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Abstract: Deep learning techniques, particularly convolutional neural networks (CNNs), have led to an enormous breakthrough in
the field of medical imaging. Since the onset of the COVID-19 pandemic, studies based on deep learning systems have shown
excellent results for diagnosis through the use of Chest X-rays. However, these methods are data sensitive, and their effectiveness
depends on the availability and reliability of data. Models trained on a class-imbalanced dataset tend to be biased towards the
majority class. The class-imbalanced datasets can be balanced by augmenting them with synthetically generated images. This paper
proposes a method for generating synthetic COVID-19 Chest X-Rays images using Generative Adversarial Networks (GANs). The
images generated using the proposed GAN were augmented to three imbalanced datasets of real images. It was observed that
the performance of the CNN model for COVID-19 classification improved with the augmented images. Significant improvement
was seen in the sensitivity or recall, which is a very critical metric. The sensitivity achieved by adding GAN-generated synthetic
images to each of the imbalanced datasets matched the sensitivity levels of the balanced dataset. Hence, the proposed solution can
be used to generate images that boost the sensitivity of COVID-19 diagnosis to the level of a balanced dataset. Furthermore, this
approach of synthetic data augmentation can be used in other medical classification applications for improved diagnosis recommendations.
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1. Introduction
The COVID-19 pandemic that began in December 2019

is still affecting public health globally. Real-time PCR is a
standard diagnostic tool being used for pathological testing,
but the sensitivity data of these tests are not available. Chest
X-Rays are significantly being used as an alternative tool
for COVID-19 diagnosis due to their high sensitivity [1]
[2]. A variety of deep learning convolutional neural network
(CNN) based models have been proposed in the recent past
that accurately diagnose COVID-19 patients through the use
of chest X-rays [3] [4] [5]. However, the amount of COVID-
19 Chest X-Rays images available on public domains is
scant. The datasets are highly imbalanced, i.e. the amount of
data belonging to each class differs significantly in number.
The performance of deep learning CNN models degrades if
the input data is imbalanced as models trained on a class-
imbalanced dataset tend to be biased towards the majority
class [6]. One solution to this problem is the generation of
synthetic images that can be used to augment the dataset to
make it balanced. Research in this area is still in its early
stages, but it is getting positive attention [7].

Generative Adversarial Networks (GAN) is a powerful
tool to generate images without supervision [8]. Since its

inception in 2014 [9], GANs have been used to generate
artificial data in multiple studies. The Vanilla GAN frame-
work by Goodfellow et al. consists of two CNNs trained
in an adversarial process where one network generates
fake images and the other network repeatedly discriminates
between real and fake images. This study aims to design
a GAN framework for synthesising images from the set
of COVID-19 Chest X-Rays for the augmentation of the
real dataset to make it a balanced one. In addition, the
framework for the CNN model for COVID-19 classification
will be designed to test the effectiveness of the GAN
framework. This CNN model will be trained with a real
dataset as well as with an augmented dataset, and both
performances will be compared.

The organisation of this paper is as follows: section 2
outlines related work in the generation of synthetic images
using the GAN framework. The architecture of the proposed
GAN model for the generation of synthetic images has
been presented in section 3. Also, the architecture of the
CNN model that will be used for performance comparison
has been discussed in this section. Section 4 describes the
dataset used for the experiment, setup and flow of the
experiment process. Results obtained have been discussed
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in section 5. The last section discusses the conclusions and
future work on data augmentation using synthetic images.

2. RelatedWork
Many variations of GAN have been proposed in the

recent past to overcome the limitations of Vanilla GAN
proposed by Goodfellow et al. In Deep Convolutional GAN
(DCGAN), the training of the model is stabilised with a set
of constraints [10]. Conditional GAN (CGAN) trained the
model and generated output conditioned to some auxiliary
information [11]. Auxiliary Classifier GAN or ACGAN [12]
generated more coherent global images. LAPGAN [13] uses
cascaded CNN within the Laplacian pyramid framework
for image synthesis. WGAN [14] improved the training
stability and removed the mode collapse problem. InfoGAN
[15] learns disentangled representations in an unsupervised
manner. Progressive GAN or PCGAN can speed up as
well as stabilize training [8]. In PCGAN, both generator
and discriminator grow progressively, which results in the
generation of high-quality images.

In recent years, GAN has been used for image synthesis
in various domains such as text, music, video, etc.. Of
late, it has revolutionalised the field of medical imaging.
Talha Iqbal and Hazrat Ali proposed MI-GAN - a GAN
framework for Medical Imaging and tested it successfully
on retinal images [16]. There have been studies where
artificial synthesis of medical images using GAN has sig-
nificantly improved the accuracy of diagnosis. The most
commonly adopted GANs for image synthesis in these
studies are DCGAN, WGAN, and PGGAN, as they have
better training stability [17]. G. Wang et al. proposed a
DCGAN-based framework for augmentation of palm print
dataset that improved the recognition ability [18]. Frangi et
al. presented a 3D-Multi conditional GAN for augmentation
of brain MRI images for efficient tumor detection [7]. Frid-
Adar et al. modified DCGAN for augmentation of Liver
CT-scans that resulted in remarkable improvement in the
classification of liver lesions [19]. A PCGAN was trained
by Beers et al. for the synthesis of fundus images having
premature retinopathic vascular pathology [20].

Specific to GAN-based data augmentation of chest X-
Rays datasets, models proposed by Zulkifley et al., Sale-
hinejad et al. and Waheed et al. have demonstrated that
COVID-19 detection can be improved by augmenting the
dataset with synthetic images generated with their proposed
frameworks. Waheed et al. proposed COVIDGAN - the
GAN framework based on ACGAN for image synthesis
[21] that achieved a classification accuracy of 95%. The
GAN framework of Zulkifley et al. is based on DCGAN and
had an accuracy of 97% [22]. Their model did not perform
hyper-parameters tuning but applied separable convolution
and simplified spatial pyramid pooling module to produce
a lightweight network. Salehinejad et al. used a DCGAN-
based framework to augment real datasets of chest X-Rays
that increased the volume of data for training and balanced
the dataset. It resulted in a significant improvement in clas-

sification performance [23]. In all these models, along with
the GAN framework, the architectures of the classification
models were also discussed. These classification models
were used for the performance evaluation of the proposed
GAN frameworks. But Loey et al. presented a GAN model
with deep transfer learning for coronavirus detection in
chest X-ray images [24]. They used three deep transfer
models - Alexnet, Googlenet, and Restnet18. These models
contain a small number of layers that help in reducing the
complexity, the consumed memory and the execution time.

3. Proposed Architecture
This section describes two architecture –

1) GAN for generating chest X-Ray images and
2) CNN for COVID-19 detection.

A. GAN Framework
The proposed framework is loosely based on DCGAN

architecture that has been strengthened by incorporating the
features of WGAN to provide more stability. The base ar-
chitecture of GAN follows the DCGAN architecture of Rad-
ford et al. [10] that has two constituents - a discriminator D
and a generator G as shown in Figure 1. Both the G and D
networks are deep CNNs and are trained concurrently. The
task of generator G is to learn the mapping of random input
noise to given 2D input data. In contrast, the discriminator
D maps these 2D images to an output representing the
probabilities of the image being ‘real’ or being ‘fake’.
Both these components work in a minimax fashion where
generator G tries to minimise the loss by producing more
realistic images, and discriminator D tries to maximise this
loss by learning how to differentiate between real and fake
images more accurately. Two concurrent feedback loops run
through the model that pit against each other to produce
optimal results.

Mathematically, Let

Pz = simple noise distribution of input z

Pr = original data distribution over real sample x

Pg = generated image distribution over data x

Generator G gets input from input samples and maps
G(z) to Pg. The goal of G is to achieve Pg = Pr. The image
x generated by G becomes the input for D. Output of D
is D(x), probability of x being a real sample. During the
training, discriminator D tries to maximize D(x) for images
with x ’ Pr and minimize D(x) for images with x Pr. G
generates images G(z) to fool D during training such that
D(G(z)) � Pr. Therefore, G is trained to maximize D(G(z)),
or equivalently minimize 1 - D(G(z)) [19]. Thus, the loss
function can be represented as

Ex[log(D(x))] + Ez[1 � log(D(G(z))] (1)
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Figure 1. Visualisation of GAN architecture - Generator and Discriminator
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Training of these two adversarial networks is the opti-
mization of this loss function. The traditional loss functions
are based on Kullback-Leibler (KL) and Jensen-Shannon
(JS) functions. But here, Wasserstein loss was applied to
both networks for stabilising the training. Wasserstein loss
measures the distance between two probability distributions,
Pg and Pr [25]. Also known as Earth Mover (EM) Distance,
it is essentially the e� ort required to move one distribution
to the other. It is represented as

L(pr ; pg) = W(pr ; pg) = max
wW

Expr [ fw(x)] � Ezpr [ fw(g� (z))]
(2)

The function f belongs to the family of K-Lipschitz
continuous functions parameterised by w. Discriminator D,
during training, learns a K-Lipschitz continuous function
and calculates Wasserstein distance. As the loss function
decreases in training, the Wasserstein distance gets smaller
and the generator model's output grows closer to the real
data distribution.

For Vanilla GANs, the discriminator gives a binary
classi�cation on the input as real or fake, whereas, in
WGAN the discriminator measures the realness or fakeness
of the image. Thus, the discriminator is no longer a binary
classi�er. Instead, it is used as a regression model that
gives the EM distance between the input and the real data
distribution. The bene�t of using this loss function over the
traditional functions is that the training process becomes
much more stable and produces better quality images.

Proposed GAN architecture is di� erent from other
DCGAN-based architectures in the following ways:

1) DCGAN architecture of Radford et al. had a set of
constraints for stabilized training. In the proposed
model, the constraints were not strictly applied. The
di� erences are as follows:

a) batch normalization was not applied to convo-
lutional layers,

b) instead of LeakyRelu activation, only Relu
activation was used in both generator G and
discriminator D.

2) Instead of the traditional loss functions, Wasserstein
loss is applied to stabilise the training.

The architectures of generator and discriminator are dis-
cussed below:

Generator Architecture:A diagrammatic representation
of the generator model is given in Figure 1. It takes a noise
vector as input, derived from a random uniform distribution
spread between the values -1.0 and 1.0. This vector is then
reshaped using a dense layer to the dimensions of 128x8x8
and fed to convolution blocks. Four sequential convolutional
blocks are used in the model, where each block consists of
a convolution layer, an upsampling layer, and an activation

layer. The convolution layers apply the �lter maps to the
input using a kernel size of 5x5 and the output is fed to the
upsampling layer. The image is then upsampled by 2x2 i.e
the rows and columns are repeated two times each. Finally,
the activation layer applies the tanh activation function to
the image and passes it to the next block. The �nal output
of the model is of size 64x64x3.

Discriminator Architecture: The discriminator model
takes an input image of size 64x64x3 and gives a single
output giving the EM distance. The model has a series of
convolutional blocks consisting of a convolutional layer, a
max-pooling layer, and an activation layer. Similar to the
generator, the convolution layer applies the �lter maps on
the input using a kernel size of 5x5. Then, the output is fed
to the max-pooling layer which downsamples the image or
halves it by using a pool size of 5x5. The activation function
applied to the image is tanh. The output is then fed to the
next convolutional block, which performs similar functions.
After three such processes, the image is �attened and fed to
a dense layer consisting of 1024 neurons. The �nal output
layer has one neuron and sigmoid activation is applied to it.
The architecture of the discriminator is visualised in Figure
1.

B. CNN Architecture
Many CNN architectures have been proposed by various

researchers for the detection of chest diseases using chest
X-Rays [26] [27] [19]. The CNN model, that will be used to
compare the performance parameters, has been derived from
these studies. The proposed CNN model consists of four
convolutional blocks each comprising of a convolutional
layer, activation layer, and a max-pooling layer. The �rst
two convolutional layers have a �lter size of 3x3 and the
next two have a �lter size of 5x5. The pool size used for
max-pooling is 2x2 in all four blocks, and the activation
function used is Relu. The output of these convolutional
blocks is �attened and fed to a fully connected dense layer
having 1000 neurons. Finally, sigmoid activation is applied
in the softmax layer to get the binary classi�cation output.
The model is compiled using binary cross-entropy loss
and Adam optimizer. A diagrammatic representation of the
model and its working is given in Figure 2.

4. Experiment
A. Dataset

To generate the datasets for experiment purposes, im-
ages were collected from publicly available datasets of
COVID-19 X-Rays on Github [28] and Kaggle [29]. Figures
3(a) and 3(b) illustrate some of the images collected from
these domains. It was observed that only a scarce number of
COVID-19 positive chest X-Rays were available on these
public domains. Also, the dataset was a mix of X-ray images
and CT-Scan images. CT-Scans, X-Rays of a single lung,
and side X-Ray images were manually removed to enhance
the quality of the dataset. Finally, 352 COVID-19 positive
X-Rays were selected to be used for the generation of
synthetic images. Another set of 353 Normal chest X-Rays
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Figure 2. Performance evaluation of augmented dataset using CNN model

(a) (b)

(c)

Figure 3. (a) COVID-19 infected real chest X-Rays (b) Normal Chest X-Rays (c) COVID-19 infected generated chest X-Rays

were also selected and a balanced dataset of 705 images
was created having two class labels – Normal and COVID-
19. This dataset was called DS4-B. Further, three datasets
of imbalanced class data were created. These datasets were
named DS1–I, DS2–I, and DS3-I. The ratio of COVID-
19 X-Rays to Normal X-Rays varied from 2:15, 1:5, and
2:5 in these datasets respectively. The composition of these
datasets is shown in Figure 4.

B. Setup and Process Flow
CNN and GAN architecture have been implemented

using Keras deep learning libraries with Tensor�ow frame-
work in the back-end. All training and testing processes
were executed on an Intel Broadwell 6 vCPU with 15GB
RAM. The �rst step was the generation of synthetic images.
As depicted in Figure 5, the process started with simulta-
neous training of Generator and Discriminator using 352
real images of COVID-19 positive chest X-Rays. In the
�rst step, images were resized and normalised from [0,
255] to [1, 1]. Normalisation was applied to change the
range of pixel values. The input images were converted into
a range of more familiar pixel values. For optimisation,
Adam optimizer was used due to its known e� ciency.
The Generator had around 9 million parameters and the
Discriminator had 2.5 million parameters. The GAN model
took around 5 hours to train. The training process was run

for 400 epochs with a batch size of 64 and a learning rate
of 0.002.

The trained generator was used to generate synthetic
images for balancing the class di� erence in the three
imbalanced datasets - DS1-I and DS2-I and DS3-I. Three
new balanced datasets were created as DS1-B, DS2-B,
and DS3-B from DS1-I, DS2-I, and DS3-I respectively by
augmenting them with generated synthetic images. Some
samples of images generated have been illustrated in Figure
3(c). It was ensured that the size of all datasets will be the
same and balanced datasets have the same class composition
as of DS4-B. The class composition of these four balanced
datasets is shown in Figure 6. The next step required testing
the performance of the proposed CNN model for COVID-
19 diagnosis on these datasets. The training set and test
set were split before image augmentation to ensure that
the accuracy received on the testing set was unbiased. The
CNN model has 2.3 million parameters and was iterated on
each of the seven datasets for 100 epochs with batch size
64 and a learning rate of 0.0001. The process �ow of this
performance evaluation is depicted in Figure 2.

5. Results andDiscussion
The performance of the CNN model is evaluated based

on the following metrics:
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Figure 4. Class Composition of unbalanced datasets created for the experiment

Figure 5. Process Flow of generating synthetic Images

� Accuracy: Ratio of correctly predicted outcomes to
all the prediction

Accuracy=
(T N + T P)

(T N + T P+ FN + FP)
(3)

� Precision: Number of correct predictions

Precision=
T P

(T P+ FP)
(4)

� Recall/Sensitivity: Also known as True Positive rate,
it is the number of correct positive predictions out of
all the positive predictions.

Recall=S ensitivity=
T P

(T P+ FN)
(5)

� Speci�city: Also known as True Negative rate, it is
the proportion of actual negatives that were correctly
predicted.

S peci f icity=
T N

(T N + FP)
(6)

� F1 Score: Harmonic mean of precision statistic and
the recall statistic. In comparison to Accuracy, the F1
Score is a better measure for estimating incorrectly
classi�ed cases

F1 S core= 2 �
(Precision� Recall)
(Precision+ Recall)

(7)

Here TP is true positive, TN is true negative, FP is false
positive and FN is false negative. The values observed for
the above-discussed parameters for all the seven datasets for
COVID-19 diagnosis using the proposed CNN model have
been presented in Table I and Table II. DS1-I, DS2-I, and
DS3-I are imbalanced datasets of actual images. DS1-B,
DS2-B, and DS3-B are their balanced counterparts consist-
ing of synthetic images. DS4-B is a balanced dataset of real
images. Performance of all experiments was measured using
test sets that were isolated from the augmented images and
the training set to ensure real and fair results. The confusion
matrices of augmented balanced datasets DS1-B, DS2-B,
and DS3-B are shown in Figure 7, Figure 8, and Figure
9 respectively. Figure 10 depicts the confusion matrix of
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Figure 6. Class Composition of balanced datasets created from unbalanced datasets by augmenting with generated images

DS4-B, the balanced dataset of real images. Table I is a
comparison of performance parameters of the balanced and
unbalanced dataset for each of DS1, DS2, and DS3. The
performances of all the balanced datasets DS1-B, DS2-B,
DS3-B and DS4-B have been compared in Table II.

Figure 7. Confusion Matrix for Dataset DS1-B

In medical classi�cation domains, Sensitivity or Recall
is a very critical metric as classifying true positives correctly
holds higher importance from the context of a patient. The
sensitivity of real-time PCR, the standard diagnostic tool
being used for COVID-19 detection, is largely unknown
and therefore the results obtained cannot be assessed or as-
certained with con�dence. Thus, the main aim of the project
was to improve the sensitivity of the model. It was observed
that the impact of data augmentation with synthetic images
on sensitivity metrics was quite discernible. By comparing
the F1 score and sensitivity values for all datasets given
in Table I it was observed that by adding augmented

GAN-generated synthetic images to balance the imbalanced
dataset, the model's performance showed an increase and
matched the results obtained using the balanced set. The
sensitivity obtained by the model signi�cantly increased
from

� 85% to 96% for Dataset DS1

� 88% to 97% for Dataset DS2

� 92% to 98% for Dataset DS3

Figure 8. Confusion Matrix for Dataset DS2-B

A visual depiction of this performance is illustrated in
Figure 11. It can also be seen that Dataset DS1 which
had the least quantity of minority class images exhibited a
maximum increase in performance. Since all models were
trained on an eclectic dataset and tested against isolated
test sets it can be ensured that GAN-generated images do
not over�t the model and produce equally accurate results
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TABLE I. Comparative of performance of balanced and imbalanced datasets

Dataset Accuracy Precision Speci�city Sensitivity F1 Score

DS1-I (Imbalanced) 0.977 0.973 0.99 0.857 0.986
DS1-B (Balanced) 0.981 0.987 0.987 0.966 0.987

DS2-I (Imbalanced) 0.966 0.972 0.985 0.888 0.978
DS2-B (Balanced) 0.982 0.987 0.987 0.972 0.987

DS3-I (Imbalanced) 0.977 0.968 0.99 0.928 0.983
DS3-B (Balanced) 0.985 0.987 0.987 0.983 0.987

TABLE II. Comparative of performance of balanced datasets of synthetic images with the balanced dataset of real images

Dataset Accuracy Precision Speci�city Sensitivity F1 Score

DS1-B 0.981 0.987 0.987 0.966 0.987
DS2-B 0.982 0.987 0.987 0.972 0.987
DS3-B 0.985 0.987 0.987 0.983 0.987
DS4-B 0.988 0.986 0.986 0.990 0.986

Figure 9. Confusion Matrix for Dataset DS3-B

for all sets. Here it was observed that the proposed GAN
model is capable of improving existing performance results
even with the minimal number of COVID-19 Chest X-Ray
images.

Another signi�cant observation from Table II is that
the performance parameters achieved with the augmented
images were at par with the balanced real images dataset.
The datasets DS1-B, DS2-B, and DS3-B that were aug-
mented with GAN-generated synthetic images achieved
the same performance parameters as that of the DS4-B
dataset of actual images. In other words, if the results
obtained by the classi�cation model on the DS4-B dataset
are set as benchmark results, then it was observed that the
images generated by the proposed GAN model boosted the
performance obtained by all three imbalanced datasets to
this benchmark level. Although all three datasets contain
di� erent ratios of imbalanced classes, after balancing the

Figure 10. Confusion Matrix for Dataset DS4-B

sets by adding augmented images the results are at par with
the balanced dataset.This shows that the proposed solution
can be used to create images that boost the sensitivity of
the model in every case to the level of a balanced dataset.

TABLE III. Comparison of average accuracy of the proposed model
with average accuracy from other GAN-based data augmentation
models for Chest X-Rays.

Model Type of GAN Accuracy

Proposed Model DCGAN & WGAN 98
[21] ACGAN 95
[22] DCGAN 97
[24] GAN with AlexNet 80.6
[24] GAN with GoogleNet 85.2
[24] GAN with Resnet18 100
[23] DCGAN 92
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Figure 11. Improvement in sensitivity with augmented images

Table III makes a comparison between the average
accuracy of the proposed model with those from other
GAN-based data augmentation models for Chest X-Rays.
Waheed et al. [21] were able to achieve the sensitivity of
90% and accuracy of 95% with their ACGAN-based model
for generating synthetic COVID-19 infected Chest X-Rays
on a similar dataset. DCGAN-based model of Zulki�ey
et al. had an accuracy of 97%. Although DCGAN-based
model of Salehinejad et al. using Resnet18 for classi�cation
[23], could achieve 100% accuracy but all other models
had accuracy and sensitivity less than the proposed model.
Hence, the proposed architecture for GAN can be consid-
ered e� cient and e� ective.

6. Conclusions
In this paper, a model has been proposed for generating

synthetic COVID-19 positive chest X-Rays. The proposed
framework is loosely based on DCGAN architecture but
strengthened by WGAN to provide more stability. The
images generated with the proposed GAN were used to
resolve the data imbalance problem in COVID-19 datasets
available in the public domain. The synthetic images were
generated using the proposed GAN and then added to three
imbalanced datasets of real images. The ratio of COVID-
19 X-Rays to Normal X-Rays varied from 2:15, 1:5, and
2:5 in the three imbalanced datasets. Augmenting these
imbalanced datasets with generated images not only brought
variability in the training dataset but proved quite e� ective
in improving the sensitivity of the CNN model for COVID-
19 diagnosis. The sensitivity improvement observed in
these three augmented datasets was 11%, 9% and 6%,
respectively. And most signi�cantly, the sensitivity achieved
in all these datasets was almost the same and matched
the sensitivity score of the balanced real images dataset.
Thus, if the performance parameters of the balanced real
images dataset are taken as benchmark results, then it can
be concluded that the images generated by the proposed
GAN model boosted the performance obtained by all three
imbalanced datasets to this benchmark level. These results
prove that the proposed model is e� ective on all kinds of
data imbalance and can be used e� ectively in all cases of
COVID-19 data scarcity.

The future scope of this research includes extending it
to cover a wider range of pulmonary diseases. Furthermore,
similar synthetic data augmentation framework design will
be worked upon for other medical classi�cation applica-
tions.
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