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Abstract: A simpler statistical interference model for millimeter-wave (mmWave) cellular networks for use in 5G is proposed in this
work. The accuracy of this model is examined in an outdoor cellular network with different scenarios. The interference accuracy
coefficient (IAC) is introduced to quantify the accuracy of predicting an outage event and the similarity between various interference
models. In this paper, different signal-to-interference-plus-noise-ratio (SINR) distributions are used and a new framework has been
proposed to quantify the similarity between SINR distributions of existing interference models. It is observed that the accuracy of
millimeter-wave cellular networks is modeled by simpler interference models which are less erroneous compared to the models used for
performance analysis in microwave networks. The results obtained in this work clearly show that in the mmWave networks scenarios
with obstacles, the simple interference models are accurate enough. However, in omnidirectional communications, the interference
models required are quite complex. Furthermore, in this work, the interference in mmWave networks with a deterministic channel is
also modeled using the proposed Two-Ball interference model. This model gives the appropriate results of blockage events due to
outages in mmWave networks.
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1. Introduction
The unprecedented demand of traffic by users motivates

the wireless service providers to leverage the extremely
high frequency or mmWave band frequencies. The usage of
mmWave ultrawideband networks with larger band breadth,
enables ultra-low latency, high data rate, massive connectiv-
ity, and low battery consumption in 5G cellular networks[1].
From the numerical and analytical results obtained in this
paper, it is evident that the narrow beams radiated from
antennas at mmWave frequencies are highly sensitive to
the density of obstacles present in the network environment
[2]. The varying density of obstacles significantly affects the
signal attenuation and therefore the distribution of SINR.

Interference management in 5G networks is a complex
process because a large number of small and heterogeneous
devices are interconnected. These are referred to as het-
erogeneous networks or HetNets. This type of architecture
gives rise to multiple tiers of different sizes and transmission
powers. Therefore simple modeling of interference in 5G
mmWave networks is a major concern.

One of the distinguishing characteristics of mmWave

communications is blockage or high penetration loss. To
determine the outage probability due to blockage, SINR is
used as an evaluation metric. The human body accounts for
a penetration loss of 20-35 dB in mmWave communication
[3]. From the mathematical expression of SINR, it de-
pends on multiple parameters like antenna patterns, channel
estimation errors, first-order reflection in millimeter-wave
networks, receiver design, and transmission power [4], [5].
This makes it challenging to accurately design the 5G
mmWave networks on basis of SINR. This results in the
motivation for the development of simpler interference
models to address these issues through mathematical mod-
eling. Furthermore, for mathematical analysis, the proposed
interference models should be tractable. These interfer-
ence models for 5G millimeter-wave networks should be
accurate and adequate to simplify the design parameters
in a particular network setting. In this work, a statistical
approach is used to model interference in 5G mmWave
networks. Furthermore, a parameter called an Interference
Accuracy Coefficient [IAC] has been introduced to quantify
the similarity between various interference models. In the
proposed model a typical outdoor cellular network is taken
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into account.

The works carried out earlier to study the interference
modeling in the mmWave frequency band take into consid-
eration the single link communication system[6]. Therefore,
the realistic measurements in operational 5G cellular net-
works are lacking in the literature. To bridge this divide, we
have carried out the calculations at commercial frequency
ranges of 5G at sub-6 GHz and 28 GHz frequencies. This
can help in the extension of this work to explore and de-
velop various interference models in different environmental
scenarios.

Various existing mathematical approaches like Bhat-
tacharya distance, Kullback-Leibler, and Hallinger distance
are used to measure the similarity between any two dis-
tributions. From the calculations summarized in Table I
and Table II, it is clear that the distance between the
probability distributions is evaluated and mapped in entire
support to only one real value. In such cases, the results
can be misleading because possibly the two distributions
can be very close or similar in certain required ranges of
SINR. Beyond these ranges, the values of SINR can diverge.
These existing distance measures used in our work compare
two distributions over the entire range, this results in large
dissimilarity or distance between two distributions and leads
to mistakenly avoiding the use of a simplified interference
model. However, IAC compares the distance between two
distributions only at a specific threshold which gives more
accurate results.

In this work, a new proposed framework is used to quan-
tify the similarity between SINR distributions of existing
interference models. The comparison of the existing and
the proposed method shows the performance improvement
offered by the proposed technique. Hence this work com-
plements the existing techniques present in the literature on
interference management.

In this paper, various methods are used to compute
and model the distribution of SINR. These interference
models consider many trade-offs between accuracy and
complexity. IAC is implemented in the microwave and
mmWave scenarios with a simulation of a Poisson network
using Monte Carlo simulation (MCM). A simpler inter-
ference model for mmWave networks is developed with
natural assumptions like negligible side-lobes and infinite
penetration loss. The accuracy of interference models is then
mathematically evaluated in both of these network settings.
The results are simulated and plotted for further evaluation.
The parameters used for evaluation are miss-detection and
false-alarm explained in detail in the following sections.
Depending on the modeling of multiple interferers, MAC
protocols, antenna patterns, design of receiver, complexity,
and network topology, an interference model can be de-
signed [5].

The rest of the paper is organized as follows. In Section
2 mathematical analysis of existing distance measures is

carried and results are compared to the proposed method.
An exhaustive literature survey of various interference
models that can be used in mmWave networks is carried
out. Based on this survey, a statistical interference model
is proposed that can correctly predict outage events and
model an interference in 5G networks. In section 3, system
models are illustrated and numerically evaluated for various
network scenarios. The accuracy of the proposed model
is quantified using IAC. This coefficient is compared with
the previously used similarity indices like the Bhattacharya
coefficient (BC) and Kullback-Liebler (KL) Divergence. A
detailed description of the proposed statistical mmWave
interference model is also given in section 4. The results
of this model are validated for different network scenarios,
propagation channels, carrier frequencies, and densities of
Base Stations and user equipment. The paper is concluded
in Section 5.

2. RelatedWork
In this section, various interference models are dis-

cussed. These models consider the impact of those interfer-
ers in a network that contributes to the maximum interfer-
ence. As more interferers are taken into consideration, the
accuracy of a model increases but this increases complexity
as well [7]. Given this, the Primary Interference Model
(PIM) is considered to be the simplest one. In this model,
an outage is said to occur when two communication links
end at the same point. This creates self-interference and
necessitates the use of a half-duplex mode of communica-
tion. To improve the accuracy of PIM, Interference Range
Model (IRM) is used [8]. Here an outage event occurs
if the closest interferer is located within an interference
range. To estimate the outage probability in a network, the
SINR metric is used. For the mathematical analysis and
simulations, consider a communication link having a pair
of transmitter and an intended receiver. Let S be the power
from the intended transmitter, η be the white Gaussian noise
power, ik be the interference from interferer k ∈ T where
T is the set of interferers which consist of all the active
transmitters except the intended one. Thus the SINR at the
reference receiver is given by

γi =
S∑

k∈T
ik + η

(1)

This equation can be re-written as

γ =
PigT x

i gRx
i gCh

i∑
k∈T

pkgT x
k gRx

k gCh
k + η

(2)

where
Pi =Power transmitted by a transmitter
gCh

i = Channel gain between intended transmitter T Xi and
reference receiver
gT x

i = Antenna gain at T Xi towards the reference receiver
gRx

i = Antenna gain at reference receiver towards T Xi
η = white Gaussian noise power
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If β represents the SINR threshold then an outage is said
to occur if the total SINR at the intended receiver is less
than the threshold i.e. γ < β. This probability of an outage
is given by a statistical model of interference known as
statistical distribution describing [9]. In mmWave networks,
modeling of the statistical distribution describing is difficult
due to the presence of various probability distributions of
random variables in the numerator and denominator of
Equation (2). More elements of randomness are contributed
due to high penetration losses, antenna pattern, and first-
order reflection in mmWave networks [5].

The interference range is defined as the distance of
the closest interferer from the receiver. If this distance is
set to zero, IRM tends to PIM. With modification in the
interference range of IRM a new model called the Protocol
Model (PRM) has been proposed in [10]. In the IRM model,
the interference range is a constant quantity whereas in
PRM case it is a variable depending on:

1) The value of the SINR threshold at which the signal
can be successfully decoded.

2) Power received from the intended transmitter.

An interference range in PRM is defined as rPRM = (1 +
∆)d0, where ∆ is a positive real constant [10] and d0 is
the distance between nodes in a cell. In PRM an outage
event takes place if all the active transmitters are within
an interference range of rPRM [10]. These above-mentioned
models are simpler but offer less accuracy because there
is a probability of having an active transmitter (interferer)
beyond the interference range. This results in the fade of
signal strength and hence the value of SINR falls below the
assumed threshold value. IRM and PRM do not account
for the interference caused by an active transmitter located
beyond the predefined interference range. Moreover,these
models are used at network layer for performance analysis
and system design to model throughput [11], [12], [13],
topology control [14], [15], routing [16], delay[17], [18]
and backoff design [19].

To overcome issues of IRM and PRM, the Interference
Ball Model (IBM) [20] is used. This model takes into
account the effect of all the near-field interferers that are
located within a certain distance. This is achieved at the
cost of higher complexity of IBM as compared to PRM
and IRM. The outage event in IBM occurs if total SINR
due to transmitters with interference range rIBM falls below
threshold signal level β[21]. In wireless networks, IBM is
used for performance analysis [21], [22], [23], [24].

If there is a set of transmitters and receivers, we define
strong links as having an individual channel gain greater
than a certain predefined threshold [25]. With this assump-
tion Topological Interference Model (TIM) is defined. This
model is used for the degree of freedom analysis and
capacity evaluation [25], [26]. The outage occurs at any
receiver i when SINR due to all transmitters having strong

links is less than β [25].

At the physical layer, Physical Model (PhyM/SINR)
interference model is used. This model takes into account
all the active transmitters (interferers) present in a network.
An outage is said to occur if the value of SINR due to all
the transmitters drops below the threshold β [10].

To provide a uniform overview of the effect of all
interference models in different network scenarios, some
random variables are defined on a link between a transmitter
and receiver for each model. These random variables like
αX

k are associated with links between transmitter k which
belongs to a set of interferers T i.e. k ∈ T and a typical
receiver i.

1) For PRM; αPRM
k is defined as:

αPRM
k =

{
+∞, dk ≤ (1 + ∆)d0
0, otherwise

2) For IBM; αIBM
k is defined as:

αIBM
k =

{
1, dk ≤ rIBM
0, otherwise

dk ≤ rIBM indicates that all transmitters are within
interference range

3) For TIM; αT IM
k

αT IM
k =

{
1, gch

k > εo
0, otherwise

4) For PhyM;
α

PhyM
k ≜ 1 for k ∈ T

A virtual channel gain for the interference models is
defined as gX

k = αx
kgch

k where x denotes PhyM, IBM,
TIM, and PRM, gch

k is a channel gain, αX
k is a random

variable used to model the channel gain in these different
interference models.

In the existing literature, the following metrics for
computing similarity between distributions are used:

1) Bhattacharyya Distance
2) Kullback Leibler Divergence
3) Hellinger Divergence

In this paper, the parameter IAC is introduced for
evaluating the similarity between probability distributions.

A. Definition of Interference Accuracy Coefficient (IAC)
A wireless network is taken into consideration. Let an

interference model Z represent this network. SINR of a
reference receiver in this network model can be represented
by Υz. For this model, a binary hypothesis test is carried
out. The two values which denote the absence and presence
of an outage event are H0 and H1 respectively.{

H0 : Υz ≥ β Absence of an outage event
H0 : Υz < β Presence of an outage event

Consider another test interference model y defined under
any set of functions that describe a wireless network. The
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difference in the functions/parameters of these two models
is reflected in the overall deviation of the individual SINR
of the models. This deviation is quantified by Interference
Accuracy Coefficient (IAC).

In this manner, the characterization of the accuracy of
performance analysis using model y instead of z is done.
Taking the outage parameter into account, models y and z
are said to be similar if their results of outage events are
the same.

Assume that a test interference model y detects all the
outage events of reference model z. Then the performance
of y can be evaluated by computing false-alarm and miss-
detection.

B. Definition of false-alarm
False alarm represents an outage event under hypothesis

Ho. Test model y predicts an outage i.e. Υy < β under the
condition that reference interference model z declares no
interference i.e. Υz ≥ β. Hence the probability of false-
alarm of any interference model y can be represented as:

py/z
f a = pr{Υ

y < β|Υz ≥ β}

py/z
f a =

[pr(Υy < β) ∩ (Υz ≥ β)]
pr[(Υz ≥ β})]

C. Definition of miss-detection
Miss detection represents an outage event under hypoth-

esis H1. Test model y fails to detect an outage event i.e. Υyβ.
While hypothesis H1 signifies the occurrence of an outage
i.e.Υz < β. Therefore, the probability of miss-detection

py/z
md = pr{Υ

y ≥ β|Υz < β}

py/z
md =

[pr(Υy ≥ β) ∩ (Υz < β)]
pr[(Υz < β})]

These probabilities py/z
f a and py/z

md quantify the similarity in
the detection of outage events by interference models y and
z.

IAC is used to quantify the similarity of interference
models at the SINR threshold β by using the notions of
false-alarm and miss-detection. For any constant 0 ≤ ξ ≤ 1
and SINR threshold β, similarity S of interference model y
to z can be defined as:

S ξ,β(y||z) = ξ(1 − py/z
f a ) + (1 − xi)

(
1 − py/z

md

)
= 1 − ξpy/z

f a − py/z
md(1 − ξ)

(3)

Since S ξ,β(y||z) is purely dependent on probabilities, it
ranges from 0 to 1.0 represents no similarity and 1 denotes
that model y is similar to z in capturing outage.

1) Validation of IAC
In terms of density functions, IAC measures the distance

of probability Density Function (PDF) of Υy from Υz.

The existing methods like Bhattacharyya Distance, Kull-
back Leibler Divergence, and Hellinger Distance can be
misleading in most cases. Within a certain specific range
of SINR values, two probability distributions can be very
similar but beyond that range, they can deviate. Therefore,
for that specific range, test interference model y can be
used. If the same distributions are evaluated for similarity
using classical distance measuring methods they consider an
entire range of values for comparison. These distributions
can have higher distances or dissimilarities when compared
over the whole range. Hence IAC is used to investigate if
fΥy is similar to fΥz at any specific SINR threshold.

For validation of IAC, three discrete random variables
X,Y , and Z with the ranges RX = {x1, x2, x3}, RY =
{y1, y2, y3} and RZ = {z1, z2, z3} have been considered.

The respective probability mass functions are given in
Table I. The metrics obtained from the above table are

TABLE I. Probability mass functions

Sample Value 1 2 3
fX(x) 0.07 0.4 0.53
fY (y) 0.2 0.4 0.4
fZ(z) 0.25 0.3 0.45

fX , fY , and fX , fZ taking fX as reference.

Kullback-Leibler Divergence is also called relative en-
tropy. It gives a measure of divergence of one probability
distribution from a reference distribution. Two distributions
are said to be identical if KL=0 [27].

Mathematically KL divergence is represented by

DKL = (Q||P) =
∑

i

Q(i) ln
[

Q(i)
P(i)

]
where P(i) and Q(i) are two discrete probability distribu-
tions [27].
DKL( fx|| fy) = 0.2 log

(
0.2
0.07

)
+ 0.4 log

(
0.4
0.4

)
+ 0.4

(
log 0.4

0.53

)
DKL( fx|| fy) = 0.0423
DKL( fx|| fz) = 0.25 log

(
0.25
0.07

)
+ 0.3 log

(
0.3
0.4

)
+ 0.45 log

(
0.45
0.53

)
DKL( fx|| fz) = 0.06875
Bhattacharyya Distance is used to measure the similarity
of two probability distributions over the same domain X.
If P and Q are any two distributions then Bhattacharyya
distance DB(p, q) = − ln[BC(p, q)].
BC is a Bhattacharyya coefficient represented mathemati-
cally by

BC(p, q) =
∑
x∈X

√
p(x)q(x)

The smaller the values of DB, the higher is the similarity.
If DB=0, two distributions are identical.
Bhattacharyya coefficient is used for discrete probability
distributions.
0 ≤ BC ≤ 1
0 ≤ DB ≤ ∞
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DB for Table 1 can be calculated by
BC( fx, fy) =

√
0.07 × 0.2 +

√
0.4 × 0.4 +

√
0.53 × 0.4

= 0.9787
DB = ln[BC( fx, fy)]
DB = 0.02147
BC( fx, fz) =

√
0.07 × 0.25 +

√
0.3 × 0.4 +

√
0.45 × 0.53

= 0.9670
DB = 0.03349

Euclidean Distance measures the difference between
two probability distributions. The distance between two
distributions fx, fy is given by
d( fx, fy) =

√
(0.2 − 0.07)2 + (0.4 − 0.4)2 + (0.4 − 0.53)2

= 0.18384
d( fx, fz) =

√
(0.25 − 0.07)2 + (0.3 − 0.4)2 + (0.45 − 0.53)2

= 0.2209
Hellinger distance quantifies the similarity between two
probability distributions P and Q.
Mathematically Hellinger distance H(P,Q) is given by

H(P,Q) = 1
√

2

√
k∑

i=k

(√
pi −
√

qi

)2

H(x, y) = 1
√

2

√√√ (√
0.07 −

√
0.2

)2
+

(√
0.4 −

√
0.4

)2

+
(√

0.53 −
√

0.4
)2

H(x, y) = 0.1457
Similarly, H(x, z) = 0.18148 From Table I and Table II, it

TABLE II. Existing distance measures

Distributions fx, fy fx, fz
Kullback-Liebler (KL) 0.0423 0.06875
Bhattacharyya Distance 0.02147 0.03349

Euclidean Distance 0.18384 0.2209
Hellinger Distance 0.1457 0.18148

is evident that the existing measures evaluate the distance
between two probability distributions in support of one
real value only.

To extend the application of IAC in investigating the
accuracy of interference models, we consider different net-
work scenarios. For the same network setting KL divergence
and Bhattacharyya distance is computed and compared,
corresponding to different Interference accuracy coefficient
values.

3. SystemModel
To validate the proposed interference model, we con-

sider an existing omnidirectional communication with
rayleigh fading and evaluate this scenario for various
interference models. The simulations are carried out in
MATLAB and results obtained are compared with the
deterministic channel and directional communication in 5G
mmWave networks for the parameters like blockage and
directionality.

Scenario-I: Evaluation of the accuracy of reference
interference models with respect to the test model.

Type of communication: Omnidirectional
Type of channel: Rayleigh Fading

Let PhyM be a reference interference model z. Accuracy
of test models y viz; IBM, PRM, and TIM can be evaluated
in the same network setting.

Consider a polar coordinate with a reference receiver
at an origin. Let its intended transmitter be placed at a
spatial length of d0. A random number of interferers that
are basically the unintended transmitters are modeled by
homogenous Poisson distribution as shown in Figure 1.

Assumptions

1) λt be the density of interferers on the plane.
2) All the transmitters are active and P be the

transmission power of each transmitter.
3) Interference cancellation is not employed.
4) In omnidirectional communication, antenna gain is

unity ∴ gT x
k = gRx

k = 1 where k ∈ T

A geometrical annulus sector is defined as A(θ, rin, rout). θ is
an angle subtended by sector at a reference receiver located
at the origin of a polar coordinate system. rin and rout are
inner and outer radii respectively.

Modeling of a communication channel

1) Attenuation at a reference distance of 1m is
considered to be constant and is denoted by c.

2) Rayleigh’s fading coefficient is represented by h.
3) Let α be the attenuation which varies exponentially

with distance.
4) At the origin of the polar coordinate system, power

received by the reference receiver follows power-
law; i.e. the signal attenuates as distance increases.
To nullify the singularity at origin the path loss index
is modeled by an indicator function.
Indicator function of a subset A of a set (2π, 0, a)
maps elements of (2π, 0, a) from {0,1}. θ takes the
value of {0 − 2π} over the whole cellular area. At
origin rin = 0 and rout = a. Hence path loss is
represented as α1A(2π,0,a) . Here 1{·} is an indicator
function. This signifies that the transmitters located
inside the disk will undergo no attenuation.

5) The signal from transmitters located outside the disk
at a radius of ‘a’ will undergo attenuation according
to a power law.

Thus the channel gain of a link between the intended
transmitter and reference receiver at a distance of di is given
by

gch
i = c × hi × d

−α1A(2π,0,a)

i (4)

Analysis of Accuracy of IBM

γIBM =
P0gT x

0 gRx
0 gch

0∑
k∈T

pkgT x
k gRx

k gch
k + η

(5)
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Figure 1. Spatial distribution of interferers

For the omnidirectional radiation pattern of antenna gT x
0 =

gRx
0 = 1 and gT x

k = gT x
k = 1.

γIBM =
P × gch

0∑
k∈T∩A(2π,o,γIBM)

p × gch
k + η

The lower bound in the first term of the denominator is used
because in IBM interference is contributed mainly by near-
field interferers in the interference range. Hence to simplify
the mathematical analysis it is assumed that γIBM ≥ a.

From Equations (2) and (4), and after some simplifica-
tion, we obtain

γIBM =
p × c × h0 × d−α0∑

k∈T∩A(2π,o,γIBM)
p × c × hk × d

−α1A(2π,0,a)

k + η
(6)

γIBM =
h0 × d−α0∑

k∈T∩A(2π,0,γIBM )
hk × d

−α1A(2π,0,a)

k + η/p × c

In Appendix A, we have derived

pr

[
γIBM < β

]
= 1 − pr

[
h0 ≥

( ∑
k∈T∩A(2π,0,γIBM )

hk × d
−α1A(2π,0,a)

k +

η/p × c
)
βdα0

]
The PDF of a Rayleigh distribution function is given by

r
σ2 exp

(
−r2

2σ2

)
[28]

∴ PDF of h0 is given as fh0 = h0e−h0 x[28]

If h0 = 1, fh0 = e−x (7)
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⇒ pr

[
γIBM < β

]
= 1 − EI,h

[( ∑
k∈T∩A(2π,0,γIBM )

hk × d
−α1A(2π,0,a)

k

+η/p × c
)
βdα0

]
Substituting the value of PDF term in summation in

Appendix A, from Equation (7) we get

pr

[
γIBM < β

]
= 1 − exp

(
−ηβdα0

p×c

)
EI[ ∏

k∈T∩A(2π,0,γIBM )
Eh

[
exp

{
−βdα0 hkd

−α1A(2π,0,a)

k

})] (8)

h1, h2, h3. . . . . . .hk denotes the Rayleigh fading coefficient on
each separate link k. T denotes the whole set of a number
of interferers. Therefore, h and T are independent variables
whose expectation values can be separated.
From probability generating functional, for a stationary
Poisson (λ) process[29].

G(ξ) = E
{∏

i
ξ(ti)

}
G(ξ) = exp{−λ

∫
[1 − ξ(t)dt}

From the above two equations

G(ξ) = exp
{
−2πλt

∫ ∞
0 1A(2π,0,γIBM (1−

Eh

[
e−βdα0 hr

−α1A(2π,0,a)
])

rdr
}

= exp
{
−2πλtEh

[∫ ∞
0 1A(2π,0,γIBM (1−

e−βdα0 hr
−α1A(2π,0,a)

)
rdr

]}
Since within the range of 0–a, the indicator function
1A(2π,0,a) is zero.
∴ r−α1A(2π,0,a) = r0 = 1
⇒ G(ξ) = exp

{
−2πλtEh

[∫ a
0

(
1 − e−βdα0 h

)
rdr

+
∫ rIBM

a

(
1 − e−βdα0 hr−α

)
rdr

]}
In Appendix B, Equation (9) is obtained as under:

pr

[
γIBM < β

]
= 1 −

{
exp

(
−ηβdα0

p×c

)
− 2πλtEh

[
a2

2(
1 − e−βdα0 h

)
+

(
r2

IBM−a2

2

)
−

[
Γ

(
2
α
,
βdα0 h
rαIBM

)
− Γ

(
− 2
α
,
βdα0 h

aα

)]
(βdα0 h)2/α

α

]} (9)

The probability of false alarm in IBM with respect to test
model PhyM

PIMB/PhyM
f a = Pr

[
γIBM < β/γPhyM ≥ β

]
(10)

From Bayes’ theorem [29], as expressed in Appendix B,
Equation (10) can be re-written as:

PIBM/PhyM
f a =

Pr(γIBM<β)Pr(γPhyM≥β/γIBM<β)
Pr(γPhyM≥β)

PIBM/PhyM
f a =

Pr(γIBM<β)Pr(γPhyM≥β/γIBM<β)
1−Pr(γPhyM<β)

(11)

In IBM interferers located in the near-field contribute to
maximum interference while in PhyM, interference is due

to interferers located over the entire network coverage area.

γIBM =
Signal Power

Noise + Near Field Interference
(12)

γPhyM =
Signal Power

Noise + Entire Network Interference
(13)

Comparing Equation (12) and Equation(13) it is clear that
the second term of the denominator in Equation (12) will
be lesser than in Equation (13).

Hence γIBM > γPhyM .

Thus the probability of γPhyM > β given the condition
γIBM < β is zero.

i.e., Pr

(
γPhyM ≥ β/γIBM < β

)
(14)[

1 − Pr

(
γPhyM < β/γIBM < β

)]
= 0

⇒ Pr

(
γPhyM < β/γIBM < β

)
= 1 (15)

Substitute Equation (14) in Equation (11), we get

PIBM/PhyM
f a = 0 (16)

Thus we need to compute the miss-detection metric to
estimate the total outage probability in a network.

PIBM/PhyM
md = Pr[γIBM ≥ β/γPhyM < β]

= 1 − Pr[γIBM < β/γPhyM < β]
= 1 − Pr[γIBM<β]Pr[γPhyM<β/γIBM<β]

Pr[γPhyM<β]

From Equation (15)

PIBM/PhyM
md = 1 −

Pr

[
γIBM < β

]
Pr

[
γPhyM < β

] (17)

To obtain the value of Pr

[
γPhyM < β

]
, evaluate Equation (9)

at rIBM → ∞ since PhyM considers interference over the
whole network area.

Pr

[
γPhyM < β

]
= 1 −

{
exp

(
−ηβdα0

p×c

)
− 2πλtEh

[
a2

2

(
1

−e−βdα0 h

)
−

(
a2

2

)
−

[
Γ
(

2
α

)
− Γ

(
− 2
α
,
βdα0 h

aα

)]
(βdα0 h)2/α

α

]} (18)

Substituting values from Equation (9) and from Equation
(18) in Equation (17), the probability of miss-detection is
calculated. Furthermore, from Equation(16), the probabil-
ity of false-alarm for any SINR threshold β is zero,i.e.,
PIBM/PhyM

f a = 0. As already discussed, from Equation (17),
when rIBM → ∞, then probabilities of miss-detection of test
interference model IBM and reference interference model
PhyM follow an asymptotic distribution. Thus in such a
scenario, from Equation (3), IAC S (ξ, β)(IBM||PhyM) = 1.
This indicates that two interference models are similar with
the above conditions.
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4. IMPLEMENTATION OF ACCURACY INDEX AT
MICROWAVE AND MILLIMETER-WAVE FRE-
QUENCIES
The accuracy of interference models is evaluated at sub-

6 GHz and 28 GHz frequencies. An outdoor microwave
network with Rayleigh fading channel as mentioned in
[30] is considered. A Poisson network is simulated using
a Monte Carlo simulation (MCM). λt and λ0 represent
the density of interferers and obstacles respectively. dt
denotes an average inter-transmitter distance. For ease of
illustration, the notion dt = 1/

√
λt is used. This signifies

the density of a cellular network.

If dt is small then the transmitters are closely spaced
and provide high density to the network. Average inter-
transmitter distance in a cellular network directly impacts
the accuracy of its interference model. This also varies the
probabilities Pmd and P f a. In Figure 2, the accuracy of IBM
is evaluated against inter-transmitter distance with various
values of rIBM . From Equation (17) when the interference
range of IBM reaches infinity, PIBM/PhyM

md asymptotically
tends to zero. Hence in combination with P f a = 0, from
Equation (3), S (ξ, β)(y||z) = 1. This depicts the similarity of
IBM and PhyM under no outage conditions.

This also shows that as rIBM increases, both prob-
abilities of false-alarm and miss-detection tend to zero.
Thus the accuracy of the interference model increases. With
rIBM = 20, and dense transmitter deployment, accuracy is
maximum. As the inter-transmitter distance increases, the
density of transmitters decreases, and hence the accuracy
falls. For rIBM = 40, 60 and 120, higher values of the
interference range compensate for the decrement of the
accuracy index.

For ultra sparse networks, accuracy is determined by
the probability of false alarm only. In IBM P f a = 0,
hence from Equation (3) IAC approaches unity because in
sparse networks probability of miss-detection is negligible.
Therefore higher values of accuracy are obtained for an
average inter-transmitter distance of more than 160 m.
Moreover, for ultra-dense networks modeled with IBM and
inter-transmitter distances ranging between 0 m to 20 m,
IAC depends on the probability of miss-detection only. As
the average inter-transmitter distance decreases Pmd also
decreases and IAC approaches unity.

The dip in a curve for rIBM = 20 is because of the
minimum value of interference range chosen which includes
the minimum number of active transmitters, at the same
time with minimum inter-transmitter distance and hence
the high probability of miss-detection. This results in a
significant reduction of IAC. From Figure 3 it is evident
that with a high transmitter density at dt = 80 m, and the
same interference range, PPRM

md < PIBM
md . This improves the

performance of IBM in the detection of outage events with
the least error and high accuracy as shown in Figure 2. For
the same network setting, P f a is not displayed in the graph

for the sake of clarity. For large inter-transmitter distances,
the network becomes very sparse. In this scenario ξ = 1,
hence IAC is determined by P f a only.

For the same network conditions, we have calculated
the KL divergence and Bhattacharyya distance for rIBM =
20, 60. Figure 4 shows the plot of the Accuracy index
with respect to an inter-transmitter distance. As already
discussed lower values of KL and BC distance indicate
higher accuracy of two probability distributions. Figure 4
illustrates that two distributions converge when the network
is dense and the inter-transmitter distance is less. With
an increase in inter-transmitter distance, the density of
the network decreases, and two graphs fail to converge
with rIBM = 20. Therefore, the accuracy of these classical
distance measures holds for lower inter-transmitter distance.
Instead, an IAC takes into account a single threshold value
for the comparison of distributions. Hence IAC proves to
be a better distance measuring index as it gives a proper
insight into the distance between fΥIBM and fΥPhyM .

A. Proposed Work
Case II / Scenario-II: Evaluation of the accuracy of

reference interference models with respect to the test model.
Type of communication: Directional/mmWave
Type of channel: Deterministic
Assumptions for use of simplified interference model:
The simplified interference model with the assumptions
explained below is used to study the impact of directionality
and blockage on the performance of interference models
in the estimation of IAC. Consider a homogenous Poisson
network as assumed in scenario 1. To study the accuracy
of interference models in mmWave networks, directional
communication is taken into an account. This results in the
suppression of interference in a wireless network.mmWaves
undergo minimum scattering [31], hence the resulting nar-
row beam makes the channel more deterministic in contrast
to the microwave systems[32].

The link between the transmitter i and the receiver
located at the origin of Figure 1 is said to be in LOS
with probability e−ϵλ0di j (ϵ is the size of an obstacle and
λ0 gives the density of obstacles) if there is an obstacle in
between [33]. To rule out the beam searching phase[34] it
is assumed that each transmitter and its intended receiver
are properly aligned. The antenna pattern used at both UT
and BSs is modeled by an Ideal sector model [30]. In this
model, an antenna gain is considered to be constant in the
main lobe and is expressed by 2π − (2π − θ)z. Here z is a
constant smaller antenna gain of the side lobe, 0 ≤ z < 1.
For mathematical tractability operating beamwidth θ of UT
and BSs is considered to be the same in both transmitting
and receiving modes.
Interference can occur in a network in the following three
cases:

1) If the receiver is inside the main lobe of an intended
transmitter. The probability of occurrence of such an
event is θ/2π.
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Figure 2. Impact of transmitter density on the accuracy of the IBM under Rayleigh fading channel.

Figure 3. Error probabilities and Impact of the interference range on the accuracy of interference models under the Rayleigh fading channel
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Figure 4. The KL divergence and Bhattacharyya distance of distribution from corresponding to the IAC values of Figure 2

2) If the intended transmitter is inside the main lobe of
a receiver.

3) If the intended transmitter and receiver are in LOS.

The number of transmitters and a receiver share independent
LOS links in a network. This implies that for cases 1
and 3 interferers are governed by the inhomogeneous point
process represented by λI .

∴ At a radial distance r

λI(r) =
λtθe−ϵλ0r

2π
Consider case 2 where r takes any minimum value R and
therefore confines interferers to an annular region A(θ, 0,R)
as shown in Figure 1. The average number of interferers
inside this region is given by [35] as:

NA(θ,0,R) = θ
∫ R

0 λI(r)rdr
= θ2λt

2πϵ2λ2
0

(
1 − (1 + ϵλ0R) e−ϵλ0R

) (19)

To investigate the effect of directionality, we assume the
product of the size and density of an obstacle approaching
zero.

⇒ ϵλ0 → 0
Applying the series expansion of ex, we get

∴ NA(θ,0,R) =
θ2λtR2

4π
= ( θλt

2π )( θR
2

2 )

First-term gives the density of obstacle per unit area
and the second term gives an area of an angular region.
From this equation, it is evident that the number of po-
tential interferers within an interference range depends on
operating beamwidth θ. Hence by virtue of narrow beams,
the number of potential interferers decreases considerably.
However, NA(θ,0,R) can be infinite if the interference range R
approaches infinity, i.e., if, R→ ∞. Substituting in Equation
(19), it converges to
NA(θ,0,r) =

θ2λt

2πϵ2λ2
0
< ∞ if ϵλ0 > 0

ϵλ0 > 0 infers that for a considerable blockage, there exists
a finite number of interferers at the receiver end.

For mmWaves, the wavelength is smaller as compared
to microwaves which implies high penetration loss and
severe attenuation. This results in significant attenuation of
a signal because most of the objects present in the network
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contribute to blockage owing to their size and density. Thus
the contribution of interference by transmitters located away
from a typical receiver is diminished by directionality and
blockage. The major contribution to interference is from the
transmitters located closer to a typical receiver. In such a
scenario these finite numbers of interferers can also cause a
significant contribution to an aggregated interference term
if placed close to a receiver.

As already explained in scenario 1, PIBM/PhyM
f a = 0,

hence the probability of miss-detection can be calculated
by introducing θ/2π in equations (9) and (18) we get the
following Equations [35]:

Pr

[
γIBM < β

]
= 1 − exp

{(
−nθ2βdα0
4π2×p×c

)
− θ2

2πλtEh[(
1 − e−βdα0 h

) (
1−(ϵλ0a+1)e−ϵλ0a

ϵ2λ2
0

)
+

∫ rIBM

a

(
1 − e−βdα0 hr−α

)
e−ϵλ0rrdr

]} (20)

and

Pr

[
γPhyM < β

]
= 1 − exp

{(
−nθ2βdα0
4π2×p×c

)
− θ2

2πϵ2λ2
0
λtEh[

1 − e−βdα0 h
(
1 − (1 + aϵλ0) e−aϵλ0

)
−ϵ2λ2

0

∫ ∞
a

(
e−βdα0 hr−α−ϵλ0r

)
rdr

]} (21)

For numerical solutions, we can substitute the above equa-
tions in Equation 17 to obtain an expression for PIBM/PhyM

md
. To quantify IAC substitute values of Pmd and Pfa in
Equation 3. As the interference range in IBM approaches
infinity, IAC tends to unity, i.e two interference models be-
come similar in detecting outage events. Simulation results
of this scenario are obtained with the assumptions given in
Table I of [5]. Here the study of variations in IAC of IBM
and PRM due to operating beamwidth and average inter-
transmitter distance is done. From Figure 5, it is indicated
that at operating beamwidth θ = 20◦ for both IBM and
PRM accuracy is improved due to directionality of signal
and blockage by obstacles in mmWave communication.

Now by replacing the Rayleigh channel with the deter-
ministic wireless channel as is a case in mmWave networks,
it is observed that the accuracy of interference models IBM
and PRM is further improved both at θ = 20◦ and θ = 40◦.
From Figure 6 it is deduced that PRM can be used instead
of IBM with accuracy index IAC = 1 in detecting outage
events. If beamwidth is further reduced to pencil beams
e.g., the accuracy of PRM for detecting outage events will
approach unity. Hence in such network settings, it will be
preferable to use PRM over IBM and PhyM due to its
mathematical tractability.

The above results give a qualitative overview of inter-
ference models used in mmWave networks. This allows
the use of simpler and more accurate interference models.
The simpler and more accurate model thus proposed for
mmWave networks is the simplification of PRM in which
we consider impenetrable obstacles i.e., high penetration
loss and zero sidelobe gain.

It is shown that despite the above-mentioned assump-
tions, the simplified interference model is still able to
detect outage events accurately in mmWave networks. [12],
[36] has used PRM for the development of protocols in
a mmWave cellular network. Our work compliments such
previous studies.

The accuracy of the interference model in this work is
estimated using IAC. This quantifies the similarity of two
distributions at a specific threshold instead of an entire range
of SINR values. Later cases lead to misleading results where
one can use a marginally accurate but complex interference
model. In this work, it is proven that for mmWave cellular
networks tractable and more accurate interference models
can be used to investigate the performance of a network.

On the other hand, in this work, the assumption of equal
transmission power at all nodes is taken into account. In
more realistic cases, this assumption will not always hold
true. Taking into consideration the realistic assumptions, the
interference modeling will become complex.

Furthermore, IAC is used to access the accuracy of the
two-ball blockage model. According to this model if BSs
follow a homogenous Poisson point process (PPP) then the
links connecting BS and UE are modeled under three events.
The three states of links are statistically defined as:

1) 1. If there is no blockage between UE and BS then
a link is under the LOS event.

2) If the link between BS and UE is blocked by
obstacles, then a link is in an NLOS event.

3) If path loss between UE and BS approaches infinity
then no link is established in a network.

This approach of the three-state link statistical model
has not been adopted much for use in mmWave networks
as reported in the literature [30]. The striking feature of
this model is a non-zero probability of occurrence of an
outage event. This is explored advantageously for ultra-
dense networks where BSs in outage cannot contribute to
an aggregated interference term as proved in the following
section. The following points are observed in the 2-ball
blockage model approximations for mmWave networks.

1) 1. If the average size of a cell (D1) is 50 m with zero
probability of occurrence of an outage event then the
probability of an encompassing UE being connected
through the LOS link is greater than 80%[5], [37].
In other words, if the distance from BS to UE is
r < D1, then the link can either be in LOS or NLOS
state but the probability of being in LOS > 80%.In
this case, mmWave cellular systems perform better
than microwaves by providing improved coverage
and better data rates.

2) If 50m < r < 200m(D2), a link can be in LOS, NLOS
or outage state. Most probably UE will be served by
NLOS BS.

3) If r > 200m(D2), the communication link between
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Figure 5. Accuracy of IBM and PRM under Rayleigh fading channel and directional communications

Figure 6. Accuracy of IBM and PRM under mmWave Communications and Deterministic channel
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UE and BS will be in an outage.
4) D2 signifies the upper limit of an operating range

of mmWave communication that agrees with the
conclusion of [5], [37].

An event where all the BSs will be in outage and UE
cannot be connected to a network through any link occurs
due to the presence of a blockage. If BSs are modeled
as points of homogenous PPP then, the probability of
occurrence of such event is defined by three independent
link states as under.

ψ = ψLOS ∪ ψNLOS ∪ ψOUT

The third approximation of the two-ball model is concluded
by considering

ψLOS = ψNLOS = ϕ

∴ ψLOS ∩ ψNLOS = ϕ

From definition PLOS + PNLOS + PBlockage = 1

PLOS + PNLOS ≤ 1

At minimum reliability threshold T, coverage probability is
given by[38].

PCov(T ) = P[S INR ≥ T ] = P[γ ≥ T ]

Thus for T = 0, the probability of coverage is zero. This will
occur when PLOS (r) = 0 and PNLOS (r) = 0 and POUT (r) = 1.
Hence the probability of blockage Pblockage = 1. As
already discussed this corresponds to distance D2 between
UE and BS. Thus the two-ball approximation is considered
to be a generalization of the single-ball model used in [32],
[39]. In comparison with the study carried out in these
papers, a two-ball model specifically takes into account the
blockage owing to the outage state which is a characteristic
feature of mmWave communications.

5. CONCLUSION
An analytical and numerical investigation of 5G

mmWave networks is carried out for the design of a simpler
interference model. IAC is used for the evaluation of the
accuracy of existing interference models. It is observed that
the accuracy of interference models is enhanced in mmWave
networks with deterministic channels. The comparison of
the Interference Ball Model (IBM) and Protocol Model
(PRM) shows that accuracy is improved by considering
infinite penetration loss and zero sidelobe antenna gain. This
is a typical assumption for mmWave networks which further
enhances the performance of PRM. The two-ball model
is explored for use in mmWave networks and proves to
supersede the existing ball model. IAC is further used to find
the accuracy of the two-ball model and analyze the SINR
distributions. Interference models for 5G mmWave net-
works can be developed for various other network scenarios
where mobility of UEs can be taken into account for the
evaluation of the trade-off between accuracy and tractability.
Also, in this work, we assume that all transmitters have
equal transmission power P. This work can be extended by

assuming a more realistic case where each transmitter can
transmit signals with different power. MATLAB is used for
simulation and

Appendix
Appendix A

Pr

[
γIBM < β

]
= Pr

 h0×d−α0∑
k∈T∩A(2π,0,rIBM )

hk×d
−α1A(2π,0,a)
k +η/p×c

< β


= Pr

 h0 ∑
k∈T∩A(2π,0,rIBM )

hk×d
−α1A(2π,0,a)
k +η/p×c

dα0 < β


= Pr

[
h0 <

( ∑
k∈T∩A(2π,0,rIBM )

hk × d
−α1A(2π,0,a)

k +

η/p × c
)
βdα0

]
= 1 − EI,h

[
exp

{
−

( ∑
k∈T∩A(2π,0,rIBM )

hk×

d
−α1A(2π,0,a)

k + η/p × c
)
βdα0

}]
= 1 − exp

(
−ηβdα0

p×c

)
EI,h

[
exp

{
−

( ∑
k∈T∩A(2π,0,rIBM )

hk

×d
−α1A(2π,0,a)

k

)
βdα0

}]
Appendix B

Using integration by parts,

G(ξ) = exp
{
−2πλtEh

[∫ a
0 rdr −

∫ a
o

(
e−βdr

0h
)

rdr+∫ rIBM

a

(
1 − e−βdα0 hr−α

)
rdr

]}
= exp

{
−2πλtEh

[
a2

2

(
1 − e−βdα0 h

)
+∫ rIBM

a

(
1 − e−βdα0 hr−α

)
rdr

]}
Solving second integral

∫ rIBM

a

(
1 − e−βdα0 hr−α

)
rdr

put βdα0 h = k, r = x, α = a, a = b, rIBM = c∫ rIBM

a

(
1 − e−βdα0 hr−α

)
rdr =

∫ c

b

(
1 − ekx−a)

xdx

By using a special integral for the incomplete gamma
function and performing some mathematical manipulations,
we get∫ c

b

(
1 − ekx−a

)
xdx =

(c−b)(c+b)
2 −

Γ( 2
a ,

k
ca )−Γ(− 2

a ,
k

ba )
a k

2
a

=
(c2−b2)

2 −

[
Γ( 2

a ,
k

ca )−Γ(− 2
a ,

k
ba )

a

]
k

2
a

Substituting back the values, we have

=
(r2

IBM − a2)
2

−

[
Γ

(
2
α
,
βdα0 h
rαIBM

)
− Γ

(
−

2
α
,
βdα0 h

aα

)]
(βdα0 h)2/α

α

G(ξ) = exp
{
−2πλtEh

[
a2

2

(
1 − e−βdα0 h

)
+

(
r2

IBM−a2

2

)
−[

Γ

(
2
α
,
βdα0 h
rαIBM

)
− Γ

(
− 2
α
,
βdα0 h

aα

)]
(βdα0 h)2/α

α

]}
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Put the above value in Equation (8), Equation (9) is ob-
tained.

From Bayes’ theorem,

P[A/B] =
P(A).P(B/A)

P(B)
=

P(A).P(B/A)
1 − P(A)
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