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Abstract: Despite the power constraints, UAVs (Unmanned aerial vehicles) have an inherent advantage of lower air traffic, making
them an attractive alternative to high-speed transportation and logistics. Many algorithmic models are used for empirical analysis
based on network architecture, data forwarding, and comprehensive performance variation regarding routing delay, energy efficiency,
throughput, network overheads, scalability, bandwidth, link failure probability, etc. Due to such a wide variation in protocol availability,
and respective performance measures, it is difficult for researchers and network designers to select the best possible models suited for
their network application. Moreover, this wide variation increases network design time and cost-to-market, which affects UAV network
viability. Thus, there is a need to simplify this process of routing model selection. This motivates us to frame this survey article. A
comprehensive survey of recently proposed UAV routing models is proposed. This survey includes a description of reviewed models
and their nuances, advantages, limitations, and future research possibilities. Upon referring to this survey, readers could contemplate the
characteristics of respective models and identify improvement areas in each. Based on observation, researchers can select the best-suited
routing models of UAVs for their applications. This review is accompanied by an in-depth statistical analysis of these models and their
comparison concerning computational complexity, throughput, energy efficiency, end-to-end delay, and routing efficiency. It will assist
researchers and UAV network designers in selecting the most optimum context-specific models for their network deployments, thereby
lowering network design time and cost of deployment.
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1. INTRODUCTION
In recent years, the growing demand for Internet ac-

cess from various devices has challenged companies and
academics to research and develop new solutions that sup-
port the increasing flow in the network, applications that
require very low latency, and more dynamic and scalable
infrastructures. In this context, mobile ad hoc networks
(MANETs) emerged as a possible solution, and applying
this technology in unmanned aerial vehicles (UAVs) has
emerged as a potential application (FANETs).

Drones and other aerial vehicles were first created
for the aerospace and military sectors. Still, due to their
rising effectiveness and safety, the general public can now
utilize them. These unmanned autonomous aerial vehicles
(UAVs) fly by themselves. While a drone may be controlled
remotely, it can also be fitted with sensors and LIDAR
detectors that give it autonomy. The model determines
the height and distance that drones may fly. The standard
operating range of amateur drones is three miles or fewer.
The maximum flying distance for this type of aircraft is
30 miles. Drones, which range of up to 90 miles, are

mainly used for intelligence gathering and surveillance.
Mid-range unmanned aerial vehicles have a range of 400
miles and may be used for several tasks, such as scientific
research, information collecting, and meteorological studies.
The ”endurance” UAVs, which have a maximum range of
400 miles and can fly up to 3,000 feet in the air, are the
drones with the greatest range.[1], [2], [3], [4]

Because of their versatility, flexibility, easy installation,
and relatively small operating expenses, UAV path planning
is a multi-domain task that involves node localization,
traffic estimation, environmental condition estimation, path
prediction, etc. These routing models are classified into
cluster-based or swarm-based methods. The cluster-based
methods utilize either one-hop or multiple hop models,
while swarm-based processes utilize ant-colony (ACO),
bee-colony (BCO), particle swarm optimization (PSO), and
similar methods. These methods aim at route optimization
during path planning via stochastic modeling, which assists
in the reduction of routing delay, battery costs, energy
consumption, etc. A typical UAV path planning model is
described in figure 1, wherein swarm optimization-based

E-mail address: awadhesh.21phd7066@vitap.ac.in, sunil.singh@vitap.ac.in http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/130167
http://journals.uob.edu.bh


840 Awadhesh Dixit, et al.: An empirical analysis of UAV routing models

stochastic approach is describe[5]. The model is initialized

Figure 1. Swarm intelligence model for UAV path planning

via generating random trajectory-based augmented solutions
between source and destination points. A fitness value for
each of these solutions is estimated via equation 1, wherein
parameters like distance travelled (D), the energy required
(E), path quality (PQ), etc., are used for calculations.

fp =

Nh∑
i=1

Di

MaxD
+

MaxE

Ei
+

MaxpQ

PQi
. . . (1)

Based on these values, Other solutions (population) are
updated, or new solutions are created based on these values.
These solutions are reiterated via fitness checks to estimate
the best route between two points. Researchers propose a
wide variety of models to perform these tasks. A Survey
of these models and their nuances, advantages, limitations,
and future research scopes are discussed in the next section
of this text. Upon referring to this section, researchers will
be able to identify best practices for UAV path planning
and use them to design routing models for their networks.
The rest of the paper is organized as follows: Section
2 discuss the existing related works, and in section 3, a
Statistical analysis is presented pertaining to UAVs routing
protocols. A brief discussion of the model is presented in
Section 4. Finally, Section 5, concludes with interesting
observations about the reviewed models and recommends
methods to improve their performance in different scenarios.

2. Literature Review
Researchers have proposed many drone-based routing

models to improve route quality and reduce drone flight
delays. These models vary in application-of-use, routing
efficiency, delay needed for coverage, etc. For instance,
the work in[6] proposes a multi-parameter model (MPM)
that uses the angle of rotation, the distance between source
& destination, the number of obstacles, and inter-obstacle
distance, to estimate a trajectory path. This path approxi-
mates the optimum path, and its selection can be enhanced
using bio-inspired models. Due to such an approximation,
this model’s delay increases linearly with respect to the
number of nodes in the network, making it non-scalable
for real-time deployments. This model performance can be

improved using bio-inspired computing methods proposed
in[7].

This paper uses a genetic algorithm for Routing (GAR)
and modeled with a fitness function that uses route qual-
ity (RQ), distance (D), and energy needed for trajectory
between source and destination points ES D. This fitness
function can be evaluated via equation 1 as follows,

fi, j = w1 ∗ RQi, j + w2 ∗ Di, j + w3 ∗ Ei, j . . . (2)

Where, w1,w2,w3 represents weights for route quality,
distance and energy between the nodes. Due to this model-
ing, the system can reduce control overheads & delay when
compared with ad-hoc on-demand distance vector (AODV)
and dynamic source routing (DSR) models. Another heuris-
tic approach that uses K-Means and Integer Linear Program
(ILP) is proposed in[8]wherein researchers have extended
GA to incorporate clustering and deterministic models.
Due to this extension, the proposed GAILP model can
find paths with lower delay and better energy efficiency
when compared with the K-Means & ILP approaches. But
the model requires multiple scenes modeled parameters
for routing, which increases its deployment complexity
& reduces its energy efficiency. In order to improve this
efficiency, work in[9] proposes an energy-aware approach,
which uses swarm intelligence with a minimum spanning
tree (SIMST) for removing redundant route vertices. Due to
this, the model showcases 40% lower energy requirements
when compared with the distance-based trajectory (DTJ)
method while requiring a similar delay for covering a low
to medium number of path points. But the model has limited
scalability due to its deterministic nature and applicability
for object checking. The scalability can be improved using
sampling, AI, bioinspired, machine learning-based, multiple
objective optimizations based, and non-cooperation-based
models as discussed in[10].

Figure 2. Classified UAV path planning techniques

UAV path planning is classified into two categories,
namely comparative and non-cooperative. The algorithms
include genetic algorithms, evolutionary models, simulated
annealing method, and ant colony optimization (ACO), to
name a few. It is observed that reinforcement learning and
multiple objective optimizations outperform other models in
terms of path quality and energy efficiency. A classification
technique is described in figure 2, wherein various UAV
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and path planning models are visualized and observed.
Based on this observation, the work in [11] is reviewed,
which suggests a multiple objective UAV (MOUAV) path
planning approach for emergency information transmission
& collection. This model uses UAV path gain updation
mechanism to maximize the channel capacity for path
planning. It also proposes different UAV coverage update
mechanisms and single waypoint planning to incorporate
buffer distance, essential wind speed, angular components,
air density, Gravity acceleration, drag coefficient, moment
of inertia, fuselage radius, thrust coefficient, and torque
coefficient parameters. Due to incorporating so many met-
rics for path planning, the proposed model is observed to
have 20% lower energy requirement & flight time when
compared with conventional models, which makes it highly
scalable for a wide variety of drone-based environments.

Another bioinspired (BI) model that uses a sparrow
search algorithm & Neural Network (SSANN) is proposed
in[12] wherein researchers have deployed path planning
methods for multiple UAV nodes. It combines B-spline
curves with safe surface cost optimization to reduce the
distance & energy needed for routing. The flow of the
model is described in figure 3, wherein SSA, B-spline, and
bioinspired NN methods are visualized. The model uses a

Figure 3. Combination of SSA with NN for improved efficiency of
routing

combination of deterministic and probabilistic approaches
to improve the speed and lifetime of the UAV network.
The model also showcases better path quality, smaller path
lengths, and lower flight duration when compared with
these methods. The model has an average success rate of
98 % which is higher than artificial bee colony (ABC)
optimization (53 %), and Dragonfly Algorithm (DA) (62
%), when compared on the same simulation platforms.

A scale-invariant feature transform (SIFT) based model
that removes collision areas during routing via imaging
techniques is proposed in[13]wherein a support-vector ma-
chine (SVM) based classification engine is used. The
proposed model requires large image data (60% of the
entire area) to generate an optimum path but achieves
better efficiency in terms of coverage & route quality.
To reduce dependency on image-based coverage, in [14]
proposes a multiverse optimizer (MVO) model that uses

node to node distance, colliding path sets (CPS), node
moving rate, threat probability, and possible path list for
resultant path selection. The model is observed faster than
ant lion optimization (ALO), DA, Moth flame optimization
(MFO), whale optimization model (WOM), and grey wolf
optimization (GWO) approaches, which makes it useful for
small to medium scaled routing applications. But the model
has limited scalability, which can be improved via multiple
parameter analysis as suggested in [11], wherein a large
number of model inputs are considered for path planning.
A scheme is proposed in [15], where a completion time
minimization approach is proposed, that uses Schur com-
plement & semidefinite programming models for ensemble
route estimation. It combines various heuristics to reduce
completion delay and improve overall routing throughput,
making the model highly scalable for a wide variety of
routing scenarios.

In contrast, a highly application-specific model for a
mission-oriented approach for path planning that uses solar-
powered (low power) UAVs for high altitudes is proposed in
[16], wherein optimal energy management approaches are
utilized. The proposed model uses multiple parameters that
include vehicle mass, Sun’s Azimuth Angle, angle of Sun’s
Altitude from the center of Earth to centre of Sun, Airspeed,
efficiency of photovoltaic Nodes, Motor efficiency, battery
efficiency, propellor efficiency, flight path angle, its bank
angle, heading angle, & attack angle, the density of air,
wing area and load power to estimate an optimum mission
specific routing path. It is possible by using the augmented
Multiple Goal Path Optimization (MGPO) model as ob-
served in figure 4, wherein both point-to-point optimization
& MGPO are combined. The model optimizes climbing,
high altitude cruising, gliding, and low altitude cruising
operations with 15% lower power when compared with
the fixed constraints path model (FCPM), thereby making
it useful for a wide variety of application-specific routing
scenarios. Another model that uses a similar approach
for stealth UAV applications is proposed in [17], wherein
researchers have used an improved A-Star algorithm (IASA)
to include dynamic radar cross-section characteristics into
flight planning. The model can reduce the distance covered,
the power needed, and the delay for routing compared with
A-star (AS) and D-star (DS) models, making it applicable
for various path planning scenarios. An extension to this
approach is proposed in [18], wherein ANN is used for
controlling AS, set-based PSO (SPSO), and k-agglomerative
clustering (kAC), to improve routing performance. The
model initially uses K-Means & KAC for coarse Graph
generation, which is fine-tuned via the A-star model. This
fine-tuned Graph is given to an SPSO model, which assists
in final path planning via analysis of multiple parameters
like moment of inertia, node-to-node distance, etc. Due to
this, the model is observed to have better efficiency when
compared with proportional integral derivative (PID), fuzzy
control, PSO with swap, SPSO with chaotic inertia weight,
and SPSO with adaptive weighing measures.
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Figure 4. Augmented MGPO model for efficient path planning

A similar PSO-based analysis is done in [19], wherein
fast cross-over distributed PSO (FCO DPSO), maximum
density convergence DPSO (MDC DPSO), and accurate
coverage exploration DPSO (ACE DPSO) models are dis-
cussed. These models are applied to tactical applications. It
is observed that FCO DPSO showcases faster convergence
but has lower distance efficiency when compared with ACE
DPSO & MDC DPSO models. The MDC DPSO model
has better scalability when compared with ACE DPSO and
thus can be used for a wide variety of routing application
scenarios. This performance can be improved by using
multiple source data capturing models in [20]. This scheme
uses multistate unmanned aerial vehicle-borne synthetic
aperture radar (SAR) images for depth estimation in UAV
path planning scenarios. The model uses Matrix Fourier
Transform (MFT) to map images into constrained multiple
objective optimization problems (CMOP) to find optimal
routing paths. The model has good routing performance
but is highly complex and has low scalability when applied
to large-scale application scenarios. Further various models
extended their feature capturing capabilities of UAV path
planning discussed in [21], [22], [23]. The dynamic pro-
gramming is combined with a heuristic approach (DPHA),
direct co-location (DCL) for solar-powered devices, and
a QoS-aware heuristic PSO (HPSO) model for device-to-
device routing is discussed. These approaches assist in
estimating distance, path quality, collision probability, and
other features to estimate the most optimum path for a given
set of points. Out of these, the HPSO model outperforms
other models in terms of path quality but requires a larger
computational delay with a greater number of inputs when

compared with DPHA & DCL models, thereby limiting its
scalability for large-scale application scenarios.

To improve this scalability, work in [24], [25] can
be referred to, wherein researchers have combined Game
Theory with deep reinforcement learning (GT DRL) and
weighted targets sweep coverage (WTSC) to reduce eval-
uation complexity. Due to this overall delay needed for
evaluation is reduced while achieving optimum coverage
time and reduced obstacle quality routing path. The GT
DRL model is observed to achieve a lower routing cost
with lower energy requirements, making it useful for large-
scale route evaluation scenarios. But the model doesn’t
perform well when the number of constraints increases,
limiting its usability for practical routing applications, to
improve this usability, work in [26], [27] can be referred
to wherein bidirectional adaptive A-star model (BIASM)
and Voronoi-based Path Generation (VPG) models are dis-
cussed. Both these models are capable of considering real-
time network constraints, including waypoint coordinates,
pitch angles, yaw angles, obstacle radius, and environmental
awareness, which assists in obtaining a better path quality
compared with smoothed A star (SAS) Soltero models.
But these models have higher complexity and require more
energy when deployed on real-time networks, limiting their
real-time performance. can be improved via the use of
bioinspired models for overall optimization, as discussed
in [28], wherein multiple objective models are described.
These models can capture sensing utility, energy utility, time
utility, and risk-utility to generate an optimum route plan
for both 2D & 3D environments. The model can combine
GA and PSO to improve cumulative utility compared with
fixed calculation models.

Some models improve communication quality while
path planning improves overall network performance. These
models are discussed in [29], [30], [31], wherein aver-
age throughput path planning (ATPP), tracking learning
detection with kernelized correlation filter (TLD KCF),
and dynamic Artificial Potential Field (D-APF) methods
are proposed. These methods can reduce redundancies in
network communications while maximizing context-specific
parameters, including energy efficiency, throughput, and
routing speed. The ATPP model has better throughput than
TLD KCF, but the latter provides better routing paths when
compared with D-APF and ATPP models. The efficiency of
these models is limited due to their area of application. The
Efficiency can be improved through the models proposed
in [32], [33], [34], wherein partially observable Markov
decision process (POMDP) with multiple interactive model
(IMM), use of multiple agents for reinforcement learn-
ing (MAGRL), and flexible path discretization (FPD) are
discussed. These models showcase higher communication
throughput by lowering redundancies during path planning
& routing processes. It is achieved by estimating stochastic
routes and then removing them based on performance.
Due to this, the MAGRL model outperforms POMDP &
FPD models in terms of communication path & travelling
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route selection but has higher complexity. The POMDP
& FPD models showcase moderate route performance but
have better computational performance than the MAGRL
model, which provides a lot of research scope in both
models sets. To reduce this complexity and achieve good
routing performance, the work in [35], [36] proposes the
use of cooperative path planning (ColPP), & collision-aware
Kalman filtering (CAKF), which minimize path planning
delays via the removal of temporal collision areas in
the path. The CAKF model has high scalability but has
moderate routing performance, while the ColPP model is
useful for underwater scenarios but has high throughput
with low latency. The performance of these models must
be tested on multiple scenarios to validate their scalability.
This performance can be optimized via the use of bioin-
spired models like multiple objective PSO with image &
terrain data (MOPSO ITD) [37], and adaptive Grey wolf
optimization (AGWO) [38], wherein multiple inputs are
used to reduce error rate, and optimize routing path quality.
The model is observed to be superior to a non-domination-
based genetic algorithm for multiple objective optimizations
(NSGA), MOPSO, GWO, and Nonlinear GWO (NGWO),
logarithmic GWO (LGWO), and MFO models when applied
to the same terrain simulation conditions.

A high-cost, high-efficiency model for joint detection
& tracking of radio-tagged objects is discussed in [39],
wherein multiple routing nodes are combined to identify
the target location. The model uses a partially observable
Markov decision process (POMDP) to perform this task
with low delay and low error probability while tracing
different-sized objects. It is primarily used for object track-
ing but can be extended for path planning with different
algorithmic constraints. The efficiency of this model is
further improved via the work in [40], wherein Meteorology
aware path planning with Improved Intelligent Water Drops
model (IIWDM) is discussed. The model reduces average
flight time and collision risk and improves flight speed
through replanning and force effect evaluation as observed
and performs better compared with ACO, GA, and Q-
learning models on the same dataset. Similar models are
proposed in [41], [42], [43]. The researchers have explored
use-cases of multiple objective path planning via online and
offline search (MOPP, OFONSA), improved bias reduction
pseudo-linear estimator (IBRPLE), and software-defined
network (SDN) approach for path planning is described.
These approaches assist in reducing dependency on a single
controller for path planning via software-based patches,
which have run-time reconfiguration capabilities. The SDN
model outperforms other models in terms of flexibility and
control efficiency but has lower throughput when com-
pared with MOPP, OFONSA and IBPRLE models due to
multiple layered architectures. This performance can be
further improved by mixing strategy based Gravitational
search algorithm (MSGSA) [44]. The channel-aware poten-
tial field trajectory planning [45], estimation of distribution
algorithm (EDA) with the genetic algorithm (GA) [46].
Discrete Pigeon-inspired Optimization (DPO) [47] models,

which achieve better throughput via temporal analysis of
path parameters, thereby incrementally tuning their internal
performance. These models can improve route selection
performance by identifying paths with a minimum number
of collisions and maximum safe areas. The energy needed
for routing is optimized, which internally optimizes the
lifetime of UAV nodes. These models are generic and can
be used for multiple terrain and traffic types with moder-
ate performance. To improve performance for application-
specific UAV routing scenarios, in [48], [49], [50] propose
3D Mountain terrain-based cooperative combat planning.
This scheme uses life-cycle Swarm Optimization (LSO),
hybrid PSO with Gauss pseudo-spectral method (HPSO
GPM), and reliable path planning (RPP) is proposed. These
models provide solutions for context-specific scenarios,
thereby assisting in achieving high throughput with low
overheads. It can be observed that a wide variety of models
are proposed for path planning in UAV traffic conditions,
which vary in terms of complexity, area of deployment, and
other metrics. An evaluation of these algorithms in terms of
computational delay, routing delay, deployment complexity,
energy efficiency, and area of application can be observed
in the next section. This will assist readers in identifying
the best system models suited for a particular type of UAV
path planning application scenario.

3. Statistical analysis
From the detailed review, it can be observed that UAV

routing models have highly variant performance in terms
of scalability, area of application, etc. To identify the best
performing models, they were compared in terms of statis-
tical parameters, which include computational delay (CD),
routing delay (RD), deployment complexity (CC), energy
efficiency (EE), and area of application (AA). The reviewed
models were tested on different deployment scenarios; thus,
absolute values of these parameters were not available. To
compare these models, their parameters were converted into
fuzzy ranges of Low (L=2), Medium (M=3), High (H=4),
and Very High (VH=5), depending upon their internal
implementations. For instance, the delay needed by MOPP
OFONSA [41] model is very high compared to DCL [22],
based on which the table showcases different performance
levels for other models. Table 1 showcases this comparison
for each model, allowing researchers to identify the best-
performing method per their network requirements.

From this review, it can be observed that MVO CPS
[10], IASA [13], PID [14], FCO DPSO [15], DCL [18],
VPG [23], and SDN [39] have the lowest convergence
delay, while Schur Compliment [11], MGPO [12], ANN
SPSO AS [14], MDC DPSO [15], ACE DPSO [15], GT
DRL [20], ATPP [25], MAGRL [29], POMDP [35], MOPP
OFONSA [37], MSGSA [40], and RPP [46] provide the
fastest route between any two UAV accessible points. Thus,
these models must be used for low delay and high through-
put applications. Similarly, computational complexity of K-
Means [4], ILP [4], PID [14], MDC DPSO [15], WTSC
[21], VPG [23], and FPD [30] is the lowest, while, energy
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TABLE I. Statistical evaluation of the reviewed models

Method & Year CD RD CC EE AA
MPM [6] - (2016) 4 3 4 2 General
GAR [7] - (2021) 4 4 3 2 General
AODV [7] - (2021) 3 5 3 2 General
DSR [7] - (2021) 3 5 3 2 General
GA ILP [8] - (2011) 5 3 4 3 General
K-Means [8] - (2011) 3 5 2 2 General
ILP [8] - (2011) 3 5 2 2 General
SIMST [9] - (2018) 4 3 3 4 General
MOU AV [11] - (2020) 3 3 3 4 General
BI SS ANN [12] - (2021) 4 3 5 3 General
ABC [12] - (2021) 4 4 4 3 General
DA [12] - (2021) 4 4 4 2 General
SIFT SVM [13] - (2019) 4 3 5 2 Image based
MVO CPS [14] - (2018) 2 3 4 3 General
ALO [14] - (2018) 4 4 3 3 General
MFO [14] - (2018) 3 4 3 3 General
WOM [14] - (2018) 3 4 4 3 General
GWO [14] - (2018) 4 3 3 3 General
Schur Compliment [15] - (2019) 3 2 4 3 General
MGPO [16] - (2020) 3 2 3 4 General
IASA [17] - (2020) 2 3 4 3 General
AS [17] - (2020) 3 4 4 3 General
DS [17] - (2020) 4 3 4 3 General
ANN SPSO AS [18] - (2019) 3 2 3 3 General
PID [18] - (2019) 2 4 2 2 General
Fuzzy [19] - (2019) 3 4 3 3 General
PSO Swap [18] - (2019) 4 3 4 3 General
SPSO with chaotic inertia weight [18] - (2019) 4 4 3 3 General
SPSO with adaptive weighing measures [18] - (2019) 4 4 4 3 General
FCO DPSO [19] - (2019) 2 3 3 2 General
MDC DPSO [19] - (2019) 3 2 2 3 General
ACE DPSO [19] - (2019) 3 2 3 4 General
MFT CMOP [20] - (2021) 4 3 5 2 Image based
DPHA [21] - (2020) 3 3 4 3 General
DCL [22] - (2020) 2 4 3 4 Solar power devices
HPSO [23] - (2020) 4 3 4 3 General
GT DRL [24] - (2019) 4 2 4 3 General
WTSC [25] - (2020) 3 3 2 3 General
BIASM [26] - (2020) 3 3 3 2 General
VPG [27] - (2020) 2 3 2 3 General
GA & PSO [28] - (2018) 4 3 5 3 General
ATPP [29] - (2019) 3 2 3 2 General
TLD KCF [30] - (2018) 3 3 4 3 General
D-APF [31] - (2020) 4 3 3 3 General
POMPDP IMM [32] - (2019) 3 3 4 3 General
MAGRL [33] - (2019) 5 2 4 3 General
FPD [34] - (2021) 3 3 2 2 General
CoIPP [35] - (2020) 3 4 3 3 Under-water
CAKF [36] - (2018) 3 3 4 3 General
MOPSO ITD [37] - (2020) 4 3 5 3 Image based
AGWO [38] - (2021) 3 3 4 3 General
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Method & Year CD RD CC EE AA
NSGA [38] - (2021) 4 3 3 3 General
MOPSO [38] - (2021) 4 4 3 3 General
GWO [38] - (2021) 4 3 3 2 General
NGWO [38] - (2021) 4 3 4 3 General
LGWO [38] - (2021) 3 4 3 3 General
MFO [38] - (2021) 3 3 4 2 General
POMDP [39] - (2019) 4 2 5 3 General
IIWDM [40] - (2021) 3 3 4 3 General
ACO [40] - (2021) 4 3 4 3 General
GA [40] - (2021) 3 4 3 3 General
QL [40] - (2021) 4 3 4 2 General
MOPP OFONSA [41] - (2017) 5 2 3 3 General
IBRPLE [42] - (2019) 4 3 3 3 General
SDN [43] - (2020) 2 3 4 3 General
MSGSA [44] - (2021) 4 2 4 3 General
EDA GA [46] - (2020) 3 3 4 4 General
DPO [47] - (2020) 4 3 4 3 General
LSO [48] - (2020) 3 3 3 4 Terrain based applns.
HPSO GPM [49] - (2021) 4 3 4 2 General
RPP [50] - (2020) 4 2 3 3 General

efficiency of SIMST [5], MOU AV [7], MGPO [12], ACE
DPSO [15], DCL [18], EDA GA [42], and LSO [44] is the
highest, which makes these models useful for low energy
applications. A parametric evaluation is depicted in Figure
5. But this comparison is highly parameter specific, which
can be improved if the compared parameters are fused. To
perform this task, a novel algorithmic rank score (ARS) is
developed, which can be seen through equation 3 as follows,

ARS =
4

CD
+

4
RD
+

4
CC
+

EE
4
. . . (3)

suited for a particular type of UAV path planning appli-
cation scenario. In this equation, CD, RD & CC must be low
for a model to be classified as good, while EE must be high,
due to which CC, RD & CC are in denominator while EE
is in numerator while analysis.Based on this evaluation, the
algorithmic rank is calculated, and its values are tabulated
in table 2 as follows,

From the evaluation in table 2, it can be observed that
MDC DPSO [15], VPG [23], MGPO [12], ACE DPSO
[15], PID [14], ANN SPSO AS [14], and WTSC [21] have
better overall performance, and thus can be used for high
efficiency, and low delay UAV routing applications.

4. Description of model
It can be observed that a wide variety of models are

available for low-cost, and high-efficiency UAV routing
& path planning, which assists in the selection of high-
efficiency methods that showcase low delay, low energy,
and better routing performance. These models utilize deep
learning-based methods, which stochastically determine
multiple routing paths and identify fitness functions for
improving path selection efficiency. Each of these models

also uses path augmentation, which reduces errors, and
improves the overall efficiency of the route deployment
process. These models can be deployed for large-scale
networks, which makes them highly useful and scalable.

5. Conclusion
This text reviews various models for path planning in

UAV scenarios. Each model is evaluated in terms of com-
putational delay, routing delay, computational complexity,
and energy efficiency. This comparison shows that models
with lower computational delay often result in moderate to
high delay paths, while models with low complexity result
in better energy efficiency. Based on this comparison, it is
observed that MVO CPS, IASA, PID, FCO DPSO, DCL,
VPG, and SDN are used to quickly obtain approximate UAV
routes, making them useful for low-delay UAV networks.
But these models do not provide the most optimum routes
due to their coarse-level analysis. To obtain routes that
can reduce UAV travel delays, Schur Complement, MGPO,
ANN SPSO AS, MDC DPSO, ACE DPSO, GT DRL, ATPP,
MAGRL, POMDP, MOPP OFONSA, MSGSA, and RPP
models must be used. These models reduce redundancies
during path planning and allow low-distance paths with
a minimum probability of UAV-to-UAV collision. If the
network requires low energy consumption, then SIMST,
MOU AV, MGPO, ACE DPSO, DCL, EDA GA, and LSO
models are preferred, which aim at providing paths that
require minimum transportation energy, thereby improving
the overall network lifetime. The performance of these
models was fused, and a novel algorithmic rank score was
evaluated, which indicates that MDC DPSO, VPG, MGPO,
ACE DPSO, PID, ANN SPSO AS, and WTSC have lower
convergence delay, lower routing delay, lower complexity,
and better energy efficiency when compared with other UAV
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TABLE II. ARS for different models

Method ARS Rank
MDC DPSO [19] 6.08 1
VPG [27] 6.08 2
MGPO [16] 5.67 3
ACE DPSO [19] 5.67 4
PID [18] 5.50 5
ANN SPSO AS [18] 5.42 6
WTSC [25] 5.42 7
DCL [22] 5.33 8
FCO DPSO [19] 5.17 9
ATPP [29] 5.17 10
FPD [34] 5.17 11
MVO CPS [14] 5.08 12
Schur Compliment [15] 5.08 13
IASA [17] 5.08 14
SDN [43] 5.08 15
RPP [50] 5.08 16
MOU AV [11] 5.00 17
LSO [48] 5.00 18
MOPP OFONSA [41] 4.88 19
GT DRL [24] 4.75 20
MSGSA [44] 4.75 21
SIMST [9] 4.67 22
EDA GA [46] 4.67 23
K-Means [8] 4.63 24
ILP [8] 4.63 25
MAGRL [33] 4.55 26
POMDP [39] 4.55 27
BIASM [26] 4.50 28
MFO [14] 4.42 29
GWO [14] 4.42 30
Fuzzy [19] 4.42 31
DPHA [21] 4.42 32
TLD KCF [30] 4.42 33
D-APF [31] 4.42 34
POMPDP IMM [32] 4.42 35
CoIPP [35] 4.42 36
CAKF [36] 4.42 37
AGWO [38] 4.42 38
NSGA [38] 4.42 39
LGWO [38] 4.42 40
IIWDM [40] 4.42 41
GA [40] 4.42 42
IBRPLE [42] 4.42 43
GWO [38] 4.17 44
MFO [38] 4.17 45
ALO [14] 4.08 46
WOM [14] 4.08 47
AS [17] 4.08 48
DS [17] 4.08 49
PSO Swap [18] 4.08 50
SPSO with chaotic inertia weight [18] 4.08 51
HPSO [23] 4.08 52
MOPSO [38] 4.08 53

Figure 5. Parametric comparison of reviewed models
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Method ARS Rank
NGWO [38] 4.08 54
ACO [40] 4.08 55
DPO [47] 4.08 56
AODV [7] 3.97 57
DSR [7] 3.97 58
GA ILP [8] 3.88 59
BI SS ANN [12] 3.88 60
GA & PSO [28] 3.88 61
MOPSO ITD [37] 3.88 62
MPM [6] 3.83 63
GAR [7] 3.83 64
QL [40] 3.83 65
HPSO GPM [49] 3.83 66
ABC [12] 3.75 67
DA [12] 3.50 71

path planning models. Thus, these models must be deployed
in real-time UAV network application scenarios for overall
performance enhancement. In the future, researchers can
combine these models to obtain fused methods that have
lower energy consumption and faster travel speed. It can be
achieved by ensembling multiple algorithms and selecting
them via Q-learning or bioinspired network optimization
models. Such ensemble models will further improve net-
work scalability and make the UAV model applicable for
various application efficiencies.
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