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Abstract:K-mer (k length substrings in a DNA sequence) counting plays an important role in genome assembly, sequence analysis,
and error correction in sequence reads. In the Gene data sets, a single occurrence of k-mers occupies more storing space with a higher
possibility of sequencing errors. Hence, error correction plays a significant role in eradicating such uninformative k-mers. Bloom filters
data structure has been frequently used in k-mer counting for determining thek-mer occurence at least twice in a data set of a DNA
sequence owing to its less memory usage and its fast querying. The standard bloom filer used in k-mer counting is not cache efficient
as it accesses the whole bloom filter memory for single k-mer insertion/query. Also the Murmur hash consumes more time for hashing
the k-mers from the Input Sequence. In this proposed work, we have improved the process of k-mer counting further by adopting
different bloom architecture called a partitioned bloom data structure. The proposed architecture is cache efficient and uses only one
memory access instead of in the standard bloom filte’s k memory accesses. The rolling hash in ntHash function is used for hashing the
k-mers from the input sequence has further reduced the hash computation time of k-mers. The proposed architecture was compared
with standard architecture and the results showed that the proposed k-mer counter minimized significantly the k-mers loading and
querying time from the memory for different data sets.

Keywords:K-mer counting, Bloom filter,Recursive Hash function,Genome Assembly.

1. Introduction
In Genomics, the data size of the genome has been

increased tremendously. As the data size of the genome
grows rapidly, it is challenging to store, distribute, and
analyze the data using traditional computation methods.
The data generated by the high throughput sequencing
technologies doubles every year [1]. The gene sequences
generated by the traditional Sanger sequencing [2] method
is more time-consuming. Latterly, high throughput sequenc-
ing platform such as Illumina [3] has been developed to
overcome the drawbacks of the traditional methods. This
platform generates the gene data of a genome in the form
of short reads. The short reads are assembled by various
genome assembly approaches and it has been carried out
with or without a reference genome. The Denovo assembly
[4] of the genome is carried out without any reference
genome. It has been carried out on Chrysanthemum eticusp
using Illumina sequencing platform for genetic and gene
discovery Analysis [5]. It produces exact sequences for
even composite genomes. K-mers were generated from the
short reads along with the frequency of occurrence. The
k-mers are used to construct the Debrujin network, with
the vertices being the k-mers and the edges connecting

each overlapping k-mer. These de Bruijn graphs are used
to give a theoretical groundwork that helps reduce the time
required for computation. The only drawback with these
graphs is that they are very large as they include a massive
number of k-mers for genomes of vertebrates. The time
taken for the entire process and the storage has become a
major challenge in computation with large data sets. Many
techniques have been proposed to overcome the problems in
the De-novo genome assembly. In bioinformatics, especially
for sequence analysis, sequence assembly, correction of
errors in sequence reads, k-mer counting is considered as a
cardinal element. K-mers are substrings (a small part of a
large string) with length k. The number of k-mers generated
in the l length short read sequence of is l − k + 1. In
given n circumstances, the possible number of k-mers is
nk. These k-mers are mainly used in the sequence alignment
and sequence assembly. Many tools have been designed to
count or estimate the occurrence of k-mers in a genome in
less time with minimal hardware resources.

A lot of research is being carried out in bio-informatics
using k-mer frequency counting. The implementation of
k-mer counting has been categorized into two areas. One
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area is focusing on the shared memory and the hard disk
in a single node (CPU) and the other one is focusing on
the distributed environment. The shared memory architec-
tures use multithreading in the CPU and the distributed
architecture uses MPI to communicate between the nodes.
Various k-mer counting tools developed in the past like
Jellyfish[6], a k-mer counting tool used a lock-free hash
table for storing the k-mer. The tool is implemented in
multicore architecture to minimize the processing time by
utilizing the compare and swap instructions in the system.
Disk-based [7] tools have been developed to reduce the
number of disk accesses at the expense of an increase in
the I/O. The k-mer counting has been parallelized using
splitter and reader threads. To further reduce the I/O and
the computation time, KMC2 [8] is developed. This tool
replaced the minimizer approach with the signature-based
approach in which the disk space utility was minimized and
data was stored in the SSD drives. This tool counted the k-
mers with a k-mer length of 28. In this approach, multicores
in the CPU were effectively utilized using OpenMP. It has
been further accelerated by the hardware accelerators to
reduce the computation time in the k-mer counting tool
Gerbil [9]. This tool forms the histogram of k-mers ranging
from 0 to 255 which were hashed and then stored in the
hash table. The collisions in the hash table were handled
by the double hashing technique. The parallel threads in
the GPU were effectively utilized by using parallel and
splitter thread models and also by distributing the work
among the threads hence a high performance has been
achieved. Also, the processing time for k-mer counting has
been optimized using a trie data structure [10]. This trie
structure used a signature-based approach for storing and
retrieving the k-mers but the drawback of this approach was
the increase in the storage for the trie data structure. The k-
mer generation and counting have been further accelerated
by implementation in the FPGA hardware accelerator [11].
The counting process is parallelized by utilizing k-cores
in FPGA. An IP-Core has been generated for the k-mer
generation and counting and implemented on FPGA. The
availability of parallel comparators in FPGA has been
utilized for counting which speeds up the performance.
Several k-mer counting tools were reviewed and evaluated
in terms of their relative performance,mainly on runtime and
storage utility [12]. The review also considered additional
criteria such as parallelism, disk usage, performance in
terms of counting the frequency for higher k values, and
their scalability to huge datasets. All the k-mer counting
applications developed in the literature have targeted the
optimization of storage requirement, time taken for inser-
tion, and querying of the k-mers.

The bloom filter based k-mer counting tool, BFCounter
[13], is implemented in the literature for counting k-mers
with reduced memory utilization. The k-mers generated
from the short reads are and stored in the bloom filter. The
count of k-mers greater than one will be stored in the hash
table. The Murmur hash function, a non-cryptographic hash
function is normally used to hash the k-mers because of

its less collision time, fast insertion, and querying speed.
However, the bloom filter used in the literature has the
drawback of poor cache locality due to its requirement of
accessing h locations in the memory to query the existence
of single k-mer. The murmur hash function has been used
to hash the k-mers and it will be called each time when
a k-mer from the short read is hashed. There is still more
scope available for the improvement of the existing murmur
hash functions in the standard bloom filter.

In our work, we have implemented a hybrid approach
to enhance the process of k-mer counting. The proposed
hybrid method used a partitioned bloom filter with a better
cache locality. It uses only one memory access instead of h
memory accesses. The ntHash function, a hash function for
streaming k-mers, used in the hybrid method over murmur
hash has significantly reduced the hash operation time.

The remaining article is organized as follows: The k-
mer counting technique, bloom filter, hash function, and
proposed methodologies are discussed in Section 2; Section
3 reports the results and discussion, and Section 4 draws the
conclusion.

2. Methodology
The process of k-mer counting starts with the extraction

of data from the fastq file. A fastq file is a text based
file format which encompasses data sequences along with a
quality score for every individual base, which is expressed
as an ASCII character. The score of quality stretches from
2 to 40 which is an integer Q. In the fastq files, each single
entry has four lines. The first line is the Sequence identifier;
the read sequence comes in the second line, the third line
has the quality score identifier and finally the quality score.
The quality runs are depicted by bytes which are from 0x21
to 0x7e i.e., from the lowest quality to the highest quality.
Fastq files are used to store the sequence reads extracted
from the single strand of DNA. The k-mers are extracted
from these reads by grouping sets of nucleotides depending
on the value of k. Figure 1 depicts how the sequence read
is grouped into k-mers. Here the value of k is 3.

Figure 1. K-mer Counting with k=3
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Now each k-mer is taken through a set of operations as
mentioned in the algorithm and finally produces the k-mers
along with the count.

A. K-mer counting
The K-mer frequency counting [13] utilizes a bloom

filter based approach. The reads generated from the next
generation sequencing technologies contain more errors due
to the change in the single base (e.g. A is changed to T)
during sequencing process. The error k-mer occurs only
once in the sequence. The k-mers with single frequency
contribute more to the frequency counting results. Thus the
single occurrence k-mers need not be counted during k-mer
counting. There are many error correction tools available for
correcting the errors in the reads [14]. For example, tools
mentioned by [15] and [16] incorporates bloom filter for
error corrections. The process of counting k-mers usually
involves two steps. The k-mers were extracted from the
short reads and the canonical representations of k-mers
were hashed and saved in the bloom filter. The k-mers
occurring more than once is checked in the bloom filter;
if it exists then it will be stored in the hash table. Thus,
the single occurence k-mers will not be stored in the hash
table resulting in a reduction in the storage space. Since the
bloom filter is susceptible to false positive, a second pass
is done to remove the false k-mers. The k-mers that occur
only once were removed fromthe hash table at the end. The
algorithm for k-mer counting is shown below.

Algorithm 1 K-mer Counter with Bloom filter

1: B← Bloom f ilter
2: HT ← HashTable
3: for all reads s do
4: for all kmers x in s do
5: xrep← min(x, revcom(x))
6: if xrep ϵ B then
7: if xrep < HT then T [xrep]← 0
8: end if
9: else

10: add xrep to B
11: end if
12: end for
13: end for
14: for all reads s do
15: for all kmers x in s do
16: xrep← min(x, revcom(x))
17: if xrep ϵ HT then
18: HT [xrep]← HT [xrep] + 1
19: end if
20: end for
21: end for
22: for all x ϵ HT do
23: if HT[x] =1 then
24: remove x f rom HT
25: end if
26: end for

B. Existing Methodology
In the existing k-mer counting method, for fast insertion

and querying, standard bloom filter is used along with
murmur hash function. The hashing process and the bloom
filter is described in the following section.

1) Hashing
Hashing is a technique to generate random values using

hash function which will be used for indexing the data
into the specific data structure. It converts the string or a
substring of characters that are extracted from the sequence
reads of a DNA into a value which is the location in the data
structure. This hashing methodology is used to alphabetize
and bring back items in a database as it is quicker to search
for an element that uses this hashed key. This hashing
mechanism is used in many encryption algorithms.

Algorithm 2 Murmur3 Hash

1: Murmur3(key,len,seed)
2: c1=0xcc9e2d51;
3: c2=0x1b873593;
4: r1=15;
5: r2=13;
6: m=5;
7: h=0xe6546b64;
8: hash=seed;
9: for each fourBytechunkofkey do

10: k=four Byte Chunk;
11: k=k*c1;
12: k =k rol r1;
13: k=k*c2;
14: hash=hash ⊕ k;
15: hash =hash rol r2;
16: hash=(hash*m)+n;
17: end for
18: for any remaining Bytes in Key do
19: remaining Bytes= remaining Bytes * c1;
20: remaining Bytes= remaining Bytes rol c1;
21: remaining Bytes= remaining Bytes * c2;
22: hash =hash ⊕ remaining Bytes;
23: end for
24: hash=hash ⊕ len;
25: hash=hash ⊕ (h>>16);
26: hash=hash ⊕ (h>>13);
27: hash=hash * 0xc2b2ae35;
28: hash=hash ⊕ (h>>16);
29: return hash

They are also massively used for querying and indexing
in the fields of bioinformatics, k-mer counting, and assem-
bly of transcriptome and correction of errors.There are var-
ious hashing mechanisms widely used in different applica-
tions but not limited to cryptographic applications, network
applications etc., The murmurHash3, a non-cryptographic
hashing function, is the best suited for simple hashing
algorithm. The murmur hash function is shown in Algortihm
2. The murmur3 hash[17] is advantageous of being simple
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when considering the amount of generated instructions in
the assembly. It has also good avalanche behavior and is
resistant to collisions. The working of this hash is based
multiplication and rotation operations. First, we take the k-
mers with a particular value of k from the sequence reads
in the DNA. The k-mers are hashed using murmur hash and
stored in the bloom filter at the location given by the hash
function.

2) Bloom Filter Architecture
Bloom filter is a probabilistic data structure which

supports dynamic membership queries with less memory
consumption allowing a certain amount of false positive
occurrences. The bloom filter is used to reduce the memory
utilisation by creating a trade-off between the memory and
the false positive probability. A bloom filter [18] stores a set
A of xi input elements of size n i.e., A = xi|i = 1, 2, 3. . .n
in an m bit array initialised to 0. Bloom filter maps each
element from the set A into a random value with the range
1, 2, 3, 4..,m using K hash functions h1, h2, . . . , hk. For all
the elements in the set, the bit locations at hi(x) are set
to 1 for 1ik. To check the existence of y in the set A, all
the elements in the location hi(y) are checked for the value
of 1. If all the locations contain the value 1 then y is the
element of A else it is not in the set as shown in Figure 2.
For Example, the set A has elements abc, de f and inserted
into the bloom filter. While querying for the element ‘pqr′,
the query result is not in the set since all the bits are zero
but element ‘xyz′ is false positive as it is not in the set but
mistakenly understood as element of the set.

Figure 2. Bloom Filter Data Structure

The bloom filter will yield the result of the query
with the false positive probability of f. The false positive
probability [19] is expressed in equation1.

f = (1 − e−nk/m)k (1)

There exists a trade-off between the false positive proba-
bility and the bloom array (m) for a given number of inputs
(n). The hash function (k) has been chosen based on ‘m′ and
‘n′ which can be derived as k = (m/n)·ln2. The false positive
probability can be approximated as f ≈ [(0.6185)]n/m. The
novel applications of bloom filter and its design innovations
were discussed in [20] .

C. Proposed Methodology
The bloom filter used in the k-mer counting method

has poor cache locality and the hash function uses more
computation time. To further improve the computation time
of the k-mer counting process, the partitioned bloom filter
and the nucleotide hash function is used and they are
described in the following section.

1) Nucleotide Hash (NtHash)
NtHash [21] has exclusively been designed for the

nucleotides. It is a cyclic polynomial hash function used
for processing the sequences of DNA and RNA in bioinfor-
matics applications. The ntHash performs in the best way
while calculating the hash values of k-mers that are adjacent
to each other in a sequence of a particular DNA. This
function can periodically compute and obtain hash values
of all the k-mers present in the sequence reads and provides
large improvements in the performance during the hashing
process.

Algorithm 3 ntHash

1: Nthash firstkmer (kmerSeq, k)
2: hash=0;
3: for i=0 to k-1 do
4: hash = rol(h[kmerSeq(i)],k-1-i);
5: end for
6: return hash
7:
8: Nthash sliding(hash,charOut,charIn,k)
9: return rol (hash,1) ⊕ rol(h[charOut],k) ⊕ h[charIn];

The ntHash hash uses the recursive function f for
hashing k-mers in a sequence r with length denoted by
l. The hash function uses cyclic polynomial function for
hashing operation and it uses barrel shifting rather than
multiplication operations so as to make the process much
quicker. The hash function for the computation of the hash
values of the given k-mers in the sequence s of length l has
been expressed in equation2 and 3.

H(k−mer0) = rolk−1 ·h(r[0])⊕ rolk−2 ·h(r[1]) · · ·⊕h(r[k−1])
(2)

The hash value of the previous k-mer is used to generate
the hash value of the present k-mer:

H(k−meri) = rol1·H(k−meri−1)⊕rolk·h(r[i−1])⊕h(r[i+k−1])
(3)

the term rol stands for cyclic binary left rotation, h(.) is
the seed table, and ⊕ stands for bit-wise exclusive OR
operator. In this paper, NtHash algorithm was executed over
murmur 3 hash because ntHash has less time complexity.
It has O(k+ l) time complexity whereas the traditional hash
functions have the time complexity O(k.l) where k is the
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k-mer length and l is the read length of the sequence. The
ntHash algorithm is shown in Algorithm 3.

2) Partitioned Bloom filter
Partitioned Bloom filter (Bloom-1 filter) is data structure

[22] which performs membership check in a single memory
access compared to ‘h’ memory accesses in a standard
bloom filter. The primary ideology of this filter is that the
bloom filter memory is divided into ‘l’ blocks. The block
size is chosen based on the cache line size of 64 bytes.
Each element from the set is hashed and updated in the ‘h’
memory locations in the single block instead of mapping
randomly in the entire bit array. This bloom-1 filter is an
array B, which has l number of words, with each word
having the length of w bits. The Partitioned bloom filter is
shown in Figure 3 .

Figure 3. Partitioned Bloom Filter Data Structure

The total number of bits in the bloom filter can be
written as lxw. For inserting an element into the filter, a
membership block is selected from the hash value and then
the element is hashed again h times and updates the bits
in the block. For checking if an element is present in the
bloom filter i.e., membership of the set, we perform hashing
operation on the element. It requires log2l + klog2w hash
bits. In the bloom-1 filter, we use log2l number of bits to
locate the membership word and then klog2w number of bits
is required to do the membership check inside the word.If
all the membership bits are ones, then it is a member of
the setelse it is not a member.The false negative value of
this algorithm is equal to zero. Hence with the usage of
bloom-1 filter we can reduce the time complexity but with
the added cost of increased false positive rate. The false
positive probability [23] of the Partitioned bloom filter is
given as

f (W, b, k) =
∞∑

i=0

PoissonW/b(i) · finner(W, i, k) (4)

Where b denotes bits per element which is equal to
m/n,h represents the number of hash function and W is the
block size which is the cache line size. Figure 4 shows the
number of memory access required for bloom filter which
is linear but constant for bloom-1 filter.

Figure 4. Memory Access for Bloom and Partitioned Bloom filter

3. Results and discussion
In this work, we have used FragariaVesca species gene

sequence which is the scientific name of a wild strawberry
plant for the performance analysis of k-mer counting.
The input files shown in Table I were extracted from
the database ’(ftp://ftp.ddbj.nig.ac.jp/ddbj database)’. The
input files are Fastq formatted file.

TABLE I. Datasets used for K-mer counting process in DNA
Sequence

Input
Datasets

Number
of Reads

Average
read length Size(GB)

Dataset 1 195472 367.551 0.478
Dataset 2 623466 338.802 0.986
Dataset 3 2285726 350.243 1.8
Dataset 4 4195487 327.748 3.1
Dataset 5 6321741 368.881 5.2
Dataset 6 12802954 352.074 10.2

This work is carried out on an Intel(R) Xeon(R)
CPU(E5-2620v4, 2.10GHz with 8cores) with 32GB RAM
and 1TB SDD running on Ubuntu 16.04 LTS machine.
Since the choice of hash function decides the performance
of bloom filter, we compared the murmur hash and Nthash
functions as a function of k-mer processing time for differ-
ent loads. A number of unique k-mer files of length k=27
were generated and given as input to the hash function.
As seen from Figure 5, ntHash took very less processing
time compared to murmur3 hash. From the findings, Nthash
function is best suitable and specially designed for hashing
consecutive strings like k-mers.
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Figure 5. Time Complexity of murmur hash and ntHash

The hash functions were also tested for the insertion,
query time, and the false positive probability in the bloom
filter. Twelve input files of unique k-mers with k-mer length
k=27 were generated and inserted into the bloom filter and
another 12 files with the unique k-mers were generated and
tested for false positives. The Bloom filter is designed with
the theoretical false positive probability of 0.01 for which
the number of hashes was set as 6. The Practical false
positive probability is recorded for the twelve input files
and the FPP is same for both the hash functions which is
shown in Table II.

TABLE II. Simulated False Positive Probability of Murmur and
Nthash in the bloom filter for unique k-mers

Input
Strings

Murmur
Hash Nt Hash

100000 0.01025 0.01006
500000 0.00995 0.01017
1000000 0.01002 0.01009
2000000 0.01001 0.00505
3000000 0.01007 0.01004
4000000 0.00999 0.01008
5000000 0.01004 0.01005
6000000 0.01008 0.01006
7000000 0.01004 0.01004
8000000 0.01002 0.01008
9000000 0.01006 0.01003
10000000 0.01004 0.01005
10000000 0.01004 0.01005

The Nthash function uses the lookup table for each DNA
base which consumes kilo bytes of memory. When the input
string is hashed, each hash value is computed using the few
arithmetic operations of the seed value extracted from the
lookup table. In the case of Murmur hash function, each
string is hashed using multiplication and rotation operation
which consumes more time for hashing each and every

string. When the hash value increases the computation of the
murmur hash increases compared to the Nthash function.
The time taken for inserting the strings into the bloom filter
and querying another set of unique strings from the bloom
filter were recorded and shown in Figure 6 and Figure 7.
From the above results, we can conclude that for better
performance, Murmur hash can be used for the applications
using random strings and the Nthash can be used for the
genomics applications.

Figure 6. Insertion time of murmur hash and ntHash in Bloom filter

TABLE III. False Positive Probability of Bloom Filter and Parti-
tioned Bloom Filter

FPP
(Theory)

No. of
Unique
Strings

Size of
Bloom
Filter

FPP
(Simulated)

Partitioned
Bloom
Filter

Bloom
Filter

0.1

2000000 9585059 0.10274 0.10058
5000000 23962646 0.10220 0.10064
8000000 38340234 0.10637 0.10066
10000000 47925292 0.10233 0.10075
15000000 71887938 0.10238 0.10070
20000000 95850584 0.10222 0.10064

0.01

2000000 19170117 0.01617 0.01005
5000000 47925292 0.01622 0.01004
8000000 76680468 0.01621 0.01000
10000000 95850584 0.01611 0.01000
15000000 143775876 0.01622 0.01004
20000000 191701168 0.01617 0.01004

0.001

2000000 28755176 0.00807 0.00102
5000000 71887938 0.00800 0.00102
8000000 115020701 0.00788 0.00100
10000000 143775876 0.00799 0.00101
15000000 215663814 0.00804 0.00099
20000000 287551752 0.00803 0.00100
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Figure 7. Query time of murmur hash and ntHash in Bloom filter

Since K-mer counting application uses bloom filter, the
performance comparison of Bloom filter and the Partitioned
Bloom filter is needed. To check the performance of the
bloom filter and the partitioned bloom filter, a set of unique
random strings were generated and inserted into the bloom
filter, another set of unique random strings were generated
and tested for the false positive probability in both Bloom
and Partitioned bloom filter. The false positive probability
of the Bloom and Partitioned bloom filter is shown in Table
III. The time taken to insert the strings in the bloom filter
and querying the query strings were tabulated in Table IV
for the false positive rates of 0.01, 0.1 and 0.001.

From the results, we could see the reduction in the
number of memory access of the Partitioned filter. When
the input string is hashed, it will give the random location
in the standard bloom filter and for h hashes, all the h bits
were stored in the random locations in the bloom filter
memory. For querying the strings, all the h locations in
the entire memory are accessed. In the partitioned bloom
filter, all the h bits for an input string were set in a single
cache line. Similarly, for the query string only the cache
line is accessed. As the number of memory access reduces,
time complexity also reduces at the expense of the false
positive rate. However, the increase in the false positive rate
is very minimal and is under the allowable false positive
rate (10 percent error rate is acceptable) of many genome
applications genome applications [4], [24].

For testing the K-mer counting process, k-mers with
length k equal to 27 were generated from the short reads.
The k-mers were hashed and inserted in the partitioned
bloom filter and stored in the hash table. The K-mer
counting algorithm is implemented in C++ in a multicore
environment. The algorithm is parallelized using OpenMP
to exploit the parallelism in the available CPU threads. The
input files contain the sequence of short reads of the DNA
bases, where the average read length of each read varies
from 300 to 500. While inserting the k-mer from the read,

Figure 8. Comparison of Murmur Hash and NtHash in Bloom filter
in K-mer Counting process

each k-mer is taken and hashed using Murmur hash and
inserted into the bloom filter and then into the hash table.
The same process is repeated by using the Nthash function.
The time taken to process the input sequence were recorded
and shown in Figure 8. Since the Nthash function uses the
cyclic hash approach and the lookup table for the DNA
bases, the hash computation for the entire dataset is reduced
thereby the time taken for the k-mer counting process is
reduced.

Figure 9. Comparison of Standard Bloom Filter k-mer counter[13]
and the proposed hybrid k-mer counter

From the hash and the bloom filter architecture com-
parison, the Nthash and the Partitioned Bloom filter has
better time complexity. Thus, the hash function in the k-
mer counting algorithm is replaced with Nthash function
and the standard bloom filter architecture is replaced with
a Partitioned bloom filter. The set of input datasets were
passed to the proposed k-mer counter and the time taken for
the entire k-mer counting process was recorded. The same
sets of inputs were given to the existing k-mer counter and
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TABLE IV. Time Complexity of Bloom Filter and Partitioned Bloom Filter for Random Strings

False
Positive
Probability

Number of
Unique
Strings

Size of
the Bloom
filter

Insertion time Querying time

Bloom
Filter

Partitioned
Bloom filter

Bloom
Filter

Partitioned
Bloom filter

0.01

2000000 19170117 1.0506 0.9249 0.6141 0.5847
5000000 47925292 2.2365 1.9697 1.5358 1.3807
8000000 76680468 3.4567 3.0577 2.4890 2.2824
10000000 95850584 4.3045 3.8447 3.1233 2.9229
15000000 143775876 6.6260 5.7787 4.8583 4.3328
20000000 191701168 9.6618 7.7818 6.7708 6.0416

0.1

2000000 9585059 0.8810 0.7399 0.6066 0.5460
5000000 23962646 1.7805 1.6468 1.4881 1.4527
8000000 38340234 2.7018 2.6512 2.4173 2.1871
10000000 47925292 3.4245 3.1713 3.0963 2.8011
15000000 71887938 5.2105 4.8712 4.7199 4.1099
20000000 95850584 6.5536 6.4608 6.0593 5.5144

0.001

2000000 28755176 1.1374 0.9690 0.6110 0.5581
5000000 71887938 2.5884 2.1575 1.5479 1.3737
8000000 115020701 4.0290 3.3455 2.5180 2.2463
10000000 143775876 5.3573 4.1809 3.4835 2.8774
15000000 215663814 8.9077 6.4288 5.2295 4.6298
20000000 287551752 12.6444 8.8052 7.3568 6.4228

the results are shown in Figure 9. From the results, it is
evident that there is an improvement in the running time
of the proposed k-mer counting process compared to the
existing method. The reduction in the computation time
is due to the efficient use of the cache memory in the
partitioned bloom filter and the reduction in the computation
time of the hash function. Since the Nthash is occupying
only minimal extra memory for the seed table storage and
the partitioned bloom filter architecture is only the modified
version of the bloom filter, the increase in the memory
utilization is not comparable. As k-mer counting is an
initial process in many applications, this reduction in the
run time of the process will be beneficial when adopted in
applications with huge datasets.

4. Conclusion
In this paper, we proposed a hybrid partitioned bloom

filter method for k-mer counting of the DNA sequence
of FragariaVesca species. We used the ntHash hashing
mechanism for hashing the k-mers present in the short
reads of the DNA sequence. The ntHash function used in
the hybrid method considerably reduced the computation
time compared to the murmur hash function in the existing
approach. The partitioned bloom filter aligned to the cache
line size reduced the number of memory access to one
which in turn reduced the k-mer frequency computation
time. The proposed method has been implemented in the
multicore environment and simulated with a real-time gene
dataset. The computed data for different sets of strings
showed that the k-mer counting using a partitioned bloom
filter with Nthash took less time compared to the standard

bloom filter with Murmur hash. It was also observed that
there was a substantial improvement in the processing time
when the size of the datasets increased. The proposed hybrid
approach will be beneficial to bloom-filter based genome
applications. Also, it can be further accelerated using the
hardware accelerators such as FPGA and GPU as there is
more scope for data decomposition.
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