of colour images and several
others.

Thus, ALASKA challenge was created to make ste-
ganalysis environment closer to reality. This work renames
ALASKA as ALASKA-I in the rest of the paper. The
competition webpage of ALASKA-I provided a training

set of 50000 RAW format images captured by 21 different
cameras. To make this scenario realistic, all possible sensor
sizes were used with these cameras. Pictures from very
low ISO to very high ISO were present in this dataset.
The processing pipeline used for producing images was
embellished with diversity incorporated at each step of the
pipeline a) Demosaicking b) Resizing c) Smart Crop d)
Denoising e) JPEG compression, etc. Diversity was also
incorporated in using stego schemes, payloads, etc. The
performance metric used was MD5 (Missed Detection rate
for a 5% false positive rate) to make this competition more
realistic. The authors have presented the results of top
5 winners and also displayed the results with respect to
different demosaicking algorithms used, different resizing
applied to images, different jpeg quality factors used etc.
Apart from the metric MD5, the author also reported the
winners’ other performance metrics as FP50 (False Positive
rate for 50% missed detections) and PE . The results from
the competitors were taken on a testing set in the form of
most likely stego image to the least likely stego image so
that authors or creators of this challenge can compute all
the performance metrics of the competitors.

To break ALASKA-I, Yousfi et al. [60] have made use
of SRNet deep learning framework created for the field
of steganalysis. However instead of single SRNet multiple
SRNets are created. The statistical moments are produced as
final features by SRNets which are fed to the multi-layered
multiclass perceptrons. The approach is same as used by
Tsang and Fridrich [31] for accepting images of arbitrary
size.

The purpose of explaining ALASKA-I challenge in this
review is to brief about how the winners of this challenge
have modified deep learning architecture for this realistic
dataset. Thus, for any arbitrary sized input image the final
features are 4 statistical moments of 512 feature maps
which are then fed for classification. 5 SRNets are created
for different combinations of Y, Cr and Cb channels of
the coloured JPEG images. Different such detectors are
created for JPEG images with different Quality Factors
(QFs) having range from 60-98. For QFs 99 and 100,
different approach named as reverse JPEG compatibility
attack is used. Thus, to handle a diverse testing set of 5000
images, authors have created diverse architectures. Four
stego algorithms J-UNIWARD, UED-JC [61], EBS [62] and
nsF5 [63] are used to produce stego images. Authors have
produced most of the results graphically so this work has
also derived the final results from the graphs on two test
sets taken by authors with respect to 3 metrics PE , MD5
and FP50.

Being diverse in nature researchers after ALASKA-
I challenge started including the ALASKA-I dataset to
publish the performance of their networks for steganalysis
problems. Authors, Tan et al. [64] have adopted channel-
pruning scheme to prove that the performance of different
existing networks like SRNet and XuNet2 can be kept
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comparable even after pruning the network and reducing
a lot of learnable parameters. Thus, inspired by different
pruning schemes already introduced in deep learning area
such as ThiNet [65], L1-Norm [66], and others, authors
have created hybrid pruning based on 2 pruning schemes.
With a tremendous reduction of computational cost as well
as model size, authors are able to achieve comparable
performance on a wide variety of datasets used in the field
of the steganalysis till this research such as BOSSBase
1.01, BOWS2, ImageNet and ALASKA-I. The reduced
architectures are named as CALPA-SRNet after pruning SR-
Net architecture and CALPA-XuNet2 after pruning XuNet2
architecture.

7. USE OF PRETRAINED NETWORKS FOR STE-
GANALYSIS PROBLEMS
Soon after ALASKA-I challenge, Cogranne et al.

[67] published ALASKA-II challenge and its ALASKA-
II dataset available at https://alaska.utt.fr. The dataset is
comprised of 3*25000 cover images which are compressed
with 75, 90 and 95 quality factors, and the same number
of stego images produced through J-UNIWARD [18], J-
MiPOD [68] and UERD [58] stego methods respectively.
Most of the top performers of this challenge have adopted
a completely different strategy rather than training the CNN
from scratch as done in SRNet. Yousfi et al. [69] have
used already trained deep networks on ImageNet database
which is very popular for computer vision tasks and also has
gained popularity for steganalysis in recent years. Authors
have proved that these pretrained networks on millions
of images can be easily adapted to JPEG steganalysis
in place of complete training of well performing CNNs
such as XuNet2, SRNet etc. It helps to reduce the com-
putational complexity as well as filters of the pretrained
networks such as ResNet [43], TRes-Net [70], SK-ResNeXt
[71], DenseNet [48], EfficientNet [72] and MixNet [73]
are highly efficient in recognising noise patterns, textures,
diversity of shapes and various other attributes in which
stego signals are modulated. Thus, authors have given a
new direction to the task of steganalysis. Instead of training
the CNNs from scratch, they took advantage of pretrained
networks which were trained on millions of images for other
classification tasks.

Butora et al. [74] have further taken this concept of
pretraining used for steganalysis in a systematic way. Var-
ious researchers have observed that random initialization
of network weights for steganalysis tasks make the CNN
networks difficult to converge. Butora et al. have visualized
pretraining as a different way to initialize the weights of
these networks. Pretraining helps in the extraction of certain
features from the natural images, e.g., edges, periodic
patterns, textures etc. This is very helpful for steganalysis
problems as stego signal is actually a noise moderated
by the content of the image. Also, without pretraining,
networks for steganalysis converges only when same cover
and stego images are put in the same minibatch, which
is known as Pair Constraint (PC). But this PC hinders in

the network generalization ability and impairs the network
performance in the last. Boroumand et al. [45] have also
proved that SRNet without PC constraint helps boosting
the performance of the network. In [74], authors have
used SRNets which are pretrained on 3 different tasks of
classification named as IN, JIN and QIN. ImageNet dataset
is used for pretraining whereas pretrained networks are
verified on ALASKA-II dataset and combined BOSSBase
1.01 and BOWS2 dataset. This can be also seen as transfer
learning where the network is trained on one task while it
is refined for the target task. Transfer learning is already
proved successful in many areas as reviewed by Zhuang
et al. [75]. Authors have also transferred the learning from
colour images to grayscale images. In one of the results
provided by the authors, results are superior for pretraining
on JIN classification task as compared to IN and QIN
and without pretraining at all. Yousfi et al. [76] have
also used the concept of transfer learning by improving
EfficientNet pretrained on ImageNet classification task for
JPEG steganalysis. They have proved that certain modifi-
cations in EfficientNet architecture significantly improves
steganalysis in JPEG domain. They have limited themselves
to EfficientNet family because of its use by top competitors
of the ALASKA-II challenge. Also, they compared their
results with the winner of ALASKA-II, Xu [77], who has
used the SE-ResNet architecture provided by Hu et al. [78].
The various performance metrics used for comparison are
wAUC (weighted area under ROC curve), FLOPs (number
of floating-point operations), number of parameters, and
memory consumption.

8. A SIAMESE SOLUTION TO STEGANALYZE IM-
AGES OF ARBITRARY SIZES
Few researchers have focused on steganalyzing images

of different sizes till now [31], [60]. You et al. [79] provided
an end-to-end solution for handling arbitrary size images
without the need of parameters retraining. A Siamese CNN
architecture is used for providing a robust solution. Siamese
networks are actually used to find similarities between two
inputs. In steganalysis, this helps in finding the relationship
between different parts of an image which in turn can
be used to differentiate cover images from stego images.
A Siamese network consists of two parallel subnets with
shared weights and parameters. Authors have named their
network as SiaStegNet for steganalyzing images of arbitrary
sizes. Each subnet consists of preprocessing and feature
extraction phase. The output of each subnet is a 128-
dimensional vector results from a global pooling operation.

Thus, size of output is independent of input image
size. Moreover, inspired by SID [31], the outputs of both
subnets are fused by calculating elementwise four statistical
moments, max, min, variance and mean. Two supervisory
signals are used to update the parameters of the network,
one is LS ML to find the similarities between different parts
of an image, other is LCLS , which works on statistical
moments to classify the image as stego or cover. Contrastive
loss is used in LS ML whereas cross-entropy loss is used in
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LCLS , and to update the network both are combined using
a hyperparameter λ(LCLS + λLS ML). Authors have proved
that unlike SID, their networks need not be retrained in
the final layers for arbitrary size images. When comparing
with SRNet on fixed size images, their network requires
few parameters to be learned as compared to SRNet, while
accuracy is comparable with SRNet. For arbitrary size
images, their network outperforms SID for a wide variety of
images. Similarly, they have proved the superiority of their
network on variations of SiaStegNet architectures. They
have used different sizes of images from BOSSBase 1.01
and ALASKA-II dataset and a variety of steganography
algorithms for proving the robustness of their network.

Table I provides evolution of deep learning (DL)
steganalysis in Spatial domain whereas Table II provides
the results obtained as PE (minimal testing error under equal
priors) by applying various deep learning methods as well as
other state-of-the-art methods in spatial domain. Similarly,
Table III provides evolution of DL steganalysis in JPEG
domain whereas Table IV provides the results obtained as
PE (minimal testing error under equal priors) by applying
various deep learning methods as well as other state-of-the-
art methods in JPEG domain.

TABLE I. Evolution of DL Steganalysis Methods in Spatial Domain

Authors Methodology Dataset Domain/Steganographic-
algorithm

1. Tan and Li
[13]

CNN-9 layers divide into 3 stages, SCAE for
unsupervised pre-training BOSSBase 1.01 Spatial/HUGO

2. Qian et al.
[15] Gaussian Neuron CNN + Image preprocessing layer BOSSBase 1.01 and Ima-

geNet
Spatial/HUGO, WOW and
S-UNIWARD

3. Qian et al.
[19]

Deep transfer GNCNN from higher payload to low
payload BOSSBase 1.01 Spatial/WOW and S-

UNIWARD

4. Xu et al.
[20] ABS+TanH+BN in convolution layer BOSSBase1.01 Spatial/S-UNIWARD and

HILL

5. Xu et al.
[22] Ensemble of CNNs BOSSBase 1.01 Spatial/S-UNIWARD

6. Qian et al.
[23]

5 filters in image processing layer and then use model
combination to boost performance. Also use cropping
strategy to handle arbitrary size images

BOSSBase 1.01
Spatial/ HUGO, WOW, S-
UNIWARD, MiPOD and
HILL-CMD

7. Ye et al
[27]

High pass filters with hybrid activation function
consist of Truncated Linear Unit + ReLU

BOSSBase 1.01, BOWS2
with Augmentation (AUG)

Spatial/ WOW, S-
UNIWARD and HILL

8. Yedroudj
et al. [28]

CNN with preprocessing filter bank, Augmented
database to improve training of CNN

BOSSBase 1.01, BOWS2
and Virtual Augmented
(VA)

Spatial/WOW and S-
UNIWARD

9. Zhang et
al. [30] CNN with Spatial Pyramid Pooling BOSSBase1.01, BOWS2

and AUG
Spatial/WOW and S-
UNIWARD

10.
Boroumand
et al. [45]

Residual CNN named as SRNet BOSSBase1.01, BOWS2
and AUG

Spatial/WOW, HILL and
S-UNIWARD, JPEG/J-
UNIWARD, UED-JC

11. Pathak et
al. [49]

AlexNet with Levy Flight based Grey Wolf
Optimization BOSSBase1.01 Spatial/Not-mentioned

12. Gowda
and Yuan
[54]

Image Steganalysis with colorspace ensemble
approach and Levy Flight based Grey Wolf
optimization

BOSSBase 1.01 and
BOWS2

Spatial/HILL and S-
UNIWARD

13. You et al.
[79]

Siamese architecture for steganalysis of arbitrary size
images

BOSSBase 1.01 and
ALASKA-II dataset

Spatial/WOW, S-
UNIWARD and HILL
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TABLE II. Results of DL Steganalysis Methods in Spatial Domain

Authors Results(% of error PE )

1. Tan and Li [13]
Payload-0.4 bpp
SRM: -14, SPAM: - 42, CNN: - 31

2. Qian et al. [15]

Payload-0.4 bpp
Dataset-BOSSBase 1.01
SRM: - HUGO (25.2), WOW (25.7), S-UNIWARD (26.3)
SPAM: - HUGO (39.1), WOW (38.2), S-UNIWARD (35.1)
CNN: -HUGO (28.29), WOW (29.3), S-UNIWARD (30.29)
Dataset-ImageNet
SRM: - HUGO (32.4), WOW (34.7), S-UNIWARD (34.4))
CNN: - HUGO (33.6), WOW (34.1), S-UNIWARD (34.7)

3. Qian et al. [19]

Pretrain-0.4bpp
For WOW
SRM: - 24.92(0.3 bpp), 31.75 (0.2bpp) and 39.77 (0.1bpp)
CNN: - 24.87(0.3 bpp), 30.78 (0.2bpp) and 38.43 (0.1bpp)
For S-UNIWARD
SRM: - 24.95(0.3 bpp), 32.10 (0.2bpp) and 40.25 (0.1bpp)
CNN: - 28.42 (0.3 bpp), 34.38 (0.2bpp) and 42.93 (0.1bpp)

4. Xu et al. [20]

Payload-0.1 bpp
Dataset-BOSSBase 1.01
SRM: - HILL (43.56), S-UNIWARD (40.75)
CNN: - HILL (41.56), S-UNIWARD (42.67)
Payload-0.4 bpp
Dataset-BOSSBase 1.01
SRM: - HILL (24.53), S-UNIWARD (20.47)
CNN: - HILL (20.76), S-UNIWARD (19.76)

5. Xu et al. [22]

Perform better than single CNN and SRM at payload-0.4 bpp.
CNNs with network size-256
AVE (Model averaging): - 18.97
CNNs with network size-128
AVE (Model averaging): - 20.39
SRM: - 20.47

6. Qian et al. [23]

Still could not compete some advanced steganalysis methods like XuNet but provide feature
visualization which has not been provided in steganalysis previously.
Some of the results reported are:
At 0.4bpp
CNN model Combination: - WOW (20.05), S-UNIWARD (21.72), MiPOD (26.07),
HILL-CMD (31.7)
SRM: - WOW (20.90), S-UNIWARD (20.92), MiPOD (24.32), HILL-CMD (29.83)
K5*5-SRM: - WOW (26.72), S-UNIWARD (26.25), MiPOD (28.53), HILL-CMD (35.13)
XuNet: - WOW (22.08), S-UNIWARD (20.70), MiPOD (23.72), HILL-CMD (30.42)

7. Ye et al. [27]

Results are better than SRM+EC with wide variety of stego algorithms and payloads.
Results here are presented only for 0.1bpp.
BOSSBase 1.01 and BOWS2(Train and Test)
SRM: - WOW (31.63), S-UNIWARD (38.06), HILL (38.94)
Proposed CNN: - WOW (24.42), S-UNIWARD (32.20), HILL (33.80)

8. Yedroudj et al. [28]

Significantly better than XuNet, YeNet and SRM+EC.
For BOSSBase image size 256*256
Payload-0.2bpp
Proposed YedroudjNet: - WOW (27.8), S-UNIWARD (36.7)
SRM: - WOW (36.5), S-UNIWARD (36.6)
XuNet: - WOW (32.4), S-UNIWARD (39.1)
YeNet: - WOW (33.1), S-UNIWARD (40.0)
For augmented dataset (BOSSBase 1.01, BOWS2 and VA)
YedroudjNet: 20.8 YeNet: 22.2
XuNet: - 30.5
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9. Zhang et al. [30]

Better than XuNet, YeNet, YedroudjNet and SRM+EC.
For BOSSBase 1.01 dataset at payload 0.2bpp
Proposed ZhuNet: - WOW (23.3), S-UNIWARD (28.3)
SRM: - WOW (36.5), S-UNIWARD (36.6)
XuNet: - WOW (32.4), S-UNIWARD (39.1)
YeNet: - WOW (33.1), S-UNIWARD (40.0)
YedroudjNet: - WOW (27.8), S-UNIWARD (36.7)

For Augmented dataset
ZhuNet: - WOW (13.1), S-UNIWARD (17.1)
YeNet: - WOW (22.2), S-UNIWARD (33.5)
YedroudjNet: - WOW (20.8), S-UNIWARD (31.1)

10. Boroumand et al. [45]

Results are superior both for spatial and JPEG domain and less need for steganalysis heuristics.
Spatial Domain, BOSSBase 1.01 + BOWS2 dataset
payload 0.1bpp
Proposed SRNet: - WOW (.2877), HILL (.3134), S-UNIWARD (.3104)
SCA-YeNet: - WOW (.2442), HILL (.3380), S-UNIWARD (.3220)
maxSRM with Random Conditioning: - WOW (.2998), HILL (.3768), S-UNIWARD (.3817)

payload 0.2bpp
Proposed SRNet: - WOW (.1676), HILL (.2353), S-UNIWARD (.2090)
SCA-YeNet: - WOW (.1691), HILL (.2538), S-UNIWARD (.2224)
maxSRM with Random Conditioning: - WOW (.2144), HILL (.3168), S-UNIWARD (.2904)

payload 0.4bpp
Proposed SRNet: - WOW (.0893), HILL (.1414), S-UNIWARD (.1023)
SCA-YeNet: - WOW (.0959), HILL (.1708), S-UNIWARD (.1281)
maxSRM with Random Conditioning: - WOW (.1350), HILL (.2338), S-UNIWARD (.1783)

JPEG Domain, BOSSBase + BOWS2 dataset, QF-75
Payload 0.1bpp
Proposed SRNet: - J-UNIWARD (.3201), UED-JC (.1311)
XuNet2: - J-UNIWARD (.4310), UED-JC (.2144)
SCA-GFR: - J-UNIWARD (.4197), UED-JC (.3176)

Payload 0.2bpp
Proposed SRNet: - J-UNIWARD (.1889), UED-JC (.0568)
XuNet2: - J-UNIWARD (.2849), UED-JC (.0972)
SCA-GFR: - J-UNIWARD (.3257), UED-JC (.2154)
Payload 0.4bpp
Proposed SRNet: - J-UNIWARD (.0670), UED-JC (.0188)
XuNet2: - J-UNIWARD (.1207), UED-JC (.0287)
SCA-GFR: - J-UNIWARD (.1728), UED-JC (.0871)

11. Pathak et al. [49] Results are better than other metaheuristic techniques

12. Gowda and Yuan [54] Results are better than other steganalysis approaches used for colored images
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13. You et al. [79]

SiaStegNet on image size 256*256 at 0.4bpp
Learnable parameters: - 0.7Million
Errors on WOW: - 7.81, S-UNIWARD: - 8.11 and HILL: - 14.03
SRNet on image size 256*256 at 0.4bpp
Learnable parameters: - 4.7Million
Errors on WOW: - 7.49, S-UNIWARD: - 7.78 and HILL: - 14.43

SiaStegNet for arbitrary sized images with different stego algorithms
Train Size – 512 * 512
Test Sizes and Error:
512 * 512: - 24.64
512 * 640: - 24.77
640 * 512: - 25.23
640 * 640: - 24.66
SID for arbitrary sized images with different stego algorithms
Train Size – 512 * 512
Test Sizes and Error:
512 * 512: - 35.14
512 * 640: - 36.99
640 * 512: - 36.74
640 * 640: - 35.97

TABLE III. Evolution of DL Steganalysis Methods in Transform Domain

Authors Methodology Dataset Domain/Steganographic-
algorithm

1. Zeng et al. [35]
1st fixed stage consisted of DCTR kernels
and truncation and quantization.
2nd learnable stage consists of CNNs.

ImageNet JPEG/ UED, UERD, J-
UNIWARD

2. Chen et al. [36] Two networks PNet and VNet are pro-
posed.

BOSSBase 1.01 and
BOWS2

JPEG/J-UNIWARD, UED-
JC

3. Xu [42] Deep residual networks and fixed DCT
kernels as pre-processing step.

BOSSBase 1.01, ImageNet JPEG/J-UNIWARD

4. Yang et al. [57] 32 layers CNN based on DenseNet. BOSSBase 1.01, BOWS2
and ImageNet

JPEG/J-UNIWARD,
UERD

5. Yousfi et al. [60] Multiple SRNets are created with multi-
layered multiclass perceptrons.

ALASKA-I dataset JPEG/J-UNIWARD, UED-
JC, EBS and nsF5

6. Tan et al. [64] Channel Pruning of SRNet and XuNet2. ALASKA-I dataset
Spatial- SUNIWARD, HILL
JPEG- JUNIWARD, UERD

7. Yousfi et al. [69] Use of pretrained networks which are
finetuned for JPEG steganalysis.

ALASKA-II dataset JPEG/ J-UNIWARD, J-
MiPOD, UERD

8. Butora et al. [74] Three pretrained networks IN, QIN and
JIN for steganalysis.

ALASKA-II, combination
of BOSSBase 1.01 and
BOWS2

Spatial/ MiPOD, HILL
JPEG/ J-UNIWARD

9. Yousfi et al. [76] Modified EfficientNet architecture by dis-
abling pooling function in initial layers.

ALASKA-II dataset JPEG/ J-UNIWARD, J-
MiPOD, UERD

TABLE IV. Results of DL Steganalysis Methods in Transform Domain

Authors Results(% of error PE )

Zeng et al.
[35]

Payload-0.4 bpnzAC
3 different truncation and quantization values are: (4,1), (4,2) and (4,4)

Testing error for 25 DCT kernels architecture: - 26.5
For 256 GFR kernels: - 26.4
Comparisons with state of the arts GFR, SCA-GFR and XuNet2 have plotted graphically in the paper.
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Chen et al.
[36]

Payload-0.1 bpnzAC
BOSSBase 1.01 (Train, Test)
BOWS2 (Test)
CNN-PNet: - UED-JC (17.7), J-UNIWARD (35.75)
CNN-VNet: - UED-JC (18.97), J-UNIWARD (36.15)
SCA-GFR: - UED-JC (22.54), J-UNIWARD (35.54)

Payload-0.3 bpnzAC
BOSSBase1.01 (Train, Test)
BOWS2 (Test)
CNN-PNet: - UED-JC (3.90), J-UNIWARD (12.28)
CNN-VNet: - UED-JC (4.07), J-UNIWARD (13.32)
SCA-GFR: - UED-JC (6.35), J-UNIWARD (13.44)

Xu [42]

For BOSSBase 1.01
Payload-0.1 bpnzAC QF-75
SCA-GFR: -35.98
CNN: -32.83

Payload-0.2 bpnzAC QF-75
SCA-GFR: -23.16
CNN: -19.47

Payload-0.3 bpnzAC QF-75
SCA-GFR: -14.09
CNN: -11.24

Payload-0.4 bpnzAC QF-75
SCA-GFR: -8.07
CNN: -6.41

For ImageNet
Payload-0.4 bpnzAC QF-75
CNN: -16.8

Yang et al.
[57]

Results are shown here on only BOSSBase 1.01
dataset on some of the payloads only.
Stego method: - J-UNIWARD
Payload: - 0.1 bpnzAC QF-75
Proposed CNN: - 0.3730
Proposed CNN-SCA-GFR: - 0.3596
SCA-GFR: - 0.4385
XuNet2: - 0.4163

Payload: - 0.4bpnzAC QF-75
Proposed CNN: - 0.1084
Proposed CNN-SCA-GFR: - 0.0975
SCA-GFR: - 0.1781
XuNet2: - 0.1416

Stego method-UERD
Payload: - 0.1 bpnzAC QF-75
Proposed CNN: - 0.2659
Proposed CNN-SCA-GFR: - 0.2572
SCA-GFR: - 0.3600
XuNet2: - 0.3166

Payload: - 0.4bpnzAC QF-75
Proposed CNN: - 0.0573
Proposed CNN-SCA-GFR: - 0.0503
SCA-GFR: - 0.1242
XuNet2: - 0.0750

Yousfi et al.
[60]

On test set mixTST
MD5: - 18.55
PE : - 11.50
FP50: - 0.09

On test set ALASKArank
MD5: - 25.2
PE : - 14.63
FP50: - 0.77

Tan et al. [64]

Stego method – JUNIWARD
Payload-0.4 bpnzAC QF-75

Original SRNet
Parameters: - 477.06 * 104
FLOPs: - 5.95 * 109
Error: - 7.02

CALPA-SRNet with tolerable accuracy loss 2%
Parameters: - 8.43 * 104(1.77% of original parameters)
FLOPs: - 2.29 * 109 (38.5% of original FLOPs)
Error: - 6.88

Yousfi et al.
[69]

Results are quite elaborative due to several pretrained
networks used.

Butora et al.
[74]

Stego method – JUNIWARD
Payload-0.2 bpnzAC, QF-75
SRNet without pretraining-0.2076
Pretrained SRNet (IN): - 0.2059
Pretrained SRNet (QIN): - 0.2260
Pretrained SRNet (JIN): - 0.1754

Stego method – JUNIWARD
Payload-0.2 bpnzAC, QF-95
SRNet without pretraining: - 0.3433
Pretrained SRNet (IN): - 0.3679
Pretrained SRNet (QIN): - 0.3701
Pretrained SRNet (JIN): - 0.3294

Yousfi et al.
[76]

Results are reported in terms of different performance
metrics as wAUC, FLOPs etc.

So direct comparison in terms of error is not provided.
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9. OPEN RESEARCH CHALLENGES AND EMERG-
ING RESEARCH DIRECTION IN THE FIELD OF
STEGANALYSIS
The open research challenges in the field of steganal-

ysis are many: Steganalysts have to shift from various
assumptions to reality while doing steganalysis. The re-
alistic scenario faced by forensic experts for steganalysis
is much different than the scenario used by different re-
searchers. Different researchers have worked under various
assumptions for steganalysis. Thus, the results they have
provided are based on various assumptions such as fixed
payload while converting cover to stego, more use of spatial
domain steganalysis than transform domain steganalysis,
preservation of cover-stego pairs and many others. With
ALASKA challenge, researchers have started using ste-
ganalysis in a more realistic way. However, they have found
that rather than creating CNN from scratch, pretrained
networks work as a boon for steganalysis. Thus, research
has shifted towards using various pretrained networks such
as ResNet, EfficientNet and others. Researchers have also
used pretrained networks such as ALEXNET for feature ex-
traction in steganalysis as in [49][80]. Along with pretrained
networks, recently researchers are also working on very
deep networks which uses fractal net [81][82] and multi
scale residual networks for steganalysis [83].

Also, performance metric such as PE which is an
average detection error is alone not sufficient to report the
results in the field of steganalysis. More realistic perfor-
mance metrics have come into action such as MD5, FP50,
wAUC, FLOPS and others. Thus, in the field of steganalysis
research has shifted from traditional approach to a more
realistic approach with improved performance metrics.

10. CONCLUSION
As applying filters for feature extraction and classifi-

cation in steganalysis is adaptable to CNN structure so
researchers are moving towards exploring residual connec-
tions in CNN as well as densely connected CNNs. Different
meta-heuristic techniques are also tried by researchers after
extracting the features from CNN to optimize these features.
In a nutshell, researchers have also come up with an
ensemble of CNNs, and an ensemble of CNN with some
meta-heuristic techniques for both spatial and transform
domain steganalysis.

Very recently from ALASKA challenge, researchers
came up with the idea of using highly efficient pretrained
networks for steganalysis tasks. Researchers have started be-
lieving that instead of training deep networks from scratch
on steganalysis tasks, networks which are already trained on
some other tasks can be finetuned on steganalysis purpose.
With this perspective, researchers have found excellent
results and the top competitors of the ALASKA II challenge
have used same strategy of fine tuning pretrained networks.
From Table III and Table IV, it can be seen that pretrained
networks have proved highly efficient for steganalysis.
Table IV provides the results of pretrained SRNets [74]

and demonstrates quite good results even at a very low
payload rate of 0.2 bpp. Similarly, pretrained networks
with improved performance metrics for steganalysis are also
reviewed in this work as in [76], but results in numeric
terms have not provided directly. Table IV provides the
collective view of using pretrained networks both in spatial
as well as JPEG domain. Therefore, results of pretrained
networks have not included in Table II. Thus, a new angle
of using pretrained networks is formed in the research of
steganalysis and is the current trend in the area of applying
deep learning for steganalysis purpose.
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[8] T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image mod-
els to perform highly undetectable steganography,” International
workshop on information hiding, pp. 161–177, 2010.

[9] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital
images,” IEEE Transactions on information Forensics and Security,
vol. 7, pp. 868–882, 2012.
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