
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.13, No.1 (Apr-23)

http://dx.doi.org/10.12785/ijcds/130163

Impact of Varying Strokes on Recognition Rate: A Case Study
on Handwritten Mathematical Expressions

Sakshi1, Vinay Kukreja2 and Sachin Lodhi3

1Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
2Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

3University Institute of Technology, Barkatullah University, Bhopal, Madhya Pradesh, India.

Received 15 Mar. 2022, Revised 21 Jul. 2022, Accepted 19 Dec. 2022, Published 16 Apr. 2023

Abstract: Strokes constitute major units that form the contents of any handwritten text. When every user feeds or writes any
handwriting sample, we archive strokes depending upon the context. In this study, the authors have experimented with recognizing
handwritten mathematical expressions on datasets with varying strokes. The case study on mathematical expressions has been conducted
where distinct datasets are analyzed, identified, and compared. A deep neural network-based recognizer has been deployed to test the
formulated hypothesis around stroke characteristics. One experimented dataset had handwritten samples that had uniformly thin width
of the stroke, whereas the other had strokes of varying width. After the experimentation, it has been observed that the dataset with thin
stroke width (up to 1px) results in a significantly less effective recognition rate. The one achieved on experimenting with a dataset with
varying strokes outcomes a jaw dropping recognition rate compared to the previous case. A comparative analysis has been performed
to infer and affirm the hypothesis about stroke characteristics and their impact on the recognition rate.

Keywords: Strokes, Convolution Neural Network, Handwritten Mathematical Expression, Math Symbols, Math Expressions,
classification

1. Introduction
Given the ubiquity of handwriting recognition, the idea

of recognizing handwritten text with a more friendly human
interface has been exclusively expounded [?]. The recent
trends witness the thought of computing, where the com-
puters could embed in the environment itself and make
an easier way for human accessibility and transactions [?].
Specifically targeting mathematical expressions, the trans-
action idea becomes more exciting and challenging because
of inherited complexities and ambiguities of symbols and
signs [?]. Inputting mathematical text in systems through
input devices like the keyboard calls for arduous efforts. The
advent of advanced input mediums like touchpad and touch
screenshots entirely transformed the trend of the existing
input methodologies and made entering pretty smoother
and more human-friendly [?]. The handwriting and its
associated recognition tasks depend on various factors like
internal handwriting characteristics (stroke width/size) or
inherent external characteristics like dataset size. This study
revolves around a case where the authors are endeavoring to
measure the change or the difference around the elements of
handwriting (strokes) and then infer the successful conclu-
sions, targeting this internal characteristic of handwriting,

precisely stroke width.

2. Background
A. Defining Strokes

A single stroke is a pen, stylus, or finger movement to
generate a handwritten input or character. It actualizes the
moment of the pen. The minimal unit forms any handwritten
input strokes, sequences of points generated between pen-
down and pen-up events at regular time intervals [?]. When
collected in the form of a normal pen-ink, the strokes in
their offline form are differently treated than the one which
has been captured in the form of digital ink [?].

Figure 1a depicts a variable A, and Figure 1b highlights
it is constituting strokes. ‘A’ variable here includes three
strokes. Likewise, digit ‘2’ is usually considered to be built
in one stroke, and number ‘10’ can be said to have been
constructed from two strokes.

B. Types of Strokes
Depending on several parameters, we can classify the

strokes. For instance, based on the mode of input or the
ink with which it is penned, the type of script or writing is
based on directions.

E-mail address: sakshi@chitkara.edu.in, vinay.kukreja@chitkara.edu.in, sachinlodhi8614@gmail.com http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/130163
http://journals.uob.edu.bh


796 Sakshi, et al.: Impact of Varying Strokes on Recognition Rate.

Figure 1. Stroke Illustration

Figure 2. Offline versus Online Strokes

Based on mode of input mode, we have two types of
strokes, one, i.e., penned with normal, natural pen ink, and
the other includes strokes taken from digital ink. There is
varied information in these inks, also called offline (pen-
ink) and online strokes (digital ink), as shown in Figure 2.
Based on the kind of scripts, we have two types of strokes;
manuscript and cursive. Manuscript ones deal with digital
inputs, whereas cursive ones are created around the hand
drawings. Based on directions [?], we have eight directional
strokes, namely Left to the right oblique line (direction:
Upwards to the right), Horizontal lines (direction: Right-
wards), Left to right oblique line (direction: Downwards to
the right) Vertical line (direction: Downwards, Right to left
oblique line (direction: Downwards to the left), Horizontal
line (direction: Leftwards), Left to the right oblique line
(direction: Upwards) to left (direction: Vertical line) as
illustrated in Figure 3.

Figure 3. Types of Strokes (Based on directions)

3. Motivation and Objective OF THE STUDY
Strokes and their associated characteristics can some-

times prove to interestingly affect the recognition rate

or accuracy of a recognizer that is built for handwriting
recognition. Our primary objective and motivation for this
work are to resolve and get more insights into how stroke
sizes matter and influence the recognition model. The brief
objectives of the study are listed as:

• To study and analyze the impact and difference the
stroke characteristics accrue to the recognition pro-
cess.

• To scrutinize and comprehend how the accuracy of
the model varies with the variance of strokes that are
used for training and testing.

• To test and get insights about the stated hypothesis
about strokes and add a new dimension to ongoing
research in the community of pattern and handwriting
recognition.

4. Preview of Literature: the state of art
Mathematical symbol and expression recognition has

persisted in being a topic of research which has embarked
to be researched in 1967 [?], but the current decade wit-
nesses the active attention and exploration by the research
community [?], [?]. In the works for offline mathemat-
ical expressions, Chan [?] developed a stroke extraction
algorithm. The authors made use of binarization, skele-
tonization, breakdown into segments, stroke reconstruction,
order normalization, and other procedures are included to
construct this method. As the authors points out, offline to
online transition methods necessitate retraining the online
recognition model with extracted strokes. Another study
targeting online handwritten mathematical text is experi-
mented by Zhang [?] where the researchers addressed the
problem and challenges related to handwritten mathematical
expression recognition by implementing tree-based BLSTM
architectures. The authors lead the inputs strokes to direct
labeling of nodes that held the symbols and edges, including
relationships from the developed graph modeling. There
were no instances of explicit segmentation or recogni-
tion, or grammar structures involved in this architecture.
There are recorded two important phases in mathematical
expression recognition; symbol recognition and structural
analysis [?], [?], [?].

The symbol recognition process has always been con-
sidered to be crucial. The study by Feng [?] proposes a
squeeze-extracted multi-feature convolution neural network
(SE-MCNN) to enhance the recognition rate of hand-
written math symbols. The system proposed in this pa-
per integrates the eight-directional feature of the original
sequence in the convolutional layer, which significantly
compensates for the lost dynamic trajectory information.
Another study presents a system for recognizing online
handwritten mathematical expressions (MEs) by applying
improved structural analysis. With the proposed system,
MEs are represented in the form of stochastic context-
free grammar (SCFG), and the Cocke–Younger–Kasami
(CYK) algorithm is used to parse two-dimensional (2D)

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 795-804 (Apr-23) 797

structures of online handwritten mathematical expressions.
To the best of our knowledge, no study has focused entirely
on stroke-based characteristics and interesting limelight
conclusions from it. Our article is completely focused on
this aspect, and the investigation has introduced new and
novel conclusions in this context. Handwritten mathematical
expression recognition has recently seen significant progress
in encoder-decoder models. Study experiments show that
our model improves the ExpRate of current state-of-the-
art methods on CROHME 2014 by 2.23 percent when
compared to methods that do not use data augmentation.
On CROHME 2016 and CROHME 2019, we increase the
ExpRate by 1.92 percent and 2.28 percent, respectively [?].
Impressive results have been achieved thanks to HMER’s
encoder-decoder architecture. For HMER, the author came
up with a simple and effective encoder-decoder network
that includes syntax information. The author’s grammar
rules are used to convert each expression’s LaTeX markup
sequence into a parsing tree, and a deep neural network
is used to model the markup sequence prediction as a tree
traverse process. Our method outperforms previous efforts
in recognition accuracy when tested on three benchmark
datasets. In order to prove the efficacy of our method, we
gathered 100k handwritten mathematical expression images
from ten thousand writers [?].

5. Implementation
A. Dataset

Our case study has targeted two types of datasets for
analyzing the impact of stroke on the recognition rate. One
dataset includes mathematical expressions with strokes of
thin width, i.e., 1px, whereas the second includes mathe-
matical expressions of varying stroke width. The descriptive
details of dataset-1 and dataset-2 are as follows:

1) Dataset-1
The dataset has been downloaded from kaggle [?]. The

dataset comprised of 375974 jpg files (45×45px). Basic
Greek letter symbols such as alpha, beta, gamma, mu,
sigma, phi, and theta are included. There are also oc-
curences of alphanumeric symbols in English. All symbols
are contained in 82 symbol classes. The total Set operators,
all math operators, basic math functions like log, lim, cos,
sin, and tan. Other math symbols include int, sum, sqrt,
delta, and others. List of symbols included are [’forall’,
’sin’, ’prime’, ’!’, ’2’, ’,’, ’lim’, ’H’, ’theta’, ’N’, ’gt’,
’in’, ’gamma’, ’0’, ’ldots’, ’Delta’, ’z’, ’y’, ’cos’, ’mu’,
’j’, ’p’, ’k’, ’C’, ’M’, ’beta’, ’sum’, ’G’, ’{’, ’8’, ’exists’,
’forward slash’, ’6’, ’3’, ’e’, ’log’, ’i’, ’pm’, ’div’, ’[’, ’-
’, ’rightarrow’, ’sigma’, ’leq’, ’w’, ’geq’, ’9’, ’sqrt’, ’f’,
’times’, ’u’, ’5’, ’X’, ’A’, ’4’, ’pi’, ’d’, ’1’, ’infty’, ’q’, ’]’,
’ascii 124’, ’R’, ’o’, ’phi’, ’)’, ’T’, ’alpha’, ’7’, ’lt’, ’}’, ’(’,
’int’, ’v’, ’b’, ’S’, ’+’, ’lambda’, ’l’, ’neq’, ’=’, ’tan’]. The
glimpse of sample images from the dataset are as shown in
Figure 4.

2) Dataset-2
Over 9000 images of handwritten digits and arithmetic

operators are included in this dataset downloaded from

Figure 4. Glimpse of samples

Kaggle [?], and the total number of symbol classes is 19. All
the digits from 0-9 are part of this dataset, and the basic
maths operators like plus, minus, multiplication, decimal,
division, and equals are also included. The majority of the
images have a resolution of 400×400 pixels. Some could
be 155×155. Each class has approximately 500 examples.
The dataset incorporated has symbols like [’2’, ’add’, ’eq’,
’0’, ’dec’, ’x’, ’sub’, ’z’, ’y’, ’8’, ’6’, ’3’, ’div’, ’9’, ’5’, ’4’,
’1’, ’7’, ’mul’]. A glimpse of the sample images from the
dataset is shown in Figure 5.

Figure 5. A glimpse of samples from dataset-2

B. Experimental Setup
The experimentation has been carried out on the system

with disk space specifications of 108 GB and internal
memory of 12.0 GB. The NVIDIA GeForce MX 130 based
on two Kepler GPU has been used in the process. The
Ubuntu 20.04.2 LTS is the OS installed on the implemented
system, 64 bits. The Intel ® core TM i5-8250U processor
with eight logical processors and four cores is the built-
in processor of the method used for experimentation. The
implemented code construct for our acquired module has
been executed on Google Collab, its in-built GPU. The
google collab configuration is based on Intel® Xeon CPU
having a clock rate of 2.20 GHz, a disk space of 108 GB,
and a memory limit of 12.69 GB. The NVIDIA Tesla K80
GPU, which is 12 GB, has been deployed in the process.

C. Data Preprocessing
1) Grayscale

The considered samples from the dataset need to be
grayscaled where the set of images that are in different
colors like RGB, HSV, etc. can be transformed in the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


798 Sakshi, et al.: Impact of Varying Strokes on Recognition Rate.

range of pixel values (0-255). This preprocessing of the
samples from the dataset is essential to reduce the dimen-
sion and accomplish the channel reduction process where
colors channels adding complexity to the model could be
transformed in varying shades between black and white, as
shown in Figure 6.

Figure 6. Original image transformed to grayscale (Preprocessing
layer)

2) Binarization
The transformed grayscale image needs to be converted

into a bi-level document image. Here, the pixels of varying
intensities are binarized into vector entities. To remove the
noise from the image, this step of binarization becomes
crucial to be performed. At times binarization is performed
against some threshold value, where the pixel intensities
above the specified threshold values are binarized into 1.
The authors used the threshold() function to accomplish the
process of binarization. The output is shown in Figure 7.

Figure 7. Grayscaled into Binarized Image (Preprocessing layer 2)

D. Data Augmentation
To avoid the chance of overfitting, the authors performed

data augmentation by deploying methods like rescaling,
shearing, and zoom. This process is mostly about changing
and bringing such modifications in the images, which can
benefit this machine learning experiment in two ways.
One by diminishing the chances of overfitting (an issue
in machine learning models), and another by enlarging the
dataset size. Rescaling is one of the layers of preprocessing
that rescales input values to a new range. This layer rescales
each value of the input (typically an image) by multiplying
by scale and summing offset. The sample code construct is
presented below:

ImageDataGenerator(rescale = 1./255, shearrange =
0.2, zoomrange = 0.2)

Where the value 1/255 is the scaling factor, and the specified
shear value is 0.2 which denotes the factor of shearing

or angle of shearing. Shearing allows the image distortion
along both the x and y-axis. It directs the model of
how humans view and visualize from different angles and
perspectives. The zoom range for augmentation purpose
have been specified as 0.2 which would eventually give us
zoom factor in range of [0.8,1.2]. This would generate more
images within the zoom range of [0.8, 1.2]. This would help
the model to understand the image from a different distance.

E. Recognition Model
1) Splitting

Both the experimented datasets are split into training
and testing sets. In the case of dataset-1, 75%, i.e., 282007
images belonging to 82 symbol classes, are assigned to
training split, and 25%, i.e., 93967, are allocated to test split.
The target size of the image is 45×45, i.e., each image in the
dataset is 45 px × 45 px. The color mode has already been
initialized to grayscale. For dataset-2, as per the same ratio
of training and testing, 7560 images belonging to 19 symbol
classes of dataset-2 has been used for training, and 2511
images of the dataset have been used for testing purpose.

2) Preparing output classes
To test on real-time data, the classes of the symbols are

prepared from the directory(s) name given in the dataset.
The list prepared for each dataset would be iterated over,
and the symbol(s) in image form would be read and sent
to the recognizer. The list of classes from the first dataset
would be of length 82, i.e., the number of the symbols in the
first dataset would be 82. In the same manner, the prepared
list from the second dataset would contain 19 classes. Both
the list would be used to extract images from the real-time
testing data by performing iteration over these prepared lists
of symbols.

3) Model Initialization
The model has been initialized using a sequential func-

tion of the Keras library. This Sequential model API is
a method of creating deep learning models that involve
building an instance of the Sequential class and adding
model layers to it. Machine learning models that input or
output data sequences are called sequence models. Text
streams, audio clips, video clips, time-series data, and other
types of sequential data are examples of sequential data.
Images are the data stream.

model = t f .keras.models.S equential()

4) Construction of Recognizer (Adding layers)
The constructed neural network-based model (Figure 8)

constitutes several layers in which the first one is the first
convolution block. Thus, the authors added the Convolu-
tional2D layer, and above it, the authors embedded the
added the MaxPool2d layer for downsampling. In the first
or first Conv2D layer, there are 32 filters, and the kernel
size is 6x6. Input shape is initialized by 45 × 45 with
a single channel. An activation function here deployed is
relu in the first block. In the first MaxPool2D layer, the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 795-804 (Apr-23) 799

Figure 8. Core Architecture of Recognizer (Part of Model)

stride value is 4. In the second block, the authors added
another Conv2D layer with 48 filters, kernel size of 5 × 5,
and relu activation. Thereafter, the authors stacked another
MaxPool2D layer with a stride value of 3. In the last block
or classifier head, the authors first reduced the dimensions
to 1D (one-dimensional array) by adding a flattening layer.
After that, the authors performed the stacking of 2 Dense
layers with 256 units and 84 units. The last block consists of
fully connected layers. The dimensionality is reduced to the
number of classes in the output layer, i.e., 25. The output
shape and number of parameters are shown in Table I.

5) Integration with tensorboard (visualization)
The authors initialize the tensorboard module to in-

tegrate it with the model training phase. This would be
used for post-visualization of the training on both models.
Tensorboard gives various graphs like accuracy vs. epoch,
epoch vs. loss, iteration vs. accuracy, and many more. All
this result-based analysis can be visualized by specifying
and integrating well with the tensorboard module of Python.

6) Optimizing Decision Parameters
Adam optimizer has been deployed with learning rate

as specified through the code segment as mentioned below:

adam = t f .keras.optimizers.Adam(learningrate = 5e − 4).

The difference between the real value and predicted value
constitutes the loss. Here, the loss is specified as loss =
’categorical crossentropy’. Here Categorical cross-entropy
is a loss function used in multi-class classification problems.
These are tasks in which an example can only belong
to one of many possible categories, and the model must
discern which one it is. Its formal purpose is to quantify the
difference between two probability distributions. To save the
log of training, the authors also initialized the log directory.
In addition to that, a tensorboard object is created to read
the log data from the directory for visualization. Further,
the next step is to compile the model.

7) Compilation
After initializing all the model parameters, the authors

execute the compile() and generate the compiled version of
the model, ready to be trained. It also checks and validates
for format errors and saves the debugging time and launch
of the model.

8) Training
Using model.fit(), the authors start training the model

for 20 epochs, and the logs of the entire training would be
saved in the callback, i.e., initialized tensorboard object.

a) Model-1: Training with dataset-1
Before finalizing 20 epochs, the model has been trained

and scrutinized for 5, 10, 15, 25 epochs earlier. It has been
observed that achievable accuracy with five epochs is found
to be 98.26%, and with 10 epochs, it was estimated as
96.82%. On running with 15 epochs, the accuracy achieved
is 99.17%. While executing with 20 epochs, the accuracy
is measured as 99.25%, and with 25 epochs, 97.27%. On
experimenting with 25 epochs, the model training time got
extended. The authors also realized that there could be
chances of overfitting at 25, as the accuracy also dropped
out at this instance.

Figure 9. Epoch versus Accuracyfor Model 1

With every epoch, there have been observed varying
accuracies. The resulting accuracy up to the considered
epoch range has been mapped in Figure 9, which vividly
depicts the exponential rise of accuracy values up to epoch
20. The blue line in the graph depicts the training trend,
whereas the orange/red line in the graph is for the validation
trend. The metrics such as accuracy are extracted parallel
for training and validation phases. Though the model further
may be tested by the developers for varied datasets, the
model itself extracts the accuracy for validation known as
evaluation accuracy, which can be further compared with
accuracy achieved on testing. Hence, this can be used for
cross-validation.

Loss is the difference between the ground truth and the
prediction of the network. It is desirable to have fewer
values for loss. Therefore, with every epoch, the extracted
loss values are mapped in Figure 10, which lucidly indicates
the loss function to be considerably diminishing.

The evaluation accuracy extracted as the result of the
self-validation characteristic of the developed model is here
mapped with iterations. Iteration is the processing of every
batch of the dataset. Evaluating accuracy is present on the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


800 Sakshi, et al.: Impact of Varying Strokes on Recognition Rate.

TABLE I. Basic Layer Details of the model

Layer (type) Output Shape Param #
conv2d 1 (Conv2D) (None, 45, 45, 32) 832
max pooling2d 1 (MaxPooling2D) (None, 22, 22, 32) 0
dropout 1 (Dropout) (None, 22, 22, 32) 0
conv2d 2(Conv2D (None, 18, 18, 48) 38448
max pooling2d 2 (MaxPooling2D) (None, 9, 9, 48) 0
dropout 2 (Dropout) (None, 9, 9, 48) 0
flatten 1 (Flatten) (None, 3888) 0
dense 1 (Dense) (None, 256) 995584
dense 2 (Dense) (None, 84) 21588
dense 3 (Dense) (None, 19) 1615

Figure 10. Epoch versus Loss for Model 1

y axis of the graph presented in Figure 11, and the x-axis
denotes the number of iterations. As the iterations increase,
the model keeps on learning more features from the inputted
dataset; thus, the evaluation accuracy keeps on escalating,
as depicted in Figure 11.

Figure 11. Evaluation accuracy versus iterations for Model 1

Similarly, evaluation loss has been mapped for every
iteration where the loss seems to be highly dwindling, as
shown in Figure 12.

Figure 12. Evaluation loss versus iterations for Model 1

b) Model 2: Training with dataset-2
Before finalizing 20 epochs, the model has been trained

and scrutinized for 5, 10, 15, 25 epochs earlier. It has been
observed that achievable accuracy with 5 epochs is found
to be 87.81%, and with 10 epochs, it was estimated as
92.39%. On running with 15 epochs, the accuracy achieved
is 92.87%. While executing with 20 epochs, the accuracy
is measured as 94.34%, and with 25 epochs, 93.16%. The
authors chose 20 epochs for training as the instance 25
epochs witnessed the probability of overfitting in this case.
Also, the training time accuracy of the model is found to
be attenuated.

Similarly, the same training analysis graphs are plotted
for model-2, which has been trained on the dataset with
varying strokes. It has been observed that the model wit-
nesses changing accuracies with every epoch. The resulting
accuracy up to the considered epoch range has been mapped
in Figure 13, which vividly depicts the exponential rise of
accuracy values up to epoch 20. The blue line in the graph
depicts the training trend, whereas the orange/red line in
the graph is for the validation trend. The shadows that can
be noticed in the background (Figure 13) are the actual
mapped values that are further smoothened to bring up a
consolidated value range in the form of blue and red lines
that apparently depict the accuracy trends for training and

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 795-804 (Apr-23) 801

validation, respectively.

Figure 13. Epoch versus Accuracyfor Model 2

Similarly, the loss noticed during training is mapped
with the epoch in Figure 14. Also, the evaluation accuracy
(accuracy noticed as part of model’s validation) and evalua-
tion loss has been mapped with the iterations in Figures 15
and 16.

Figure 14. Epoch versus Loss for Model 2

9) Testing on unseen real-time data
The models trained on different datasets are again tested

for the unseen real-time dataset to observe and notice
comparative differences between them (if any) existed.

a) Testing Analysis on Model-1 (Trained on thin
stroke dataset-1)

The recognition model-1 trained on dataset-1 (with
thin stroke width) is tested on real-time data. In the case
of testing, a few symbols fed to the model are part of
the expression, and the accuracy achieved for individual
recognition of inputted symbols is listed in Table II.

Table III illustrates the recognition rate per each symbol
that has been correctly identified. The first row holds equals
symbols whose 2859 images have been corrected identified

Figure 15. Evaluation accuracy versus iterations for Model 2

Figure 16. Evaluation loss versus iterations for Model 2

from the set of 8368. The following formula then evaluates
the absolute accuracy.

Average Accuracy o f Model =
(total correctly recognized images)

/(total inputted images)

Thus, as the total correctly recognized symbol images are
2859, and the total symbol images fed to the model are
8368, an accuracy of 34.01% has been achieved.

b) Testing Analysis on Model-2 (Trained on varying
stroke dataset-1)

The recognition model-2 trained on dataset-2 (with
varying stroke width) is tested on real-time data. In the
case of testing, a few symbols fed to the model are part
of the expression. The accuracy achieved for individual
recognition of inputted symbols is listed in Table III.

Table II illustrates the recognition rate per each symbol
that has been correctly identified. The first row holds
equals symbols whose 1775 images have been corrected
identified from the set of 2002. The absolute accuracy is
then evaluated by the formula for accuracy of the model

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


802 Sakshi, et al.: Impact of Varying Strokes on Recognition Rate.

TABLE II. Accuracy of Model-1 on symbols from the unseen dataset

Symbols Correct/Total Accuracy
z 145/668 21.7
eq(=) 334/631 52.9
5 89/270 32.9
4 354/467 75.8
9 88/375 23.46
add(+) 408/568 71.83
div 116/558 20.78
y 54/638 8.46
0 46/470 9.78
3 166/415 40
2 56/345 16.23
mul 176/538 32.71
sub 439/626 70.12
6 103/424 24.29
8 58/421 13.77
7 134/466 28.75
1 93/488 19.05
Accuracy 2859/8368 34.01

TABLE III. Accuracy of Model-2 on symbols from the unseen dataset

Symbols Correct/Total Accuracy
eq(=) 1775/2002 88.66
5 1605/2002 80.17
4 1632/2002 81.52
9 1242/2002 62.04
add(+) 1894/2002 94.61
div 380/869 43.73
y 1275/2002 63.69
0 1865/2002 93.16
3 1475/2002 73.68
2 800/2002 39.96
mul 1921/2002 95.95
sub 1981/2002 98.95
6 1919/2002 95.85
8 1829/2002 91.36
7 982/2002 49.05
1 939/2002 46.09
Accuracy 23514/30899 76.09%

mentioned in 4.4.9.1.

Thus, as the total correctly recognized symbol images
are 23514, and the total symbol images fed to the model
are 30899, the authors achieved an accuracy of 76.09%.

F. Results and Discussions (Comparative analysis)
The accuracies achieved for individual symbols by

Model-1 and Model-2 have been compared and plotted
in Figure 17. The figure depicts that Model-2 (trained on
strokes of varying width) exhibited significantly effective
accuracies than the model-1 that is trained on strokes of
thin width. It is also an observation that Model-2 (trained
on strokes of varying widths) have extracted better features
than the model trained on thin stroke width. The blue bars

denote Model-1, and oranges ones depict the accuracies
exhibited by Model-2.

There have also been observations around the symbols
that gave considerably fewer accuracies like ‘÷’ was con-
fused with ‘+’, ‘z’ was misidentified with ‘2’. ‘1’ was
misinterpreted with ‘!’, ‘0’ was misperceived with ‘o’, ‘=’
when not in proper alignment was miscategorized into some
other symbol classes.

G. Conclusion and Future Goals
This paper revolves around noticing the impact and

influence of stroke characteristics on the accuracy of the
recognizer. The authors have considered a deep neural
network-based recognizer and tested it upon two types of

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 795-804 (Apr-23) 803

Figure 17. Comparative Analysis of Accuracies of Model-1& Model-
2

datasets. The one with a thin stroke width of as much
as 1px, whereas the other dataset included comparative
more comprehensive stroke and some varying width strokes.
It has been noticed that recognition accuracy has been
tremendously improved while experimenting with strokes
of wider width. When tested on unseen data, the model
that was trained on Dataset-1 (thin strokes) achieved an
accuracy of 34.01%. The contrary model trained on dataset-
2 (varying strokes) resulted in an accuracy of 76.09% when
tested on real-time unseen data. Based on training logs,
it can be presumed that the first model trained on thin
strokes extracts most of the features from the dataset during
the very first few epochs and the problem of overfitting
has a decent possibility. Our future goal is to extend this
case study on strokes of distinct pixels texture and include
several other complex datasets. Experimentation has the
scope to alter and experiment with layers of the deployed
neural network-based recognizer. Also, the symbols causing
ambiguity could be handled with special attention.

Sakshi is currently a full-time Ph.D. stu-
dent at Chitkara University, Punjab. She has
completed her Msc. in Computer Science
at Guru Nanak Dev University, Punjab. Her
area of interest is pattern recognition, ma-
chine learning, and deep learning. She has
published more than 10 papers in reputed
journals and conferences. She is deliberately
attending and presenting papers at several
national and international conferences.

Vinay Kukreja earned his Ph.D. Degree
in computer science from Chitkara Univer-
sity. He is presently working as a Pro-
fessor at Chitkara University, Punjab, In-
dia. He has more than 16 years of teach-
ing experience; has published more than
55 national/international papers in reputed
journals & conferences, 3 books, granted 3
patents and filed more than 20 patents.

Sachin Lodhi has completed his BTech
in 2021 from UIT, Barkatullah University,
Bhopal. He has been working on browser
automation for two years. His core research
areas include image processing, image anal-
ysis, automation, computer vision, machine
learning and IoT. He has in-depth and hands-
on knowledge in the field of Artificial intel-
ligence and Image Processing. He has done
many projects.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Background
	Defining Strokes
	Types of Strokes

	Motivation and Objective OF THE STUDY
	Preview of Literature: the state of art
	Implementation
	Dataset
	Dataset-1
	Dataset-2

	Experimental Setup
	Data Preprocessing
	Grayscale
	Binarization

	Data Augmentation
	Recognition Model
	Splitting
	Preparing output classes
	Model Initialization
	Construction of Recognizer (Adding layers)
	Integration with tensorboard (visualization)
	Optimizing Decision Parameters
	Compilation
	Training
	Testing on unseen real-time data

	Results and Discussions (Comparative analysis)
	Conclusion and Future Goals

	Biographies
	Sakshi
	Vinay Kukreja
	Sachin Lodhi


