
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 13, No.1 (Jan-2023)

http://dx.doi.org/10.12785/ijcds/130115

An In-depth Security and Performance Investigation in
Hyperledger Fabric-configured Distributed Computing Systems

Sidharth Quamara1 and Awadhesh Kumar Singh2

1,2Department of Computer Engineering, National Institute of Technology Kurukshetra, Kurukshetra-136119, India

Received 5 Jan. 2022, Revised 27 Sep. 2022, Accepted 12 Jan. 2023, Published 31 Jan. 2023

Abstract: Since its inception as one of the Bitcoin’s underpinning technologies, the concept of Blockchain has traversed a long way from
being merely a secure distributed ledger meant only for storing cryptocurrencies-based financial transactions to implementing innovative
and revolutionary distributed systems for multifarious purposes. One of the contemporary and out-of-the-box Blockchain-based projects,
namely Hyperledger, promises to make preeminent use of this technology by promoting cross-industry collaboration in developing
Blockchain-based solutions, thus, opening a new chapter in distributed computing. However, attributing to its underlying design,
leveraging Hyperledger-Fabric (HF) features still lacks an analysis from the perspective of security risks and efficiency concerns
pertaining to real-time distributed computing-based systems and applications. In this regard, we investigate the HF architecture, along
with various research endeavours undergone by researchers in recent years to combat its security and performance-related challenges.
In light of the identified limitations and bottlenecks, we present our conceptual proposal and feasible insights for improving the efficacy
of HF-based systems while not compromising their security.

Keywords: Blockchain, Distributed computing, Hyperledger Fabric architecture, Security and performance issues

1. Introduction
The advent of the Bitcoin project laid the foundation

of Blockchain technology that utilizes cryptography and
consensus to provide a distributed and tamper-free ledger
for storing financial transactions in a decentralized manner,
which is a significant milestone in the arena of distributed
storage and database technology [1]. Nevertheless, the ma-
jor limitations associated with Bitcoin included its restricted
applicability intended only for the direct transfer of Bitcoin
units from one account to another, and its lack of func-
tionality that could provide services like the creation and
trading of assets, e.g., Non-Fungible Tokens (NFTs), thus
preventing the usage of Blockchain technology to its full
potential [2], [3].

To overcome the limitations associated with Bitcoin and
other similar systems and harness the features of Blockchain
technology to their best, the idea of Ethereum was put
forward in 2013 and officially released in 2015 [4]. The
proposed system was meant for providing services like
allowing users to deploy distributed applications over it as
smart contracts. Besides transferring Ether cryptocurrency
units between accounts, these distributed applications can
flexibly and transparently offer a wide range of services,
like trading securities and NFTs. However, despite their
advantages over Bitcoin-based systems, Ethereum-based
Blockchain systems have two major limitations in their

architecture and execution mechanism. In Ethereum-based
systems, each smart contract needs to run over all the
participant nodes of the concerned Blockchain network,
thereby decreasing the transaction throughput [5]. Besides,
Blockchain utilized in these systems is permission-less.
However, for many enterprises that intend to use Blockchain
for specific distributed applications and performance re-
quirements, the permission-less nature of Blockchain is not
effective [6], [7]. And in many distributed applications,
particularly those meant for financial dealings, knowing
the real identity of the participants is crucial for anti-
money laundering initiatives. However, in the case of public
Blockchain-based systems, revealing the actual identities
may not always be safe for privacy preservation.

Some popular projects like Tendermint Chain [8]
and Quorum [9] were launched to provide permissioned
Blockchain-based systems. However, they inherited one ma-
jor limitation from previous Blockchain technologies; they
also follow the “order-execute-validate” principle, accord-
ing to which every instruction in the winner block decided
after executing the consensus function needs to execute over
all the permissioned nodes, thus creating a performance bot-
tleneck. Hence, to provide a broader pathway for promoting
communication and collaboration among various heteroge-
neous Blockchain systems, the project “Hyperledger” was
initiated by a group of companies under the umbrella of the

E-mail address: sidharthq.87@gmail.com, aksingh@nitkkr.ac.in http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/130115
http://journals.uob.edu.bh


180 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

Linux foundation in 2015. A Blockchain framework termed
“Fabric” came into existence under the realm of this project
as one of its key constituent technologies [10]. The key idea
behind the inception of this project was to promote cross-
industry collaboration for the development of Blockchain-
based distributed ledger technologies and systems, with the
main emphasis on the improvement of the efficiency and
reliability of these systems for enabling them to support
business transactions among major financial, technological,
and supply-chain organizations across the globe.

Although a plethora of research proposals have come
into the picture in recent years that promise to bring signif-
icant enhancements in the overall throughput and reduce the
latency of Hyperledger Fabric (HF)-based systems to har-
ness the real potential of Blockchain technology. Still, the
performance of these systems lags behind the conventional
transaction processing systems. Researchers have proposed
to increase the throughput of HF-based systems in terms
of Transactions per Second (TPS) (typically 3000-20,000
TPS) by bringing component-level and execution-related
changes in Fabric [11], still its throughput is not comparable
with the maximum throughput of conventional systems like
VISA, which are reported to have shown peak throughput
of 56,000 TPS [12]. Hence, the primary motivation behind
this paper is to analyze previous research endeavours and
propose mechanisms at the conceptual level that may bring
further improvements in the efficiency of HF-based systems
while not compromising their architectural security.

In-lined with the above-discussed aspects, the main
contributions of this paper are as follows:

• We briefly analyze the architecture, including the key
components and execution phases involving the inter-
action among these components of HF-based systems.
• We bring forward and analyze different security vul-

nerabilities associated with HF-based systems and shed
light on various research endeavours in recent years to
address the issues due to these vulnerabilities.
• We analyze various research proposals put forward

in recent years to improve HF-based systems’ perfor-
mance.
• Finally, we propose our theoretical mechanisms that

may reduce the response time of HF-based systems
and improve their efficiency while not compromising
their security parameters.

In the forthcoming sections of this paper, we discuss the
following aspects: Section 2 briefly summarizes the overall
architecture of the HF framework, including its key com-
ponents and phases involved in the applications’ execution.
Section 3 presents a taxonomy of different security issues
affecting HF-based applications. Subsequently, Section 4
highlights various research proposals in recent years to
address security issues and performance improvement in
HF-based systems. Based on their shortcomings, Section
5 presents our proposal as a first step towards improving

the throughput and efficiency of HF-based systems. Finally,
Section 6 concludes this paper with perspective research
directions.

2. Hyperledger Fabric framework: A technical back-
ground

Fabric is primarily a permissioned Blockchain-based
distributed computing system, which is both modular and
extensible in its design philosophy [13]. The modular aspect
of Fabric allows it to decouple the consensus segment
from the transaction execution and validation segment, thus
authorizing it to select consensus protocol according to the
application’s requirement. It is the first Blockchain-based
system that supports programming in general-purpose pro-
gramming languages, like C++, Java, and JavaScript. In the
following sub-sections, we briefly discuss the components
and execution phases as two major aspects of HF-based
systems.

A. System components
The constituents of a typical HF-based distributed com-

puting system are as follows, with their roles briefly sum-
marized in Table I:

• Ordering Service Nodes (OSNs): OSN nodes receive
the endorsed transaction(s), along with their read/write
sets from the client(s) of a particular channel that are
fed to the atomic broadcast service (generally provided
by Apache Kafka). Further, these nodes arrange the
transactions received from the atomic broadcast into
blocks. Block generation occurs when some prerequi-
site conditions become true, e.g., when the block has
achieved a pre-determined limit of a maximum number
of transactions or maximal limit on size (in bytes). The
ordering service derived from Apache Kafka is one of
the three consensus services currently available.
• Membership Service Provider (MSP): MSP is an ab-

straction that may have different instantiations accord-
ing to different requirement specifications. The default
MSP instantiation in Fabric-based systems provides
standard Public-Key Infrastructure (PKI) functionali-
ties for carrying out authentication tasks using digital
signatures and generally accommodates commercial
Certification Authorities (CAs). In Fabric-based sys-
tems, Blockchain networks can be established using
two modes: offline and online. In offline mode, a CA is
responsible for generating certificates and distributing
them to the nodes. Peers and orderers are registered
during the offline mode, while clients are enrolled
during an online mode by using CA-issued credentials.
• Ledger: Typically, Blockchain ledgers are imple-

mented using a Merkel tree data structure that helps
in efficiently storing and searching Blockchain ledger
data. In a Fabric-based Blockchain network, it has the
following sub-components: 1) a block store and 2) a
Peer Transaction Manager (PTM). Ledger block store
is implemented using append-only files and retains
block containing transactions. It also keeps indices for

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 181

TABLE I. Role of different architectural components in Hyperledger Fabric.

Component Role

Ordering Service
Nodes (OSNs)

• Channel re-configuration, when members of the channel broadcast a configuration update transaction.
• Access control services provisioning, where they act as trusted entities and may impose restrictions on
broadcasting of blocks or transaction endorsements to specific peer(s) according to the requirement.

Membership Service
Provider (MSP)

• Authorize the process of identity federation, e.g., when multiple corporations use a Blockchain network.
• The membership service system has a dedicated component installed at each node, where it performs:
1) authentication of transactions, 2) verification of the integrity of transactions, 3) signing and validating
transaction endorsements, and 4) authentication of other Blockchain-related operations.

Ledger • Maintaining the ledger and its state on a persistent storage.
• Simulation, validation, and ledger-update phase.

Peers

• Recording transaction outcome on a particular local state of the Blockchain ledger.
• Sending the outcome, along with the corresponding input/output set back to the client.
• Non-endorsing peers participate in validation of transaction blocks transferred to them by ordering
sub-system.

Chaincode • Simulating a particular transaction’s proposal, where chaincodes are termed as application chaincodes.
• Managing overall system’s parameters, where chaincodes are termed as system chaincodes.

enabling random access blocks or to some specific
transactions stored in a block. PTM is responsible for
storing the current system state in a versioned key-
value database. It maintains one tuple of the type (key
k, value v, version ve) for each unique key entry k
maintained by any chaincode, having its latest stored
value v with the latest version ve.
• Peers: Peers are the autonomous computing systems

in the Fabric Blockchain network.
• Chaincode: Chaincode, also termed a smart contract,

is the programming code that can be implemented in
any general-purpose programming language, like C++,
Java, NodeJs, etc.

A snippet diagram of the flow of messages among var-
ious components of a typical HF-based Blockchain system
is shown in Figure 1 [13].

B. Phases
Any Fabric-based Blockchain network executes appli-

cations (also termed as chaincode in Fabric’s terminology)
over it, in the following three phases:

• Execution phase: In this phase, a client creates a
transaction proposal, signs it, and then multi-casts it to
a subset of peers (shortlisted according to some specific
endorsement policy; sometimes termed as endorsers) in
the Blockchain network. After receiving the proposal,
each peer simulates it on its local Blockchain state
by executing the operation embedded in the proposal
payload on the transaction chaincode in a controlled
environment or container (generally Docker). Then,
each peer in the endorsement list stores the values
generated and read as input during simulation in write-
and read-set, respectively. Every peer in the shortlisted
subset creates a message called an endorsement (that
encodes read-set, write-set, endorser’s ID, transaction’s
ID), signs this message, and sends it back to the client
from which the corresponding transaction proposal
was received. The client keeps receiving the peers’
responses until it does not receive endorsements that

satisfy the policies in the chaincode. Once sufficient
endorsements are received, it assembles a message that
contains the transaction’s chaincode, meta-data, and
a set of endorsements and sends the message to the
ordering nodes.
• Ordering phase: In this phase, the transactions re-

ceived by various clients belonging to the same
Blockchain channel are totally ordered by the OSNs.
OSNs achieve this by atomically broadcasting the
endorsements received by the clients by using a con-
sensus algorithm on the sequence of transactions. At a
high-level interface, different services are provided by
an ordering service. It is essential to understand that
OSNs do not have any state of the Blockchain and do
not participate in the execution and validation of the
transaction. Because of this design philosophy, consen-
sus functionality is modular in Fabric and can be easily
updated or changed according to the requirements.
• Validation phase: It comprises the following three

steps: 1) In the first step, all the transactions within the
concerned block are evaluated in parallel concerning
the endorsement policies. This is carried out by Valida-
tion System Chaincode (VSCC), part of the Blockchain
configuration library; 2) In the second step, read-write
conflicts of the transactions are analyzed; and 3) The
ledger update phase executes in the end in which the
block is appended into the local state of the Blockchain
ledger. The state of the Blockchain is updated, and
validity check results in the first two steps are also
retained.

3. Taxonomy of security vulnerabilities in Hyperledger
Fabric-based systems
HF being a distributed ledger platform employing au-

tonomous computing agents (e.g., clients, peers, endorsers,
MSP), communication network and programming code
running over these components as chaincode, introduce
their own set of security-related challenges. On this basis,
security vulnerabilities pertaining to HF-based Blockchain
systems can be broadly classified into Fabric chaincode-

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


182 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

Figure 1. A general message-flow diagram of Hyperledger Fabric explaining the necessary messages and time spans.

related vulnerabilities, and HF Blockchain communication
network and nodes-related vulnerabilities, as detailed in the
forthcoming sub-sections.

A. Fabric chaincode-related vulnerabilities
Since Fabric chaincodes are written in general-purpose

programming languages (refer to Section 2-A), all the
anomalies that may affect routine programs due to the
loopholes inherent in programming languages or practices
may also influence Fabric chaincodes. Some of these major
security vulnerabilities are mentioned as follows:

• Vulnerability because of non-determinism in pro-
gramming or source code of fabric chaincode: For
transaction outcomes or endorsements submitted by the
endorsing peers to be accepted by the client, the main
requirements are that these should be in accordance
with the pre-determined endorsement policies and the
endorsements submitted by different peers should be
the same [14]. To this end, there should be no non-
deterministic instruction in the proposed transaction
chaincode. Otherwise, different peers will generate
disparate outcomes despite identical local Blockchain
states, affecting the overall execution phase. Some
possible causes of non-determinism are: 1) random key
generation and 2) usage of system timestamp or global
variables not stored in the Blockchain ledger.
• Vulnerability because of log injection: Logs are

databases intended for storing information that can
be used for the process of debugging, data collection,
and performance optimization. A significant volume of
work and important decisions are taken in the context
of various applications based on data stored in these

logs. Because of the important role a log plays, it is a
choice of following security attacks and exploitation by
the attackers: 1) fabrication of log messages, 2) corrup-
tion of log data, thus averting its normal processing, 3)
creation of emulators and dedicated applications that
provide the attacker with a chance to have a glimpse
on the processed logs, which may lead to the previous
two attacks [15].
• Vulnerability because of concurrent execution: If

multiple transactions are executing concurrently under
high load, then an accidental change in a particular key
version may cause key collisions [16]. Subsequently,
this may lead to double-spending attacks. For example,
on successful completion of the endorsing phase by
a transaction, an accidental modification in its key
version before reaching the validation phase may not
only lead to a program error but also permit the
inclusion of other transactions in the ledger, possibly
causing double-spending.
• Vulnerability because of chaincode sandboxing: Al-

though the chaincode of the proposed transaction sent
by the client executes in a controlled environment or
container (e.g., Docker) at every peer in the shortlisted
subset, still it can be exploited by an outside attacker
for carrying out malicious activities. The use of a
controlled environment imposes some constraints on
the chaincode’s execution behavior, albeit chaincode
is capable of conducting the following activities: 1)
installation of arbitrary software that acquires the
container environment; e.g., security applications like
Nmap, 2) performing port scan activities on public
or private networks, which are visible to the nodes,
3) exploiting discovered vulnerable hosts, 4) receiving

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 183

commands and transmitting back the results to a re-
mote malicious server, and 5) continuing self-execution
for an indefinitely long period. Remote Access Trojan
(RAT)-based malware can be created using these ca-
pabilities, thus leading to the generation of a foothold
in a corporate setting meant for scanning and attacking
other systems [15].

[NB: The vulnerabilities mentioned above are associated
with HF-based systems. Indeed, exposure of the underlying
consensus mechanisms may impact the usage of Blockchain
in these systems. However, more work is needed in this
direction.]

B. Hyperledger Fabric blockchain communication network
and nodes-related vulnerabilities
Since the autonomous computing nodes involved in

HF platform communicate with each other via messages
across the communication networks, there may be attempts
to exploit network-related loopholes and vulnerabilities to
carry out security breaches and unauthorized accesses on
these nodes. Some major vulnerabilities associated with this
aspect are as follows:

• Vulnerability because of compromised Membership
Service Providers: MSP is a crucial component of
an HF-based system since it is responsible for reg-
istering new members, maintaining the identities of
the members, and dealing with access rights of all
system nodes. Therefore, if the integrity of MSP is
compromised, all the administrative functionalities like
adding new identities into the Blockchain network and
removing some members from the network, as well as
granting and revoking access rights, will come under
the control of the attacker. Thus, an attacker can cause
damage to the system and may also carry out attacks,
such as double-spending attacks, invalid identification
attacks, etc. [17].
• Vulnerability because of endorsers whose identities

have been revealed: In HF-based systems, endorser
nodes are responsible for simulating transaction pro-
posals sent by the clients and validating them af-
ter receiving them from orderer nodes. Hence, when
the identities of endorsers are revealed, the follow-
ing attacks may be conducted [17]: 1) some specific
endorsers may be subjected to Denial of Service
(DoS) attacks either for causing the degradation of the
system’s performance or preventing the inclusion of
a particular transaction into the Blockchain, 2) each
endorser node has its independent and autonomous
course of action to determine the validity of transac-
tions. Therefore, if the identities of the endorsers are
revealed, it may cause conflicts among endorsing peers
and compromise their ability to act independently, and
3) a particular endorsing peer may leak confidential
information about other endorsing peers to an outside
adversary, which may lead to further attacks on en-
dorsers [18].

• Vulnerability because of underlying consensus pro-
tocols: Consensus process is one of the key con-
stituents of any Blockchain technology-based ecosys-
tem that assists applications in providing secure, re-
liable, and decentralized services. Because of their
significant role in these applications, there have been
many attempts to find loopholes in different consensus
protocols and various ways to exploit them for any
unauthorized and malicious task. Some of the ma-
jor security vulnerabilities associated with consensus
protocols include, but are not limited to single-point-
of-failure, system crash due to influence of malicious
ordering nodes, etc. [19].

4. Research endeavours for combating security and per-
formance issues withHyperledger Fabric-based systems
In the following sub-sections, we mention some im-

portant research endeavours carried out in recent years to
address the security- and performance-related challenges in
HF-based systems.

A. Combating security issues with Hyperledger Fabric-
based systems
A brief summary of research contributions addressing

security issues in HF-based systems is provided in Table II
and detailed as follows:

1) Dealing with fabric chaincode-related security issues
Fabric chaincodes are one of the core pillars of an HF-

based system. Since they encapsulate the computation part
for executing contracts and subsequent transactions, their
security is of paramount concern. The lack of transaction
privacy over Blockchain is a significant hurdle in the wide-
scale adoption of decentralized smart contracts. Stressing
this concern, the authors in [20] proposed a decentralized
smart contract-based system called “Hawk” to maintain
contractual security and on-chain privacy of users’ trans-
actions. Likewise, concerning the criticality of trustworthy
data feeds in developing decentralized Blockchain smart
contracts, the authors in [21] presented an authenticated
data feed system termed “Town Crier”. It is centered on
Intel’s Software Guard Extensions (SGX) technology, in
combination with the smart contract’s front end. It supports
numerous security features, including confidentiality, the
transmission of private data requests, and controlled access
to online data resources.

A formal analysis and verification mechanism for HF
chaincodes is developed in [22] by extending “KeY” [23],
a software developed for proving the correctness of a Java
application, by adding Java Modeling Language (JML)
specifications of Fabric Application Programming Interface
(API) into KeY. The authors of the concerned work devel-
oped techniques to reason about serialization and persis-
tence of the objects stored over the ledger. For correctness
verification and fairness validation of a smart contract, the
authors in [24] proposed an automated framework termed
“Zeus”, utilizing abstraction interpretation and symbolic

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


184 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

model checking. This framework takes high-level PL-based
smart contracts or chaincodes as input and generates cor-
rectness and fairness criteria in eXtensible Access Control
Markup Language (XACML)-styled templates.

2) Dealing with fabric blockchain network-related security
issues
Due to the visibility of transactions across the entire

Blockchain network, sensitive user information, in some
instances, is subjected to a lack of privacy. In this regard, the
authors in [25] presented a scalable and flexible architecture
for an HF-based MSP to make peer communications more
secure and reliable. The authors concluded that integrating
SGX in the MSP can secure it across all the phases (e.g.,
registration of the nodes, transaction’s signature verifica-
tion) of its working and deter an attacker from compro-
mising it. Regarding identity management of users, the
authors in [26] presented a method based on “Black Ridge”
technology for Cloud-based Blockchain applications. The
authors proposed that if network segmentation and traffic
separation are done based on user identities, multiple users
can share the identical Blockchain with reduced risk of
Distributed Denial of Service (DDoS) attacks over the
system.

Two other security limitations with regards to HF in-
clude 1) DoS attacks that may be carried out on endorsers
whose actual identities are revealed, and 2) a particular
member of the Fabric network after coming under the influ-
ence of an external attacker because of a wormhole attack,
may disclose sensitive information of Blockchain network.
For dealing with the first problem, the authors in [27]
proposed two approaches. The first approach uses a random
verifiable function for randomly selecting endorsers. In their
second approach, the identity of the endorsers is kept anony-
mous using pseudo-identity, i.e., endorsers use pseudonyms
while endorsing transactions. For dealing with the second
problem, the authors again proposed two approaches. In
their first approach, a group signature algorithm anonymizes
a peer’s identity. Their second approach used bi-linear
pairing to achieve the receiver’s anonymity.

In [28], the authors addressed the issue of biased vot-
ing by endorsers in Fabric-based Blockchain networks by
proposing a “Fabric’s Constant-Sized Linkable Ring Sig-
nature (FCsLRS)” in which the actual identity of endorsers
participating in the endorsement process is kept hidden. The
proposed scheme works on a threshold endorsement policy
according to which at least k out of n (where 1 ≤ k ≤ n)
endorsers need to endorse a transaction without explicitly
revealing their identities, where k is the threshold, and n
represents the total number of members in the endorsers
set.

B. Research endeavours for combating performance issues
with Hyperledger Fabric-based systems
One of the major drawbacks associated with HF and

other similar Blockchain-based technologies is that their
transaction throughput is comparatively lower compared to

conventional Relational Database (RDBMS)-based transac-
tion processing systems. Some significant research endeav-
ours have been observed in recent years for understanding
the performance bottlenecks in HF-based systems, along
with various mechanisms for improving their efficiency, as
discussed in the following sub-sections. Table III summa-
rizes these research contributions.

1) Improving efficiency by re-designing validation, verifi-
cation, and committing phases
A thorough study is conducted by [29] for understanding

variations in transaction throughput and latency in the
HF platform by bringing changes in the following system
configuration parameters: 1) chosen endorsement policy, 2)
size of the block containing transactions, 3) channel-related
aspects and parameters, 4) resource allocation policies, and
5) type of state database. Smaller block size is always
recommended for achieving a lower transaction latency in
cases where the rate of arrival of transactions is expected to
be lower than a particular saturation threshold. For attaining
lower transaction latency and higher throughput, heteroge-
neous peers should be avoided, and at least one validation
Central Processing Unit (CPU) should be allocated per
channel.

A study was carried out in [30] on the performance
of the validation phase in HF, wherein it is observed that
the validation of transactions is significantly slower with
the CouchDB database than with the LevelDB database.
The authors proposed re-designing the validation phase so
that validation of transactions and reads from the state
database could be carried out in parallel and executing
ledger and state database writes in parallel. The authors
in [31] proposed to remove lock contentions before access-
ing the cache, thus improving MSP caching. As a result,
the throughput is reported to increase to 25,000 TPS. A
critical performance-related study has been conducted on
HF 1.2, and an observation is made that although some
earlier proposals [29], [30], [31] reported substantial im-
provements; however, their main emphasis was on caching-
based upgrades. After the critical observations from their
study [11], researchers have recommended re-architecting
the Fabric-based system by incorporating several optimiza-
tions derived using common system design principles. The
proposed changes have been reported to bring performance
gains in end-to-end transaction throughput by a multiple of
7 (approximately 3000-20,000 TPS) while simultaneously
reducing the block latency.

2) Improving efficiency by analyzing mechanisms for query
retrieval execution process on state database and
Blockchain ledger in Hyperledger Fabric
The authors in [32] observed the importance of various

versions of a particular key in a typical HF-based system
as a source of temporal data. They proposed that this data
analytics can generate valuable business insights for various
use cases (e.g., in supply chain management). In HF-based
systems, current state data is stored on a database, while

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 185

TABLE II. A brief summary of some major research endeavours for addressing security issues in Hyperledger Fabric-based systems [✓/×: Aspect
is/not in the scope of the contribution].

Ref. Scope Empirical
verification Use case(s)

Key contribution Target security issue(s) Placement in HF-deployment Salient feature(s)

[20]
Decentralized smart contract system
“Hawk” for building privacy-preserving
smart contracts

Privacy exposure of transaction-related data
(e.g., transaction values, public keys) on
Blockchain

Between users and Blockchain • On-chain privacy
• Contractual security ✓

• Sealed second-price auction
• Crowdfunding
• Lottery game
• Swap financial instrument

[21] Authenticated data feed system “Town
Crier (TC)” Lack of trustworthy data feeds Between websites and smart

contracts
• Data feed authenticity
• Requests’ confidentiality ✓

• Financial derivative
• Flight insurance
• Steam marketplace

[22] Deductive formal verification approach
for HF smart contracts

Security exploits due to immutability and
exposure in public setting Developer and user-end • Serialization reasoning

• Object persistence × Rock-Paper-Scissors game

[24]
Automatic formal verification and
fairness validation framework “ZEUS”
for smart contracts

Immutability and bug patching difficulties
in smart contracts Developer-end • Correctness bugs handling

• Execution semantics encoding ✓ Simple Dice

[25]
Privacy preserving and trusted
membership service architecture in
distributed ledger

Visibility of transaction-related sensitive
information across network nodes Protocol-level

• QUOTE authenticity
• Selective attribute disclosure
• Auditing of auditor

× -

[26] User identity management method for
Cloud-based Blockchain applications

Distributed Denial-of-Service (DDoS)
attacks

Between Blockchain client and
Fabric/server-side application

• Network segmentation
• Traffic seperation ✓ -

[27] Anonymity mechanisms to randomize
and anonymize endorsers

Denial-of-Service (DoS) attacks on
endorsers and wormhole attacks on the
network

Fabric and channel-level

• Endorser randomization using
Verifiable Random Function (VRF)
• Endorser anonymization using
pseudonyms

✓ -

[28] Anonymous endorsement system and
ring signature scheme

Conflicts in transaction endorsement due to
identity disclosure Fabric-level

• Threshold endorsement policy
for transaction approval
• Prevents multiple signatures by
same endorser

✓ -

historical data is distributively stored on a set of blocks
across the file system. Because of this approach, analytics
of history data becomes quite cumbersome and inefficient.
To deal with this, the authors proposed two mechanisms
for improving the query execution on history data. In the
first mechanism, they created separate temporal indexes
on history data. They stored these indexes in the history
database as key-value pairs for fast retrieval of the history
database. In the second mechanism, instead of creating
additional key-value pairs for index data, they proposed to
transform the (key, value) tuple by embedding indexing data
with different key-value pairs and store this transformed
tuple (index, key, value) on history database, thus improving
the query retrieval process.

Transactions with concurrency-related conflicts are
one of the major performance bottlenecks in HF-based
Blockchain systems because such transactions are detected
in the final stages of execution, which causes inefficient
transaction processing. To address this concern, the authors
in [33] proposed a novel approach termed “Locking Mecha-
nism and Ledger Storage (LMLS)”. This approach consists
of two parts: 1) in the first part, a locking mechanism is
used to discover conflicting transactions in the initial stages
of transaction flow. If a particular transaction proposal is
initiated, first, it is tried to find out whether its input key is
locked or not, thus determining the possible conflict with
some earlier transaction, and 2) in the second part, accord-
ing to the locking technique used in the first part, database
indexes of transactions generating conflicts are modified
and temporally stored, thus improving the efficiency of
transaction processing.

A benchmark termed “Hyperledger Fabric GoLevelDB
(HLF-GLDB)” for performance characterization of database
accesses in HF-based systems is put forward in [34]. It
is proposed that by using HLF-GLDB, database accesses-
related performance parameters can be easily investigated

without having the need for building up a complete HF
environment. Using their proposed framework, the au-
thors made the following significant observations: 1) data
compression process is a major source of a performance
bottleneck, specifically during the database access phase.
Performance gains by 54% are reported by disabling the
data compression process, 2) database size is a significant
factor affecting HF’s performance significantly. Degradation
in performance by 25% is declared when the database size
is increased by 4 times, and 3) accessing a single large value
is comparatively faster than multiple component values that
are split from the corresponding single large value.

3) Improving efficiency by re-designing block propagation
phase
In a Blockchain-based distributed system, block propa-

gation delay is one of the leading causes that significantly
affect the TPS throughput parameter, in turn affecting the
scalability. In this regard, some major research proposals
put forward in recent years to bring improvements in the
block propagation phase are discussed as follows.

The authors in [35] proposed a new broadcast over-
lay architecture called “Kadcast” for Blockchain networks.
Kadcast helps achieve a better broadcast operation by uti-
lizing tunable redundancy and overhead. It uses a structured
overlay topology for delegating broadcast responsibilities to
sub-trees with decreasing height. The authors have proposed
incorporating Forward Error Correction (FEC) in their pro-
posed approach, for achieving a highly reliable and resilient
delivery of service, even in scenarios of packet loss and
adversarial node failures.

In [36], two major limitations with the infect-and-die
push-based block propagation approach of HF are identi-
fied: 1) high communication overhead and 2) low probabil-
ity of transferring blocks to all peer nodes. To overcome
these limitations, the authors proposed the “infect-upon-
contagion push” approach for the architecture of HF-based

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


186 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

systems. In this approach, every peer must disseminate
blocks to others as soon as they receive them in each round.
The main advantage of this approach over the infect-forever
model is that it promotes load balancing, as the entire
burden does not fall onto the peer initiating the rumor. In
this approach, a counter r (initialized to 0) is associated with
each block b. When a block b with counter r = i is received
by a peer node p for the first time, r is incremented by 1
for i to i + 1 by the peer, and then, block b is transferred
to a sample of other peer nodes chosen at random. This
dissemination process stops when the counter associated
with the block being disseminated becomes equal to a
pre-determined Time-to-Live (TTL) parameter value. The
notion of rounds is not required in this setting. The authors
also removed the tpush = 10ms timer associated with data
blocks, which is present in the original Fabric architecture,
to ensure unbiased randomness. They observed that as the
TTL parameter increases, most of the peer nodes are already
informed at the final stages of the dissemination phase, and
they keep forwarding the same blocks to each other.

The authors in [37] proposed a quick block dissem-
ination system for HF-based Blockchain systems based
upon Device-to-Device (D2D)-based 5G networks. The pro-
posed architecture utilizes locality-aware D2D networking
for achieving block dissemination at faster rates. Authors
have observed that in the conventional Gossip protocol,
there is a gradual increase in transactions with network
delay because of block propagation delay. However, authors
have claimed that there is significantly less variation in
transaction confirmation in their proposed system because
of the incorporation of a dynamically organizing overlay
structure that helps achieve fast block dissemination.

4) Improving efficiency by re-designing the consensus ap-
proaches
The initial version of HF was implemented without

using a Byzantine Fault Tolerance (BFT)-based consensus
service. To overcome this, the authors in [38] proposed a
consensus approach based on BFT-SMART state machine
replication/consensus library for HF. Using this technique,
throughput up to 10,000 TPS can be attained, and a
transaction can be irrevocably recorded in the Blockchain
in half a second despite consensus nodes being scattered
over different continents. The authors in [39] analyzed
that although asynchronous BFT protocols [40], [41], [42],
[43] are appropriate approaches for deploying Wide-Area
Network (WAN)-based permissioned Blockchain because
of their robustness against timing and DoS attacks, yet
some limitations tend to discourage the use of these proto-
cols in practical distributed Blockchain-based applications.
One major limitation is that protocol Honeybadger [43] is
observed to have higher latency than partial synchronous
protocols, e.g., in [44] because it is based on expensive
threshold cryptographic schemes [45], [46]. To address the
challenges mentioned above, the authors proposed “BEAT”
as a collection of practical asynchronous byzantine proto-
cols.

The authors in [47] observed that although leader or
coordinator-based schemes are effective in bringing consen-
sus in asynchronous Blockchain-based systems, their main
limitation is that they work on the assumption of partial
or eventual synchrony, and the leader will never fail. Its
integrity will be intact, which cannot always be guaranteed,
and a faulty leader can bring down the consensus algo-
rithm’s performance and impose its value on other members
[48], [44], [49], [50], [51], [52], [53]. To deal with this
limitation of leader-based consensus approaches, the authors
proposed a novel scheme termed “Democratic Byzantine
Fault Tolerance (DBFT)”. They presented a solution for the
binary consensus with the assistance of a weak coordinator
that eliminates the need for either signatures or random-
ization. A weak coordinator used here that cannot impose
its value has been used. In their proposed approach, non-
faulty processes can quickly agree on a value without the
coordinator’s help. The role of a weak coordinator here is
only to assist in the successful termination of the consensus
algorithm, if non-faulty processes have been analyzed that
the values proposed by them might all be decided.

A virtual voting-based consensus approach is proposed
in [54] to reduce the overall message communication over-
head in the network compared to the previous consensus
approaches. In this approach, all the nodes that want to
participate in the consensus process execute a virtual voting
procedure locally on a data structure called Hashgraph to
determine the temporal order of various events in the system
for reaching consensus on the sequence of those events.
Initially, different participant nodes may have different ver-
sions of the Hashgraph data structure in the earlier phases;
however, with time and with the help of regular gossiping
of its latest versions, all nodes will eventually have the same
version of Hashgraph. A typical example diagrammatic
representation of Hashgraph is shown in Figure 2. The
two events on different nodes connected by an arrow are
the events that also include message sending and receiving
operations besides other operations.

The authors in [55] thoroughly analyzed the Hashgraph
consensus mechanism and observed that a great amount
of effort is required to take a snapshot for the Hashgraph
to release the memory because of the complexity of the
confirmation protocol. Moreover, at least three rounds of
voting are required to reach a consensus. To overcome
these limitations, the authors in [54] devised a modified
and highly efficient Directed Acyclic Graph (DAG) scheme
derived from the Hashgraph consensus approach, termed
as Jointgraph. It incorporates a weak supervisor node in
the architecture of Hashgraph, because of which only one
round of voting is required. Every member node maintains
a copy of the Jointgraph and carries out virtual voting on its
copy, followed by the analysis of what vote the others would
have given to it. Members do not require to transmit their
votes, so zero bandwidth is needed other than for simply
gossiping of events. Supervisor nodes also keep track of
the behaviors and activities of the ordinary nodes, try to

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 187

Figure 2. A general diagrammatic representation of Hashgraph data structure.

identify any malicious behavior pattern, and take a snapshot
of the system that routinely replaces the ordinary nodes
if required. If it is detected by other member nodes that
the supervisory node has been hacked down and is not
functioning properly, then in that case, the consensus mech-
anism can shift to the Hashgraph approach. By repeatedly
simulating the Jointgraph consensus mechanism on different
scenarios, it is observed to be much less effective in latency
in comparison to Hashgraph.

5. Perspective research proposal
It can be observed that although cryptocurrencies were

created by emphasizing the decentralization notion, because
of practical limitations, e.g., the high amount of costs
associated with dedicated computing and storage systems
for mining and their associated maintenance and running
costs, make them only accessible to less than 20% mining
coalitions [56]. As a result, a byzantine quorum-based sys-
tem with a size of 20 can attain better decentralization at a
much lesser price than a Dedicated Proof-of-Work (DPoW)
mining-based system. This has inspired the development
of Scalable Byzantine Fault Tolerant (SBFT) replication
systems that can scale to several replicas and be optimized
for global WAN [57]. The proposed system is evaluated in
a world-scale deployment having 200 replicas, which can
withstand up to f = 64 Byzantine failures, where f denotes
the number of faulty replicas in the system. Researchers put
forward results of various experiments to bolster their claim
that SBFT-based systems can provide approximately 2 times
better throughput and 1.5 times better latency than Practical
Byzantine Fault Tolerant (PBFT)-based protocols [58].

One possible solution for increasing the throughput
within a Blockchain channel is that when every client
associated with a particular channel has achieved minimum

credibility and financial stake in the Blockchain system,
there should be the provisioning of the following:

1) allowing clients to submit their proposals for relaxing
the consensus process for next k consecutive transac-
tions, where k ≤ n (n being decided by the policy of the
overall network and concerned Blockchain channel),
and

2) choice regarding which consensus mechanism should
be used for k + 1th transaction.

These proposals can be piggybacked with ith transaction,
and only that client’s proposal will be accepted, whose
transaction will come at the top after the current consensus
execution. Hence, relaxing the consensus at regular intervals
may drastically improve the overall network throughput. If
a malicious client tries to take some undue advantage of
the above-mentioned relaxation, the credibility of all the
clients will be deducted. And suppose their credibility falls
below a certain threshold. In that case, they will have to
achieve that credibility again to be able to request relaxation
in consensus and their choice for consensus in the next
transaction.

Another possible way to decrease the response time and
increase the throughput is that when a particular client has
achieved some minimum credibility and financial stake in
the system, it should be allowed to have its final transaction
endorsement result be stored in a temporary stub (being
protected by Intel’s SGX) at all the peers, after having
being simulated and validated by a sufficient number of
endorsing peers such that all the references to the concerned
transaction be directed to the stub until the block containing
this transaction is created and broadcasted by the orderer
sub-system. To avail the service mentioned above, the client

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


188 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

TABLE III. A brief summary of some major research endeavours for addressing performance issues in Hyperledger Fabric-based systems [✓/×:
Aspect is/not in the scope of the contribution].

Ref. Scope Empirical
verification Evaluation metrics

Key contribution(s) Target performance issue(s) Placement Salient feature(s)

[11] Architectural optimizations in HF Scalability issues in BFT consensus algorithm Developer end
Independent optimizations concerning
caching, input/output, parallelism, and
data access

✓ Latency, Throughput, Execution time

[29] Empirical study for HF performance
characterization

Verification of endorsement policy, performance
parameter configuration, sequential policy
validation of block transactions, state validation
and commit

HF component-
level Throughput enhancement ✓

Throughput, Latency, CPU utilization,
Endorsement timeout, Lock holding
duration

[30] HF validation phase architecture

Absence of full utilization of computational
resources in sequential operations, performance
degradation in static information access from
state databases

Peer nodes
• Throughput enhancement
• Parallel database read/write
operations

✓ Throughput, Latency

[31] Profile-based approach for layered
bottleneck detection

Performance model and layered bottleneck
measurement from system execution profile Software nodes • Limited runtime overhead in profile

collection ✓ Throughput, Resource utilization

[32] Model for processing temporal queries
on HF

Limited Application Programming Interface
(API) for temporal data access from the file-
system, lack of support of temporal indexes

Fabric-level

• Performance enhancement in
temporal query handling
• Potential generalization to
analytical queries

✓
Join time, Index construction time,
Data ingestion time, State access cost

[33] LMLS approach for HF performance
optimization

Limited transaction throughput for transactions
with concurrency conflicts Transaction flows • Discovery of conflicting transactions

• Ledger storage optimization ✓ Throughput, Transaction efficiency

[34] HF performance characterization Database accesses HF database
systems

• Facilitates performance investigation
without the need of complete HF
environment setup

✓ TPS, Execution time breakdown

[35] Structured broadcast approach for
Blockchain networks

Message complexity and overhead in broadcast,
delayed or inefficient block propagation Protocol-level • Tunable overhead

• Reliable FEC ✓
Broadcast reliability, propagation delay,
network coverage, stale rate

[36] Gossip design in Fabric Broadcast performance and scalability Protocol-level
• Faster block dissemination
• Reduction in invalidated transactions
for concurrent applications

✓
Propagation time, latency,
bandwidth consumption

[37] Block transport system for 5G-enabled
HF Blockchain

Block dissemination delay, scalability, ledger
information inconsistencies Protocol-level • Status tracking of mobile peers

• Faster block propagation ✓
Transaction confirmation latency, Block
dissemination and reception delay,
TPS throughput

[38] BFT Ordering Service for HF platform Lack of BFT ordering service HF component-
level

• Increase in transaction processing
throughput
• Irrevocable transaction writing across
different continents

✓ Throughput, Latency

[39] Practical BFT protocols set BEAT for
fully asynchronous environments

High latency and low throughput in low
computational power scenarios Protocol-level • Modular design

• Extensible ✓ Throughput, Latency

[47] Leaderless Byzantine consensus algorithm
DBFT Deterministic consensus resolution Protocol-level

• Uses weak coordinator with no
proposal imposition
• Time and resilience optimal
• Does not require signatures

× -

[54] Swirlds hashgraph consensus algorithm
for replicated state machines

Increase in network traffic while ordering
transactions Protocol-level

• Bandwidth efficient due to virtual
voting
• Fair and fast

× -

[55] A DAG-based consensus algorithm for
consortium blockchains

Communication overhead, scalability, dynamic
user participation Protocol-level

• Member behaviour monitoring by a
supervisor
• Improved throughput and latency

✓ Throughput, Consensus time

will need to pay pre-determined fees to the system for a
specific transaction.

The diagrammatic representation of the flow of mes-
sages in the proposed approach that may reduce the overall
response time is shown in Figure 3.

6. Conclusion and future research directions
In this paper, we presented and analyzed the key aspects

associated with a typical HF-based Blockchain system.
Moreover, we shed light on major security-related issues
that may degrade the services of these systems, along
with various research proposals presented by researchers in
recent years to combat these issues. Besides, we outlined
some recent proposals for improving the efficiency and
throughput of HF-based systems. In the end, we briefly
presented our proposal comprising conceptual mechanisms
to improve the overall efficacy of these systems.

We have proposed theoretical approaches that can im-
prove the performance of HF and reduce the response
time for a particular transaction if these are implemented
carefully by taking cognizance of the security requirements
of the actual system. Therefore, the developers and adminis-
trators of the system have to identify the suitable parameters
required for determining the credibility requirements of the
clients of these systems through some policy specifica-
tions who want to avail benefits by using our theoretical

approaches. The mentioned aspects need to be evaluated
regarding a practical implementation in a given deployment
scenario.

Another major research problem that remains to be
explored is to increase the fault tolerance of Blockchain
channels in an HF-based network. Suppose some nodes in
a particular HF channel are not working correctly because of
malfunctioning. In that case, there should be provisioning to
offload some transactions to peers of any other Blockchain
channel of the same HF network without compromising
the security and confidentiality of the offloaded transac-
tions and maintaining the current efficiency of the system.
Although the advent of Trusted Execution Environments
(TEE) (e.g., Intel’s SGX) assisted in popularizing offloading
certain computing tasks [59], they have their own security-
related limitations that may be exploited to carry out relay
attacks, and subsequent physical and side-channel attacks
[60]. Despite the proposals put forward by researchers to
counter these attacks, these require incorporating dedicated
trusted embedded devices into the target hosts that may
increase the overall system costs and need prior approval of
the target hosts [60], [61]. Therefore, an important aspect
yet to be worked upon is to seek solutions to address the
security vulnerabilities of TEE without needing to integrate
additional dedicated and costly hardware devices into the
target systems so that the overall system costs should be

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 189

Figure 3. A proposal to record a particular transaction in a temporary stub at orderer nodes (after being simulated and validated by sufficient number
of endorsing peers) until the formal block recording the transaction is created by the orderer nodes.

within the budget of clients and corporations.

References
[1] S. Nakamoto, “Re: Bitcoin p2p e-cash paper,” The Cryptography

Mailing List, 2008.

[2] I. Alqassem and D. Svetinovic, “Towards reference architecture
for cryptocurrencies: Bitcoin architectural analysis,” in 2014 IEEE
International Conference on Internet of Things (iThings), and IEEE
Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom). IEEE, 2014,
pp. 436–443.

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE symposium on security and privacy.
IEEE, 2015, pp. 104–121.

[4] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1,
pp. 22–23, 2013.

[5] M. Vukolić, “Rethinking permissioned blockchains,” in Proceedings
of the ACM Workshop on Blockchain, Cryptocurrencies and Con-
tracts, 2017, pp. 3–7.

[6] A. Lohachab, S. Garg, B. H. Kang, and M. B. Amin, “Performance
evaluation of hyperledger fabric-enabled framework for pervasive
peer-to-peer energy trading in smart cyber–physical systems,” Fu-
ture Generation Computer Systems, vol. 118, pp. 392–416, 2021.

[7] A. Lohachab, S. Garg, and M. Bilal Amin, “Oclient: On-board client
clustering to bridge the interaction gap across multi-fabric adaptive
ecosystem,” 2021.

[8] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[9] E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy,
P. Novotny, V. Pandit, V. Ramakrishna, and C. Vecchiola, “Enabling
enterprise blockchain interoperability with trusted data transfer (in-
dustry track),” in Proceedings of the 20th International Middleware
Conference Industrial Track, 2019, pp. 29–35.

[10] C. Cachin, M. V. Sorniotti, and T. Weigold, “Blockchain, cryptog-
raphy, and consensus,” IBM Res., Zürich, Switzerland, Tech. Rep,
vol. 2016, 2016.

[11] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling
hyperledger fabric to 20 000 transactions per second,” International
Journal of Network Management, vol. 30, no. 5, p. e2099, 2020.

[12] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling
decentralized blockchains,” in International conference on financial
cryptography and data security. Springer, 2016, pp. 106–125.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference,
2018, pp. 1–15.

[14] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential
risks of hyperledger fabric smart contracts,” in 2019 IEEE Inter-
national Workshop on Blockchain Oriented Software Engineering
(IWBOSE). IEEE, 2019, pp. 1–10.

[15] H. Hasanova, U.-j. Baek, M.-g. Shin, K. Cho, and M.-S. Kim,
“A survey on blockchain cybersecurity vulnerabilities and possible
countermeasures,” International Journal of Network Management,
vol. 29, no. 2, p. e2060, 2019.

[16] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract
security: A software lifecycle perspective,” IEEE Access, vol. 7, pp.
150 184–150 202, 2019.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


190 Quamara, et al.: Security and performance investigation in HF-configured distributed computing systems.

[17] A. Davenport, S. Shetty, and X. Liang, “Attack surface analysis of
permissioned blockchain platforms for smart cities,” in 2018 IEEE
International Smart Cities Conference (ISC2). IEEE, 2018, pp.
1–6.

[18] E. Bellini, Y. Iraqi, and E. Damiani, “Blockchain-based distributed
trust and reputation management systems: A survey,” IEEE Access,
vol. 8, pp. 21 127–21 151, 2020.

[19] S. Brotsis, N. Kolokotronis, K. Limniotis, G. Bendiab, and S. Shiae-
les, “On the security and privacy of hyperledger fabric: Challenges
and open issues,” in 2020 IEEE World Congress on Services
(SERVICES). IEEE, 2020, pp. 197–204.

[20] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[21] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
crier: An authenticated data feed for smart contracts,” in Proceedings
of the 2016 aCM sIGSAC conference on computer and communica-
tions security, 2016, pp. 270–282.

[22] B. Beckert, M. Herda, M. Kirsten, and J. Schiffl, “Formal specifica-
tion and verification of hyperledger fabric chaincode,” in Proc. Int.
Conf. Formal Eng. Methods, 2018, pp. 44–48.

[23] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, “Deductive software verification–the key book,” Lecture
Notes in Computer Science, vol. 10001, 2016.

[24] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts.” in Ndss, 2018, pp. 1–12.

[25] X. Liang, S. Shetty, D. Tosh, P. Foytik, and L. Zhang, “Towards
a trusted and privacy preserving membership service in distributed
ledger using intel software guard extensions,” in International Con-
ference on Information and Communications Security. Springer,
2017, pp. 304–310.

[26] C. DeCusatis, M. Zimmermann, and A. Sager, “Identity-based
network security for commercial blockchain services,” in 2018
IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, 2018, pp. 474–477.

[27] N. Andola, M. Gogoi, S. Venkatesan, S. Verma et al., “Vulnera-
bilities on hyperledger fabric,” Pervasive and Mobile Computing,
vol. 59, p. 101050, 2019.

[28] S. Mazumdar and S. Ruj, “Design of anonymous endorsement
system in hyperledger fabric,” IEEE Transactions on Emerging
Topics in Computing, 2019.

[29] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance bench-
marking and optimizing hyperledger fabric blockchain platform,”
in 2018 IEEE 26th International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 264–276.

[30] H. Javaid, C. Hu, and G. Brebner, “Optimizing validation phase of
hyperledger fabric,” in 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). IEEE, 2019, pp. 269–275.

[31] T. Inagaki, Y. Ueda, T. Nakaike, and M. Ohara, “Profile-based detec-
tion of layered bottlenecks,” in Proceedings of the 2019 ACM/SPEC

International Conference on Performance Engineering, 2019, pp.
197–208.

[32] H. Gupta, S. Hans, K. Aggarwal, S. Mehta, B. Chatterjee, and
P. Jayachandran, “Efficiently processing temporal queries on hy-
perledger fabric,” in 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 2018, pp. 1489–1494.

[33] L. Xu, W. Chen, Z. Li, J. Xu, A. Liu, and L. Zhao, “Locking
mechanism for concurrency conflicts on hyperledger fabric,” in
International Conference on Web Information Systems Engineering.
Springer, 2020, pp. 32–47.

[34] T. Nakaike, Q. Zhang, Y. Ueda, T. Inagaki, and M. Ohara, “Hyper-
ledger fabric performance characterization and optimization using
goleveldb benchmark,” in 2020 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE, 2020, pp. 1–9.

[35] E. Rohrer and F. Tschorsch, “Kadcast: A structured approach to
broadcast in blockchain networks,” in Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, 2019, pp. 199–
213.

[36] N. Berendea, H. Mercier, E. Onica, and E. Riviere, “Fair and effi-
cient gossip in hyperledger fabric,” in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE,
2020, pp. 190–200.

[37] R. H. Kim, H. Noh, H. Song, and G. S. Park, “Quick block
transport system for scalable hyperledger fabric blockchain over
d2d-assisted 5g networks,” IEEE Transactions on Network and
Service Management, 2021.

[38] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in
2018 48th annual IEEE/IFIP international conference on depend-
able systems and networks (DSN). IEEE, 2018, pp. 51–58.

[39] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2028–2041.

[40] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure com-
putations with optimal resilience,” in Proceedings of the thirteenth
annual ACM symposium on Principles of distributed computing,
1994, pp. 183–192.

[41] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in Annual International
Cryptology Conference. Springer, 2001, pp. 524–541.

[42] C. Cachin and J. A. Poritz, “Secure intrusion-tolerant replication on
the internet,” in Proceedings International Conference on Depend-
able Systems and Networks. IEEE, 2002, pp. 167–176.

[43] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
31–42.

[44] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM Transactions on Computer Systems
(TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[45] J. Baek and Y. Zheng, “Simple and efficient threshold cryp-
tosystem from the gap diffie-hellman group,” in GLOBECOM’03.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 179-191 (Jan-2023) 191

IEEE Global Telecommunications Conference (IEEE Cat. No.
03CH37489), vol. 3. IEEE, 2003, pp. 1491–1495.

[46] A. Boldyreva, “Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme,”
in International Workshop on Public Key Cryptography. Springer,
2003, pp. 31–46.

[47] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Efficient
leaderless byzantine consensus and its application to blockchains,”
in 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA). IEEE, 2018, pp. 1–8.

[48] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication
for the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks.
IEEE, 2014, pp. 355–362.

[49] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2,
pp. 288–323, 1988.

[50] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal syn-
chronism needed for distributed consensus,” Journal of the ACM
(JACM), vol. 34, no. 1, pp. 77–97, 1987.

[51] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 3, no. 3, pp.
202–215, 2006.

[52] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Transactions on Com-
puter Systems (TOCS), vol. 27, no. 4, pp. 1–39, 2010.

[53] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić,
“The next 700 bft protocols,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 4, pp. 1–45, 2015.

[54] L. Baird, “Hashgraph consensus: fair, fast, byzantine fault toler-
ance,” Swirlds Tech Report, Tech. Rep., 2016.

[55] F. Xiang, W. Huaimin, S. Peichang, O. Xue, and Z. Xunhui, “Joint-
graph: A dag-based efficient consensus algorithm for consortium
blockchains,” Software: Practice and Experience, 2019.

[56] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” in Interna-
tional Conference on Financial Cryptography and Data Security.
Springer, 2018, pp. 439–457.

[57] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft:
a scalable and decentralized trust infrastructure,” in 2019 49th
Annual IEEE/IFIP international conference on dependable systems
and networks (DSN). IEEE, 2019, pp. 568–580.

[58] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[59] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution
environment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[60] A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Proximitee:
Hardened sgx attestation by proximity verification,” in Proceedings
of the Tenth ACM Conference on Data and Application Security and
Privacy, 2020, pp. 5–16.

[61] I. De Oliveira Nunes, X. Ding, and G. Tsudik, “On the root of trust
identification problem,” in Proceedings of the 20th International
Conference on Information Processing in Sensor Networks (co-
located with CPS-IoT Week 2021), 2021, pp. 315–327.

Sidharth Quamara is pursuing his Ph.D.
at the Department of Computer Engineer-
ing, National Institute of Technology Kuruk-
shetra (India). His main area of research is
Distributed Ledger Technology, specifically
Cryptocurrencies. He received his Master of
Technology degree from the Department of
Computer Science and Applications, Kuruk-
shetra University (India), in 2011, where
his area of research was Aspectized Web

Services. His research interests broadly include – Distributed com-
puting, Communication networks, Network and computer security,
and Transaction processing.

Awadhesh Kumar Singh received his Bach-
elor of Technology degree in Computer Sci-
ence from Madan Mohan Malaviya Uni-
versity of Technology, Gorakhpur, India, in
1988, and his Master of Technology and
Ph.D. degrees in Computer Science from
Jadavpur University, Kolkata, India, in 1998
and 2004, respectively. He joined the De-
partment of Computer Engineering at the
National Institute of Technology, Kuruk-

shetra, India, in 1991, where he is presently a Professor. Earlier, he
also served as the Chairman of the department during 2007–2009
and 2013-2015. His research excellence is acknowledged by the
paper in journals, IEEE Signal Processing Letters, Journal of Com-
puter Science and Technology, Wireless Personal Communication,
Journal of Super Computing, Journal of Information Science and
Engineering, Journal of Communication Networks and Informa-
tion Security, Journal of Applied Evolutionary Computation, and
alike. His research interests include distributed algorithms, mobile
computing, fault tolerance, and wireless communication.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Hyperledger Fabric framework: A technical background
	System components
	Phases

	Taxonomy of security vulnerabilities in Hyperledger Fabric-based systems
	Fabric chaincode-related vulnerabilities
	Hyperledger Fabric blockchain communication network and nodes-related vulnerabilities

	Research endeavours for combating security and performance issues with Hyperledger Fabric-based systems
	Combating security issues with Hyperledger Fabric-based systems
	Dealing with fabric chaincode-related security issues
	Dealing with fabric blockchain network-related security issues

	Research endeavours for combating performance issues with Hyperledger Fabric-based systems
	Improving efficiency by re-designing validation, verification, and committing phases
	Improving efficiency by analyzing mechanisms for query retrieval execution process on state database and Blockchain ledger in Hyperledger Fabric
	Improving efficiency by re-designing block propagation phase
	Improving efficiency by re-designing the consensus approaches


	Perspective research proposal
	Conclusion and future research directions
	References
	Biographies
	Sidharth Quamara
	Awadhesh Kumar Singh


