
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Oct-2022)

https://dx.doi.org/10.12785/ijcds/120177

A New Adaptive Causal Consistency Approach in Edge
Computing Environment

Abdennacer Khelaifa1, 2, Saber Benharzallah3 and Laid Kahloul4

1Biskra University, 07000 Biskra, Algeria
2LIAP Laboratory, University of El Oued, Algeria

3LAMIE Laboratory, University of Batna 2, Algeria
4LINFI Laboratory, University of Biskra, Algeria

Received 18 Jul. 2021, Revised 20 Sep. 2022, Accepted 27 Oct. 2022, Published 31 Oct. 2022

Abstract: Edge computing is a new computing paradigm that has emerged to offload computation and storage to edge devices in order
to get a shorter response time and more efficient processing. Nevertheless, adopting a consistency scheme that can conserve multiple
replicas while guaranteeing a good level of consistency is an open issue. Moreover, a data store with only one consistency level is
not suitable for applications that have different consistency requirements. In this paper, we propose MinidoteACE, a new adaptive
consistency system which is an amelioration version of Minidote a causally consistent system for edge applications. Unlike Minidote
which supports only causal consistency, our model allows applications to run also queries with stronger consistency guarantees.
Experimental evaluations show that throughput decreases only by 3.5% to 10% when replacing causal operation with a strong operation.
However, update latency increase significantly for strong operations up to three times for 25% update workload.

Keywords: Minidote, MinidoteACE, Causal consistency, Adaptive Consistency.

1. Introduction
Choosing a consistency model in a distributed data

store is a critical decision mainly when the latter is geo-
replicated. The growing requirement for short response
time and wide availability has led many geo-replicated data
stores to prefer weak consistency models over strong con-
sistency models. However, using weak consistency models,
such as eventual consistency [1], [2] or adaptive consistency
[3], renders the programming model more complicated to
application developers, who are obligated to fix explicitly
data inconsistency issues introduced by these models. This
has led to the emergence of the causal consistency model [4]
that has been demonstrated to be the strongest consistency
model in an always-available system. Causal consistency
captures the potential causal relationships between events
within one client and also the reads-from relation between
different clients. The causal consistency model ensures that
a write operation will not be applied until all the operations
that precede it are applied. Causal consistency is a good
choice for geo-replicated data stores, since it can reduce
the anomalies issued by eventual consistency, yet it tolerates
partitions and avoids long latencies associated with strong
consistency. However, causal consistency is a relaxed con-
sistency model that optimistically allows replicas to confirm
updates concurrently to achieve higher availability. This
sometimes leads to conflicts across replicas. A Conflict-

free Replicated Data Types (CRDTs) [5] are proposed
as a proven solution to handle conflicts. A CRDT is an
abstract data type that ensures that replicas can be modified
without coordinating with each other and if they have
received the same set of updates, they reach the same state,
deterministically.

In this context, AntidoteDB [6], [7] is a highly avail-
able geo-replicated key-value data store. Thanks to causal
consistency and CRDTs, AntidoteDB allows developers
to build solid applications without reducing performance
or horizontal scalability provided by AP/NoSQL storage
systems (systems that sacrifice consistency to ensure avail-
ability and Partition tolerance). Minidote [8] is a lightweight
version of AntidoteDB designed for Edge Computing En-
vironment. Like AntidoteDB, Minidote keeps providing
causal consistency as the only consistency level in the
system. In fact, Minidote supports two types of operations:
read and write (update). Read operations are performed
locally. After receiving a client read query, the corre-
sponding node uses only the local replica to answer the
query. Similarly, write operations are applied and committed
locally before broadcasting their effects and dependencies
to other nodes. A node that receives effects of a remote
update, can apply them to the local replica after verifying
the update dependencies. Minidote then uses CRDTs to

E-mail address: abdennacer-khelaifa@univ-eloued.dz, sbharz@yahoo.fr, kahloul2006@yahoo.fr http:// journals.uob.edu.bh

 https://dx.doi.org/10.12785/ijcds/120177
http://journals.uob.edu.bh

946 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

resolve inconsistencies generated by concurrent updates.

However, causally consistent systems [4], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22] including Minidote face two issues: 1) They provide
only a single consistency level which is not sufficient for
particular kinds of applications. Taking an online auction as
an example of the systems that change the recommended
consistency level during the runtime. For the early bids of
the auction, the system does not require strong guarantees
because the data are not so important for the final deal.
However, When the deadline draws near, the participants
should see the latest bids to make the next bid. Therefore,
the consistency requirements become higher and the data
should be always modified under strong consistency. 2)
They do not distinguish between system replicas and clients,
in other words, each node of the cluster is considered as
a replica of the service and a client of the service at the
same time. The latter assumption means implicitly that
every client is always associated with one of the nodes.
In such a case, the client sticks to the same replica, and
the system provides textitSticky availability [23] . However,
clients are independent entities, which can switch from one
replica to another, and which, in some situations, may lose
communication to a system replica. Namely, the client needs
high availability. But if a client moves from one node to an
alternative one, it could mean giving up causal consistency:
this can happen if the alternative node does not receive all
the client’s updates, and therefore it leads to breaking the
read-your-writes guarantee implied by causal consistency.

To overcome these issues, we propose MinidoteACE, a
new adaptive consistency strategy that enables the client to
choose the level of consistency for each update he sends
either causal or strong. For this purpose, we add another
type of operation: “strong update”, to Minidote system to
become able to support three types of operations: read,
causal update (the existing update operation) and strong
update. We keep the existing behaviors for read and causal
update operations, however we use the implementation of
Causal stability [24] to carry out strong update operations.
An operation is stable if it is delivered to all the nodes of
the cluster. Hence, a strong operation will not be executed
until it becomes stable. Towards that end, we delay the
execution of strong queries until they arrive at the other
nodes. The new consistency level is weaker than the typical
strong consistency as it just ensures the arrival of queries to
the system nodes, not their execution. Our model provides
stronger consistency guarantees to ensure high availability.
If we assume that operations will be executed correctly,
replicas will have all recent updates so clients will be able
to regain their updates when they switch from one node to
another. Hence, in addition to causal consistency, clients
can also perform updates with stronger guarantees. Pro-
viding adaptive consistency allows application designers to
choose the convenient consistency level for each operation
according to application needs and the system’s context.
The application can specify which operations should be

run under causal consistency and which others should have
stronger consistency guarantees.

We have experimentally evaluated our model using
Basho bench [25] : a benchmarking tool that has been
modified to evaluate AntidoteDB. To do that, We perform
the necessary amendment on the Basho bench bench-
mark to fit MinidoteACE. Our evaluation proves that
MinidoteACE can support a certain proportion of strong
operations without affecting latency or throughput.

In this paper, we make the following contributions:

• A new adaptive consistency approach that enables
clients to choose the consistency level for their
queries either causal or strong according to their
requirements.

• We develop MinidoteACE, an ameliorated version of
Minidote that provides the new consistency strategy
in edge computing environment.

• We implement our proposed contributions and per-
form the necessary amendment on the benchmarking
tools to ensure a meaningful evaluation.

The outline of the rest of this paper is as follows. We dis-
cuss related work in Section 2. Section 3 briefly defines the
principal concepts. Section 4 describes the Minidote system.
Section 5 presents our proposed approach (MinidoteACE)
including the protocol and the algorithms. We evaluate the
performance of MinidoteACE in Section 6. Finally, Section
7 concludes the paper and makes recommendations for
future work.

2. Related works
Many prior work efforts have studied data management,

mainly the trade-off between consistency and availability
that has been involved in building distributed data stores.
Therefore, there are many systems providing different se-
mantics to application developers. For instance, Google
BigTable [26], Microsoft Azure Storage [27] and Apache
HBase [28] provide strong consistency. These systems
provide simple semantics, but suffer from long latencies
and partition-intolerance. Other systems like Amazon Dy-
namo [29], Cassandra [30] and MongoDB [31] provide
eventual consistency which provides excellent performance
and tolerates partitions, but renders the programming model
more complicated due to inconsistency handling difficulties.
MinidoteACE takes an intermediate position in this trade-
off by embracing causal consistency semantics.

Many previous works have recognized the convenience
and applicability of causal consistency. COPS [4] was the
first system that defined the concept of Causal+ consistency,
a causally consistent model that ensures the convergence
offered by eventual consistency. Causally consistent systems
need to track causal dependencies between operations in
the form of a piggybacked metadata which is used to tag

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 947

operations and to capture the causal past of clients with each
operation. Multiple forms have been used to represent meta-
data, COPS [4] for instance uses explicit causal histories
that, for each operation, enumerate all the operations that
are in its causal path. Logical clocks are also used to track
causality in ChainReaction [10], SwiftCloud [12], and Orbe
[9]. The simple logical clock has an entry for each replica
that will be incremented upon a new update is applied on
the replica. Other approaches like GentleRain [11],Saturn
[19], Cure [14], and Legion [13] use physical clocks that
tag operations with the physical local time. However, Okapi
[16] and Eunomia [17] choose to make a combination
between logical and physical clocks: hybrid clocks. How-
ever, tracking causality accurately requires maintaining an
incremental size of metadata that may affect the system
performance. Our model uses smaller size timestamps than
vector clocks to encode the causality between messages, a
causal graph to store the dependencies between messages,
and an efficient algorithm for causal delivery and stability.
Several recent works have developed storage systems for the
edge environment. DPaxos [32] and EdgeCons [33] rely on
Paxos-based protocols that provide only strong consistency
and suffer from long latencies. FogStore [34] however,
implements two functionalities that allow it to manage
consistency between Fog nodes in an optimal manner. The
first one aims to minimize the response time between the
clients, the devices, and the copy of a data record by relying
on a replica placement strategy. The second functionality is
a context-aware mechanism that chooses the consistency
level of the client’s query according to the client’s context.
PathStore [35] also supports several consistency levels
according to the client needs mainly, eventual, session,
and strong consistency. Although Fogstore and Pathstore
strive to optimize latency, they do not preserve causality.
Gesto [36] is a hierarchical architecture that allows cloud
data stores to cover edge networks while providing causal
consistency. Gesto splits replicas into geo-replicated groups
where each group of edge replicas has one datacenter. The
native replication protocol of the cloud data store is used
between data centers. However, a novel causality tracking
mechanism is integrated into each group. Moreover, Gesto
uses a multipart timestamp enabling scalability and fast
migration. Minidote (detailed in section 4) is also a causally
consistent system for the edge. Unlike our model, Gesto
and Minidote provide only causal consistency which is not
sufficient for all kinds of applications that require stronger
consistency guarantees.

3. Background and definitions
In this section, we aim to understand the main concepts

around our system. In fact, our contribution is based on the
Minidote system which is a lightweight key-value storage
system that is designed for Edge Computing Environment.
Minidote is a causally consistent system that allows it
to provide fairly high scalability and performance while
keeping a good consistency level. We introduce firstly,
causal consistency by giving its definition, implementation,
and causal stability concept. Later, we define CRDT data

types as a way of convergent conflict handling. Finally,
we give an overview of the computing environment of our
system: Edge computing.

A. Causal Consistency
Causal consistency captures the notion that different

data store nodes should see causally-related operations in
the same order. Causality [37], [38] is a happens-before
relationship between two events. For two operations, a and
b, we say that a happens before b or, alternatively, b causally
depends on a, and we write a ⇝ b, if and only if at least
one of the taking after conditions hold:

• Thread-of-execution: a and b belong to a single thread
of execution, and a precedes b.

• Reads-from: b reads the value written by a when b
is a read operation and a is a write operation.

• Transitivity: There is some other operation c such that
a ⇝ c and c ⇝ b.

Consequently, a storage system provides causal consistency,
if it does not commit any write operation before executing
all its causally-related operations. For example, in a social
network, Mark updates an old post on his wall. Alan sees
the update and writes a comment about it. Then, Alan’s
comment shouldn’t appear to their friend Paul before he
sees Mark’s update on the post as the comment of Alan
causally depends on the update of Mark.

1) Causal consistency implementation
The implementation of Causal consistency can be per-

formed using two simple steps [4]:

• Assign a set with all the preceding operations to each
operation; this set we’ll be called the dependencies of
o and refer to it as dep[o].

• Perform o once all its preceding operations (opera-
tions in dep[o]) have been executed.

Also, let’s mention the set of executed operations by Exe-
cuted.
If the process sends an operation o, then the dependencies
of o will be the set of operations that have been performed
at that time, i.e. dep(o)=Executed. If the operation p follows
the operation o, then the dependencies set of p contains o :

o ∈ dep(p) (1)

It may however occur that p does not cause o and o does
not cause p. If so, o and p will be competing with each
other :

o < dep(p) ∧ p < dep(o) (2)

2) Causal stability
An operation o is causally stable (denoted by stable(o))

if it belongs to the dependencies set of each operation p

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

948 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

that will be executed in the system [39], [24]:

stable(o) ≡ ∀p.p < Executed ⇒ o ∈ dep(p) (3)

In other words, stable(o) means that o has been executed
by all the nodes of the system. Hence, every new operation
will be in the future of o.

Example 3.1: Let’s have a cluster with three nodes: a,
b and c. o, p, q and r are operations that will be Executed
in the cluster.

• a performed o and then p.

• b noticed o and p, and then performed q.

• c noticed o and performed r.

So, the Executed sets for each node are the following
Executed:

• Executed a = {o,p}.

• Executed b = {o,p,q}.

• Executed c = {o,r}.

Remember that: the set of operation dependencies is the
set of operations performed at the moment of operation sub-
mission. We know therefore at this point that any submitted
operation (at any node) will include o as a dependence. This
means that o is stable. We can’t say the same about any of
the remaining operations.

B. Conflict-free Replicated Data Type (CRDTs)
In a causally consistent system, there is no need to order

concurrent operations; two operations can be replicated
in any order if they are not causally related, to avoid
synchronization cost. However, If two concurrent update
operations target the same object, they are in conflict and
produce an inconsistency in the system. Avoiding conflicts
usually requires ad-hoc handling [40], [41], [29] in the
application logic by employing an automatic strategy to
handle conflicts deterministically, in the same manner, at
every replica. For example, the last-writer-wins rule has
been adopted by most of the existing causally consistent
systems [4], [42], [11], where the last update overwrites the
other updates. Antidote and Minidote rely on CRDTs [5],
[6] which are an abstract data type built to be replicated at
multiple replicas. CRDTs have a clearly designed interface
and exhibit two attractive properties: (1) there is no need
for coordination between replicas associated with update
operations; (2) two replicas can reach the same state after
receiving the same set of updates since they guarantee
state convergence by adopting mathematically sound rules.
CRDTs include sets, counters, maps, LWW registers, lists,
graphs, among others. As an example, a counter data
type can handle the following operations: increment(C) and
decrement(C). The implementation of a CRDT counter will

guarantee that the state of the counter will reach the same
value at different replicas whatever the order of increment
and decrement operations.

C. Edge Computing
Edge computing [43] is defined as a model of distributed

computing that employs technologies allowing to perform
computation at the edge of the network. In contrast to
the Cloud computing paradigm where data centers handle
all storage and processing services, Edge computing aims
to improve system scalability and data privacy, reduce
latencies and ensure an effective usage of resources (mainly
reducing energy consumption). In edge computing, cloud
servers and edge devices work together to perform pro-
cessing. Which computations are conducted on which of
these components is determined by a variety of factors,
including node capacity and latency requirements. We call
an “edge“ any processing, storage, or networking resource
located along the path between cloud data centers and edge
devices. A cell phone, for example, is regarded as an edge
between body things and the cloud, whereas a gateway in a
smart home is considered as an edge between house things
and the cloud.

4. An overview ofMinidote system
Minidote [8] is a replicated key-CRDT store that pro-

vides causal consistency with atomic batch-reads and batch-
updates while the data is automatically replicated on each
node and concurrent updates are resolved using CRDTs.
Compared to Antidote, Minidote doesn’t support interactive
transactions and replica sharding which makes it more
lightweight and therefore allow it to run well on less
powerful devices. Minidote only has to keep the latest
version available, whereas Antidote must be able to serve
all snapshots used by currently running transactions.

The inter-dc replication service of Antidote is replaced
with a different causal broadcast service provided by Camus
[44]. Camus is a CAusal MUlticast Service, that provides
different back-ends to guarantee a reliable dissemination
and delivery respecting causal order at all replicas using
the service. The back-end used in Minidote is an imple-
mentation of tagged casual broadcast (TCB) protocol [24]
which guarantees that messages/operations will be delivered
respecting the end-to-end happen-before relation as seen by
the application.

A. Concepts and data structures
Before we describe the different components of

Minidote architecture, we will present some concepts and
data structure that will be used frequently in the next
paragraphs and sections.

• State: Each minidote server instance has a state that
describes the current status. The state contains a
vector clock, a list of dots that causally precede the
next update i.e, dependencies, and the dot: the tag of
the current operation of this node.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 949

• CRDT object: like AntidoteDB, Minidote is a key-
value data store so it identifies each object with its
key, type, and bucket. So we write Object = {key,
type, bucket}. When updating an object, the following
parameters should be introduced to the query: the
object identifier, the update operation, and the given
value. For example, to increment a counter by 1, we
write Update = {Bobj, increment, 1}.

• Vector clock: A vector clock of a system of N nodes
is an array of N logical clocks used to manage a
partial ordering of events in a distributed system
and to keep causality relationships [45], [46]. As
in Lamport timestamps, The causality relationship
(called happened-before) captured is defined based on
passing of information, rather than passing of time.
The vector clock is used to track causal information
between operations. Operations piggyback this infor-
mation to allow their delivery in an order respecting
the causality of events.

• Dot: a pair of (node Id, counter), which serves
as a unique identifier for an operation/message of
Minidote node to be broadcast.

• Dpgraph: The dependency graph is used to store
messages that are not ready to be delivered yet.
Graphs better characterize the partial order rather
than queues which are better for totally ordered
events. The graph uses dots to identify its vertices
where each vertex contains the operation’s effects, the
status of the message (missed, received, delivered, or
stable), successors set, and predecessors set where
predecessors set/successors set is a set of dots that
precede/succeed this dot.

B. Minidote architecture
Figure 1 shows the architecture of Minidote node and

its interactions with clients and other nodes. Each Minidote
node contains three principal modules: Minidote server,
Camus middleware, and CRDT storage.

1) Minidote server
Minidote server is the brain of Minidote node which in-

teracts with clients and other modules. A client can perform
atomic batch-reads and batch-updates using Minidote APIs:
Read objects (Keys, clock) and Update objects (updates,
clock). For read operations, the client specifies Crdt keys
of requested objects and a vector clock. After execution,
Minidote server returns values of the input keys and a
new vector clock. However, for update operations, the client
should specify a vector clock and for each update: an
object’s key, an update operation, and input parameters.
Minidote server returns, after execution, a new vector
clock. Since Minidote server has a state, vector clock, dot,
and dependencies, for each read or update operation, it
should wait if the operation’s vector clock is later than the
current state’s vector clock. Then, it asks for locks of the
object’s keys, if they are not free the query should wait.

Hereafter is a brief description of the main procedures of
Minidote server:

• Read objects: Minidote server performs read oper-
ations from local storage and then sends answers to
the client.

• Update objects: After acquiring locks,
Minidote server applies updates on the local
data store, and then it increments the value that
corresponds to the local node on the vector clock.
After that and in a parallel way, it releases locks,
answers the client by the new vector clock, and
calls the broadcast function of the middleware which
broadcasts the update effects to the other nodes.

• Deliver remote Update: this order is received
from the middleware to apply a remote update.
Minidote server sends the received update effects to
its local storage, updates the vector clock of the state,
and adds the received dot to its dependencies.

2) Camus middleware
The middleware is a low-level layer that ensures causal-

ity between messages using the following functions.

• Broadcasting updates (Tcbcast): When
Minidote server calls this function, the middleware
creates a new vertex for it in the Dpgraph and
labels it as ’received’. Then, it broadcasts a message
containing the update effects, its dependencies, the
dot, and the vector clock.

• Receiving a remote message: Upon receiving a re-
mote message, the middleware creates a new vertex
in Dpgraph for the received dot with status ’received’.
Then it checks its dependencies, if they all have been
received, it calls the function Deliver. Otherwise, it
creates a new vertex in Dpgraph for each dot in the
dependencies that have not yet been received with
status ’missed’.

• Message delivery (Deliver): when this function is
called, the middleware sends the corresponding mes-
sage to Minidote server and labels the corresponding
vertex as ’delivered’ in the Dpgraph. Then, it checks
each dot in the successors set. If all its predecessors
have been delivered, it calls the function Deliver for
the corresponding message. The middleware notes
also that each dot in the predecessors set has been
received in the sender node. If a dot is labeled as
’received’ in all the nodes, it will be labeled as ’stable’
and the function Stable will be called for this dot.

• Stable: when a dot is labeled as ’stable’, it will be
removed from each predecessors set in Dpgraph and
then, its vertex will be removed from Dpgraph.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

950 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

Figure 1. A cluster of three Minidote nodes.

3) Storage
Minidote uses the CRDT libraries developed in Antidot-

eDB. CDRTs support high-level replicated data types such
as counters, sets, maps, and sequences which are designed
to work correctly in the presence of concurrent updates and
partial failures.

C. Consistency Protocol
Hereafter, we will summarize the behavior of Minidote

towards client requests:

• Each node has two main components:
Minidote server and Camus middleware.

• For read operations, Minidote performs the query
from the local instance and forwards the answer to
the client.

• The client (Application) performs an update u via
client api at Minidote server of a node i.

• Minidote server applies the update u locally and tags
it by a new dot. Then, it calls the broadcast function
of Camus that broadcasts the effects of the update u
to the other nodes. At the same time, it replies to the
client request by the new vector clock.

• When a node j receives the effects of u through its
middleware, it delivers the effects to Minidote server

to be applied if all its dependencies have been already
delivered. The update u will be then inserted into the
dependencies of new updates generated by the node
j.

• When the node i receives updates from all nodes
containing u in their dependencies, it labels u as local
stable.

• u becomes stable in the node j when it is included in
the received update dependencies of all other nodes
except i.

5. MinidoteACE: Proposed ameliorations and Adaptive
consistency approach

Minidote provides only causal consistency and uses
Crdts to handle conflicts. In MinidoteACE, we keep the
same architecture as Minidote and the same behavior for
read operations as well. However, MinidoteACE exposes
two types of updates: causal and strong. The system keeps
the same behavior as Minidote for causal consistency oper-
ations. But in the case of strong consistency operations, it
follows these steps.

• The client performs an update u at a node i via its
Minidote server.

• Minidote server tags the update u and broadcasts it
through the middleware to the other nodes without

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 951

Figure 2. Flowchart for consistency proposal.

applying it locally.

• When a node j receives u, it inserts it to the strong
received updates set SRUS. The latter will be piggy-
backed to all updates and commits sent by the node
j.

• When the node i receives updates from all other nodes
containing u in their SRUS, it considers u as stable.
Then, it delivers u locally and broadcasts a commit
message to the other nodes.

• When the node j receives a commit message of u, it
labels u as stable and delivers it to Minidote server
to be applied.

Hence, Read objects API keeps the same behavior. How-
ever, Update objects API needs a third parameter that
specifies the consistency level of update operations. There-
fore, Update objects API takes the following form: Up-
date objects (updates, clock, consistency). Figure 2 sum-
marizes the behavior of MinidoteACE for read/update op-
erations.

A. Detailed functions and Algorithms
• Read objects: We keep the read operation behav-

ior without modification. When the client calls the
Read objects API, Minidote server uses the func-
tion described in Algorithm 1 to perform read op-
erations. Minidote server adds the current server
state to the parameters introduced by the client to

form the input parameters of read operation. Before
performing read operations, Minidote server ensures
that the keys are free and compares the operation
clock with the state clock and locks the keys. After
reading objects, Minidote server releases the keys
and returns outputs to the client.

Algorithm 1: Read operation
Input: Keys, Clock, State
Output: Values, NewClock

1 wait release locks(Keys);
2 check clock(Clock, State.Vc);
3 lock(Keys);
4 Values = read crdtOb jects(Keys,Clock);
5 NewClock = S tate.Vc;
6 unlock(Keys);

• Update objects: We ameliorate this function by
adding the possibility to handle strong consistency
operations. Our ameliorations are illustrated in Algo-
rithm 2. The client who sends the update operation
should specify the vector clock, the consistency level,
and the update details (object identification, operation
type, and the value). Minidote server uses these
elements in addition to the current state as input
parameters to the update function that executes the
following steps.
◦ Firstly, Minidote server checks the keys of the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

952 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

corresponding objects, and if they are acquired
by another operation, it should wait. Then, it
compares the operation’s vector clock with that
of the current state. If the stump of the query is
greater, this means that the node misses some
updates so it should wait until missed updates
arrive (lines 1-3). After that, it acquires the locks
of targeted keys and then increments its own
logical clock in the vector by one (line 4).

◦ Secondly, Minidote server checks the consis-
tency parameter (lines 5-11), if the consistency
is ’causal’, it applies the updates locally by
calling CRDT APIs. Then, it calls the Tcbcast
function of the middleware to broadcast the up-
dates to other nodes. However, if the consistency
is ’strong’, it broadcasts the updates directly and
waits for its stability to be able to apply them
locally.

◦ Finally, Minidote server updates its state’s vec-
tor clock by the current vector clock. The latter
is returned as an answer to the client query and
the Keys should be released(lines 12-14).

Algorithm 2: Update operation.
Input: Updates, Clock, Cons, State
Output: NewClock

1 wait release locks(Updates.keys);
2 check clock(Clock, State.Vc);
3 lock(Updates.Keys);
4 NewVc := increment(S tate.Vc);
5 if Cons = ’causal’ then
6 apply updates locally(Updates);
7 S tate.Dot :=

tcbcast(U pdates,NewVc, S tate.Deps, S tate.Dot,Cons);

8 else
9 S tate.Dot :=

tcbcast(U pdates,NewVc, S tate.Deps, S tate.Dot,Cons);

10 wait stability(Updates);
11 apply updates locally(Updates);
12 S tate.Vc := NewVc;
13 NewClock := NewVc;
14 unlock(Updates.Keys);

• Broadcasting updates (Tcbcast): Tcbcast is a func-
tion of camus middleware which is called by
Minidote server to broadcast updates to other nodes
(Algorithm 3). When it is called, the middleware
increments the dot by one to identify the message
holding the new update (line 1). Then, the middleware
adds a new vertex to the dependency graph for
the new update (line 2). After that, it checks the
consistency. If the latter is strong, the dot is added to
the set of strong dots and the new vertex of the graph

is labeled as ’received’. However, in the case of causal
consistency, the new vertex is labeled as ’delivered’
(lines 3-7). Finally, a message will be sent to the
other nodes of the cluster. This message contains the
updates, its identification (Dot), the dependencies, the
consistency type, and the set of strong dots (lines 8
and 9).

Algorithm 3: Broadcasting updates(Tcbcast)
Input: Updates, Vc, Deps, Dot, Cons, Dpgraph
Output: NewDot, Dpgraph

1 NewDot := increment dot(Dot);
2 Add NewVertex to Dpgragh for NewDot;
3 if Consistency = śtrong´ then
4 Add NewDot to StrongDots;
5 Mark NewVertex as ’received’;
6 else
7 Mark NewVertex as ’delivered’;
8 Msg := {U pdates,NewDot,Deps,Cons, S trongDots};
9 broadcast to other nodes(Msg);

• Receiving Remote updates: This function will be
called when the middleware receives a broadcasting
message of remote updates from another node (Al-
gorithm 4). Upon receiving a remote message, the
receiver adds the corresponding dot to the set of
strong dots if the consistency is strong. Then the
function check strong dot is called to verify the
status of strong dots (lines 2-4). After that, a new
vertex in the dependency graph should be added, if it
has not been added before, for the received dot (line
5). Then, the middleware creates a new vertex for
each dot in the dependencies of the received dot if
it has not been created before and in the latter case
the vertex is labeled as ’missed’ (lines 8-10). The
received dot is inserted into the successors set of all
the vertices of its dependencies (line 11). Finally, for
a causal consistency dot, it will be delivered if all
its Dependencies have been delivered by calling the
function Deliver(lines 12 and 13).

• Delivering message (Deliver): Delivery means send
the remote update from the middleware component
to Minidote server of the same node. This function
has three steps (Algorithm 5):
◦ label the corresponding vertex in the depen-

dency graph as ’delivered’ and send the updates
to Minidote server (lines 1 and 2).

◦ Check the stability of the predecessors set dots
by noticing their vertices in the dependency
graph as arrived at the sender node. A dot
becomes stable if it is noticed as arrived at all
the nodes (lines 3-6).

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 953

Algorithm 4: Receiving Remote updates
Input: Msg, LSDots, Dpgraph
Output: LSDots, Dpgraph

1 {U pdates,Dot,Deps,Cons,RS Dots} := Msg;
2 if Consistency = ’strong’ then
3 Add Dot to LocalStrongDots;
4 {LS Dots,Dpgraph} :=

check strong dot(LS Dots,RS Dots,Dpgraph);
5 Add NewEntry to Dpgragh for Dot, if it is not exist;
6 Mark Dot as ’received’;
7 foreach Dotd in Deps do
8 if not exist a vertex of Dotd in Dpgraph then
9 Add NewVertex to Dpgragh for Dotd, if it is

not exist;
10 Mark NewVertex as ’missed’;
11 Add Dot to successors set of Dpgraph(Dotd) ;
12 if all dots in Deps have been delivered and Cons =

’causal’ then
13 Deliver(Updates, Dot, Dpgraph);

◦ Check the dots in the successors set if they can
be delivered (lines 7-9).

Algorithm 5: Deliver Msg
Input: Updates, Dot, Dpgraph
Output: Dpgraph

1 Mark Dpgraph(Dot) as ’delivered’;
2 Send Updates to Minidote server;
3 foreach Dotd in Predecessors set of Dpgraph(Dot) do
4 Find Dotd in Dpgraph and notice it as arrived at

SenderNode;
5 if Dotd is noticed as arrived at all the nodes of

the cluster then
6 Dpgraph := S table(Dotd,Dbgraph);

7 foreach Dotd in Successors set of Dpgraph(Dot) do
8 if all Predecessors of Dotd have been delivered

then
9 Deliver Dotd ;

• Check strong dots: It is a new function that we have
added to manage strong consistency operations (Al-
gorithm 6). It is called when the middleware receives
any message from the other nodes by exploring the
piggybacked set of strong dots. So the local node can
determine which dots among its broadcast dots have
arrived at the sender node to notice them. If a dot has
arrived at all the cluster nodes, the middleware labels
its vertex in the Dpgraph as ’stable’ and then notify
Minidote server to apply the corresponding updates
locally. Finally, a commit message is broadcast to
the other nodes. When a node receives the commit

message, its middleware calls the functions Deliver
and Stable for the corresponding dot.

Algorithm 6: Check strong dots
Input: LocalStrongDots, RemoteStrongDots, Dpgraph,

SenderNode
Output: LocalStrongDots, Dpgraph

1 foreach Dotd in LocalStrongDots do
2 if Dotd exist in RemoteStrongDots then
3 Notice Dotd as arrived at SenderNode;
4 if Dotd has arrived at all the nodes then
5 Notify Minidote server to Apply the

corresponding updates locally;
6 Dpgraph := stable(Dotd,Dbgraph);
7 Broadcast a commit message to the other

nodes for Dotd;

• Stable dot: When a dot becomes ’stable’, it should
be removed from the predecessors set in the overall
graph and its vertex should be removed from the
dependency graph as well (Algorithm 7).

Algorithm 7: Stable dot
Input: Dotd, Dpgraph
Output: Dpgraph

1 foreach Vertex of Dpgraph do
2 Remove Dotd from Predecessors set if it is exist;
3 Remove Vertex of Dotd from Dpgraph;

B. Clarification example
Take a cluster of two nodes MinidoteACE as shown in

Figure 3. We will show how MinidoteACE handles client
reads and updates.

Let Ctr1= {”g1”, crdt counter, ”bucket”} be an object of
MinidoteACE where his key is “g1”, his type is a counter,
and his bucket is “bucket”.

Update object: When Client 1 wants to update
the object Ctr1, he sends the following instruction to
MinidoteACE 1:

Vc1 = update objects([{Ctr1,increment,3}], {0,0},
causal).

This instruction increments Ctr1 three times (Ctr1 =
Ctr1+3) under causal consistency. {0,0} is a vector clock
that means that this operation has no dependencies. If the
instruction is executed in the first node, the resulting vector
clock Vc1 will take the value {1,0}.

Read object: To read this object, the Client 2 send the
following query:

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

954 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

Figure 3. An example of cluster of two MinidoteACE nodes.

{Value1,Vc2} = read objects([Ctr1],{0,0}).

He should then obtain {Value1,Vc2} = {3,{1,0}}. In fact,
Client 2 can read the value that has been updated by Client 1
and replicated by the system. Moreover, the obtained vector
clock indicates that Client 1 has performed one update.

C. Implementation
We have implemented MinidoteACE by working on

Minidote-tcb: a branch of Minidote GitHub repository
which is written in Erlang and uses Camus. We have
used the branch with stability of Camus that contains the
implementation of stability. The main modules that we have
replaced are: Minidote API, Minidote server, Camus and
Camus middleware. The source code of MinidoteACE is
available in our GitHub repository 1. We have made the
necessary amendments in the other modules of Minidote
and Camus to enable MinidoteACE to work conveniently.

6. Evaluation
We have used the benchmark Basho bench which is

developed within the project AntidoteDB[25], [47]; the
latter is built on the original benchmark for Riak core.
Basho Bench[48] is a popular Erlang application that has
a pluggable driver interface. Basho Bench can be extended
to serve as a benchmarking tool for data stores and generate
performance graphs. The benchmarking tool is useful for
repeatable and accurate performance. Basho bench utilizes
two particular indicators of performance: throughput and
latency.

• Throughput: the number of operations performed over
the defined period of time, including all possible types
of operations.

• Latency: the time between sending a query and the
completion of the reply.

The experiments have been performed on a cluster of
MinidoteACE nodes incorporated with a traffic generator
node. A traffic generator runs one copy of Basho Bench
that generates and sends commands to MinidoteACE nodes

1https://github.com/nacer-git/MinidoteACE

which are identified by their IP addresses and port numbers.
Figure 4 shows how traffic generators and MinidoteACE
nodes are organized in a cluster.

A. Experimental structure
Figure 5 illustrates our experimental setup. Hereafter,

we describe the main components of the experimental
architecture.

1) Traffic generator
The benchmark of AntidoteDB has two additional files,

that make the original Basho bench compatible with An-
tidote:

• The driver (basho bench driver antidote pb.erl):
This file defines the initialization of a benchmarking
thread and how it executes transactions. We have
adapted the driver file to work properly with our
system. Therefore, it can generate three kinds of
operations: read, causal update, and strong update.
Each generated operation is sent within a transaction
of a single operation to the target MinidoteACE node
through the protocol buffer interface.

• The configuration file (antidote pb.config): This file
is given as a starting parameter to the Basho bench,
it contains the benchmark parameters that can be
adjusted according to the test’s purpose. The config-
uration file contains the following parameters:
◦ Target: defines the ip addresses and the ports of

MinidoteACE nodes.
◦ Driver: defines the file name of the driver which

makes the workloads that were configured to be
benchmarked for the specified targets.

◦ Operations: This parameter configures which
operations the driver should run and the weight
of each operation. We put the following opera-
tions in the benchmark: read, causal update, and
strong update.

◦ Duration: An integer that defines the duration
of the benchmark in minutes.

◦ Threads: The number of parallel threads that
will be run during one benchmark.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 955

Figure 4. A cluster of MinidoteACE nodes with a traffic generator.

Figure 5. Experimental structure.

◦ Data type: defines data types for generated data
as well as operations to be applied for each
defined type in the benchmark.

◦ Keys generators: takes the form
{key distribution, Max key} which defines the
key generator distribution (Pareto or Uniform)
in which the keys will be generated as well as
the maximum value.

◦ Values generators: takes the same form as keys
generator.

2) Protocol Buffer Interface and data flow inside the system
We have adapted the Protocol Buffer of AntidoteDB to

work conveniently with MinidoteACE. A worker process
randomly selects one of the defined operations in the con-
figuration file. Then, the selected operation is encapsulated
in a transaction before encoding it using the protocol buffer.
Each encoded command is sent to a target MinidoteACE

node which is selected randomly too. Upon receiving a com-
mand, the Protocol Buffer API of MinidoteACE decodes the
command and sends it to MinidoteACE API. The API then
encodes the response of MinidoteACE and transfers it to the
traffic generator. In the traffic generator, there is a module
that catches results and collects it in a result file.

B. Experiment Setup
The experiments were performed in an environment

using a laptop with 8 GB DDR3 RAM, AMD Quad-Core
Processor A8-7410 (up to 2.5 GHz), and 1 TB of Hard Disk
Drive. Ubuntu 18.0.4 LTS (64-bit) was installed.

C. Performance configuration
Based on measuring performance and workload, Basho-

bench is a benchmarking tool that performs reads and
updates. After adapting the driver according to the input for-
mat of MinidoteACE, The operations that a driver might run

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

956 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

are in the format of (causal update,x,strong update,y,read,z)
which means that in each generated (x+y+z) operations,
Basho bench will generate x causal update operations,
y strong update operation and z read operations. When
y=0, This means that the benchmark does not contain any
strong operation. Therefore, MinidoteACE will act like a
Minidote system which allows us to compare our consis-
tency approach with the existing approach. To evaluate the
performance of MinidoteACE system and compare it with
Minidote, we launched the experiments illustrated in Table
I on a cluster of 3 to 6 nodes during one minute. The
grey rows contain experiments that evaluate our adaptive
consistency approach (Experiments: 3, 4, 6, and 7). The
white rows, however, will evaluate Minidote behavior (Ex-
periments: 1, 2, and 5). For simplicity, we fixed the number
of concurrent threads to 10, we chose the Pareto distribution
for key generation and the Uniform distribution for value
generation.

D. Results and discussion
In the following sections, we address the performance

indicators and describe the results according to different
experimental scenarios between reads, causal updates and
strong updates.

1) Throughput results
The experimental results about throughput performance

for each experiment are illustrated in Figure 6. As it is
shown in the results, the throughput performance in the
read only experiment is almost three times bigger than the
other cases (2440 operations) due to the absence of update
operations that have a higher latency which decreases the
performance. For the other experiments, we notice that the
performance decreases when we increase the proportion of
update operations. Moreover, the throughput performance is
inversely proportional to the number of nodes i.e, a cluster
that has a small number of nodes has a higher performance.
Despite strong updates having higher latency, the difference
with causal updates in performance is not huge between
workloads when executing them. For experiments 2 and 3,
the performance will be reduced by 3.5% when replacing
causal update operations by strong operations. However, it
will be less than 10% when replacing two out of five causal
update operations by strong operations (Experiments 5 and
7).

2) Read latency results
Figure 7 illustrates the 95th percentile read latencies that

we have measured in each experiment. The results show that
read operations have the smallest latency for the read only
workload (about 12 milliseconds for whatever the number of
nodes in the cluster). However, this latency increases when
the proportion of updates or the number of nodes in the
cluster increases. We note also that sticking strong updates
to the workload gives a remarkable decrease of read latency
(up to 30% for 10% updates between experiment 2 and 3).
This happened because strong updates have higher latency
so the workload should have lower throughput performance,
and hence, lower latency for read operations.

Figure 6. Throughput performance.

Figure 7. 95th percentile read latency.

3) 10% update results
Figure 8 and figure 9 illustrate the latencies of causal

and strong updates for experiments 2, 3 and 4 where
update operations account for 10% of the workload. In
these figures, the abbreviation 1C 9R causal upd repre-
sents the 95th percentile/average latency of a causal update
operation in experiment 2. Similarly, 1S 9R strong upd
represents the 95th percentile/average latency of a strong
update operation in experiment 3. The same notation is used
by 1C 1S 9R causal upd and 1C 1S 9R strong upd
in experiment 4. The results show that replacing causal
updates by strong updates increases update latency between
23% and 100% according to the number of nodes in the
cluster for average latency results (experiments 2 and 3).
However, for 95th latency results, latencies of the two types
are almost the same. We notice also that when dividing the
proportion of updates between the two types, strong update
latency is greater almost four times for a cluster of three
nodes and two times for a cluster of six nodes.

4) 25% update results
Figure 10 and figure 11 illustrate the latencies of causal

and strong updates for experiments 5, 6 and 7 where update

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 957

TABLE I. Experiments details and abbreviations.

Causal updates Strong updates Reads Notation

Experiment 1 0 0 1 Read only
Experiment 2 1 0 9 1C 9R (10% updates)
Experiment 3 0 1 9 1S 9R (10% updates)
Experiment 4 1 1 18 1C 1S 18R (10% updates)
Experiment 5 5 0 15 5C 15R (25% updates)
Experiment 6 4 1 15 4C 1S 15R (25% updates)
Experiment 7 3 2 15 3C 2S 15R (25% updates)

Figure 8. 10% updates: 95th percentile update latency.

Figure 9. 10% updates: Average update latency.

operations account for 25% of the workload. These figures
use the same notation used in figures 8 and 9. Mean latency
results show that when replacing one out of five causal
updates by a strong update, its latency becomes three to
two times greater according to the number of nodes in the
cluster. Moreover, strong update latency becomes five to
three times greater when replacing two out of five causal
updates by strong operations. However, for 95th percentile
results, strong operation latency is almost double of causal

operation’s latency when replacing one or two out of five
causal operations for three or four nodes in the cluster. But
when the number of nodes increases the gap between the
two cases widens and becomes 70 milliseconds of difference
for six nodes.

Figure 10. 25% updates: 95th percentile update latency.

Figure 11. 25% updates: Average update latency.

E. Limitations of the proposed approach
Although MinidoteACE allows to overcome causal con-

sistency issues, It suffers from several limitations that we

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

958 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

highlight in the following points:

• The strong consistency level introduced in
MinidoteACE enables it to execute operations
under stronger consistency guarantees. However,
strong consistency decreases the system performance
(it increases Latency and decreases throughput).
Hence. Clients should find a suitable trade-off
between consistency and performance.

• Evaluations show that the latency of strong updates
becomes quite high when the rate of update opera-
tions exceeds 25% of overall operations.

• ”Strong updates” risque to be aborted due to a possi-
bly long waiting time. The protocol used to enforce
”total” requires stability information to be collected
from all nodes. If this information is not collected
after some timeout an ”error” state is reached.

7. Conclusion and Future work
In this paper, we have presented MinidoteACE, a new

adaptive consistency approach in the edge computing en-
vironment. Our model enables applications to run queries
with causal or strong consistency. To achieve this aim,
we have ameliorated the Minidote system by adding the
ability to handle strong consistency operations. The new
consistency level is stronger than causal consistency, but
it does not emulate the typical strong consistency since
it only checks that the update has arrived at the nodes of
the cluster. We have experimentally evaluated MinidoteACE
using Bash bech: a benchmarking tool that has been mod-
ified to evaluate AntidoteDB. To do that, We performed
the necessary amendment on the Basho benchmark to fit
MinidoteACE. Our evaluation proves that MinidoteACE can
support certain proportions of strong operations without
significantly affecting latency or throughput.

To the best of our knowledge, MinidoteACE is the
only causally consistent system that provides more than
consistency level in edge computing environment. In future
work, we aim to improve the performance of MinidoteACE
by enabling it to support a higher rate of strong consistency
updates. Moreover, we aim to avoid waiting for a long
timeout by investigating the possibility of implementing
”strong” operations while collecting only a majority of
confirmations. which gives quorum consistency: another
consistency level between causal and strong.

Acknowledgement
This paper highlights the work that has been carried out

while the first author was visiting High Assurance Software
Laboratory (HasLab). HasLab is one of the Research and
development centers of INESC TEC, a leading national
associate laboratory, that is headquartered at the University
of Minho, Braga, Portugal. The internship has been funded
by the Algerian MESRS through its PNE program. This
work is also partially funded by the Algerian MESRS PRFU
project No. C00L07UN390120210002.

References
[1] W. Vogels, “Eventually consistent,” Communications of the ACM,

vol. 52, no. 1, pp. 40–44, 2009.

[2] S. P. Kumar, “Adaptive consistency protocols for replicated data in
modern storage systems with a high degree of elasticity,” Ph.D.
dissertation, Conservatoire national des arts et metiers-CNAM,
2016.

[3] A. Khelaifa, S. Benharzallah, L. Kahloul, R. Euler, A. Laouid,
and A. Bounceur, “A comparative analysis of adaptive consistency
approaches in cloud storage,” Journal of Parallel and Distributed
Computing, vol. 129, pp. 36–49, 2019.

[4] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: scalable causal consistency for wide-
area storage with cops,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, 2011, pp. 401–416.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Sys-
tems. Springer, 2011, pp. 386–400.

[6] Antidote: the highly-available geo-replicated database with
strongest guarantees, https://pages.lip6.fr/syncfree/index.php/2-
uncategorised/52-antidote.html, June 2021.

[7] D. D. Akkoorath and A. Bieniusa, “Antidote: the highly-available
geo-replicated database with strongest guarantees,” Tech. U. Kaiser-
slautern. https://syncfree.lip6.fr . . . , Tech. Rep., 2016.

[8] Minidote Github repository, https://github.com/LightKone/Minidote,
April 2021.

[9] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable
causal consistency using dependency matrices and physical clocks,”
in Proceedings of the 4th annual Symposium on Cloud Computing,
2013, pp. 1–14.

[10] S. Almeida, J. Leitão, and L. Rodrigues, “Chainreaction: a causal+
consistent datastore based on chain replication,” in Proceedings of
the 8th ACM European Conference on Computer Systems, 2013, pp.
85–98.

[11] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain:
Cheap and scalable causal consistency with physical clocks,” in
Proceedings of the ACM Symposium on Cloud Computing, 2014,
pp. 1–13.

[12] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas,
and M. Shapiro, “Write fast, read in the past: Causal consistency
for client-side applications,” in Proceedings of the 16th Annual
Middleware Conference, 2015, pp. 75–87.

[13] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and
A. Bieniusa, “Legion: Enriching internet services with peer-to-peer
interactions,” in Proceedings of the 26th International Conference
on World Wide Web, 2017, pp. 283–292.

[14] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bie-
niusa, N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets
high availability and low latency,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). IEEE,
2016, pp. 405–414.

[15] K. Spirovska, D. Didona, and W. Zwaenepoel, “Wren: Nonblocking
reads in a partitioned transactional causally consistent data store,”

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 945-960 (Oct-2022) 959

in 2018 48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN). IEEE, 2018, pp. 1–12.

[16] D. Didona, K. Spirovska, and W. Zwaenepoel, “Okapi: Causally
consistent geo-replication made faster, cheaper and more available,”
CoRR, vol. abs/1702.04263, pp. 1–12, 2017.

[17] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive
deferred update stabilization for efficient geo-replication,” in 2017
{USENIX} Annual Technical Conference ({USENIX}{ATC} 17),
2017, pp. 83–95.

[18] K. Spirovska, D. Didona, and W. Zwaenepoel, “Optimistic causal
consistency for geo-replicated key-value stores,” in 2017 IEEE
37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 2626–2629.

[19] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A distributed
metadata service for causal consistency,” in Proceedings of the
Twelfth European Conference on Computer Systems, 2017, pp. 111–
126.

[20] Z. Xiang and N. H. Vaidya, “Global stabilization for causally con-
sistent partial replication,” in Proceedings of the 21st International
Conference on Distributed Computing and Networking, 2020, pp.
1–10.

[21] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and
W. Lloyd, “I can’t believe it’s not causal! scalable causal consistency
with no slowdown cascades,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 453–468.

[22] T.-Y. Hsu, A. D. Kshemkalyani, and M. Shen, “Causal consistency
algorithms for partially replicated and fully replicated systems,”
Future Generation Computer Systems, vol. 86, pp. 1118–1133, 2018.

[23] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi, “Trade-offs in
replicated systems,” IEEE Data Engineering Bulletin, vol. 39, no.
ARTICLE, pp. 14–26, 2016.

[24] C. Baquero, P. S. Almeida, and A. Shoker, “Making operation-
based crdts operation-based,” in IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer,
2014, pp. 126–140.

[25] AntidoteDB Basho Bench, https://antidotedb.gitbook.io/document-
ation/benchmarking/basho bench, June 2021.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions
on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[27] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows
azure storage: a highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 143–157.

[28] Apache HBase, http://hbase.apache.org/, February 2021.

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: amazon’s highly available key-value store,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 205–220,
2007.

[30] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[31] MongoDB, http://www.mongodb.org/, February 2021.

[32] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing
data closer to users for low-latency and mobile applications,” in
Proceedings of the 2018 International Conference on Management
of Data, 2018, pp. 1221–1236.

[33] Z. Hao, S. Yi, and Q. Li, “Edgecons: Achieving efficient consensus
in edge computing networks,” in {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 18), 2018.

[34] H. Gupta and U. Ramachandran, “Fogstore: A geo-distributed key-
value store guaranteeing low latency for strongly consistent access,”
in Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems. ACM, 2018, pp. 148–159.

[35] S. H. Mortazavi, B. Balasubramanian, E. de Lara, and S. P.
Narayanan, “Pathstore, a data storage layer for the edge,” in Pro-
ceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, 2018, pp. 519–519.

[36] N. Afonso, M. Bravo, and L. Rodrigues, “Combining high through-
put and low migration latency for consistent data storage on the
edge,” in 2020 29th International Conference on Computer Com-
munications and Networks (ICCCN). IEEE, 2020, pp. 1–11.

[37] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7, pp.
558–565, 1978.

[38] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto,
“Causal memory: Definitions, implementation, and programming,”
Distributed Computing, vol. 9, no. 1, pp. 37–49, 1995.

[39] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A
comprehensive study of Convergent and Commutative Replicated
Data Types,” Inria – Centre Paris-Rocquencourt ; INRIA,
Research Report RR-7506, Jan. 2011. [Online]. Available:
https://hal.inria.fr/inria-00555588

[40] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, “Bayou: repli-
cated database services for world-wide applications,” in Proceedings
of the 7th workshop on ACM SIGOPS European workshop: Systems
support for worldwide applications, 1996, pp. 275–280.

[41] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch, “Session guarantees for weakly consis-
tent replicated data,” in Proceedings of 3rd International Conference
on Parallel and Distributed Information Systems. IEEE, 1994, pp.
140–149.

[42] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in
Presented as part of the 10th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 13), 2013, pp. 313–
328.

[43] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[44] Camus Github repository, https://github.com/lightkone/camus, April
2021.

http:// journals.uob.edu.bh

https://hal.inria.fr/inria-00555588
http://journals.uob.edu.bh

960 Abdennacer Khelaifa, et al.: A New Adaptive Causal Consistency Approach in Edge Computing
Environment

[45] C. J. Fidge, “Timestamps in message-passing systems,” in Proc. of
the 11th Australian Computer Science Conference (ACSC 1988),
1988, pp. 56–66.

[46] F. Mattern, “Virtual time and global states of distributed systems,”
in Proceedings of the International Workshop on Parallel and
Distributed Algorithms. Elsevier Science Publishers B.V, 1988,
pp. 215–226.

[47] AntidoteDB Benchmarks GitHub repository,
https://github.com/AntidoteDB/Benchmarks, June 2021.

[48] Basho bench GitHub repository,
https://github.com/basho/basho bench/, June 2021.

Abdennacer Khelaifa Abdennacer Khe-
laifa received his MSc. degree in computer
science in 2010 from the higher National
school of computer science, Algiers, Al-
geria. He is currently a Ph.D. student at
University of Biskra, Algeria. He is an as-
sistant professor at University of Eloued,
Algeria and a researcher in LIAP laboratory
in the same university. His research inter-
ests include consistency management, cloud

computing, big data , and edge computing.

Saber Benharzallah is a professor and re-
searcher in the computer science department
of Batna 2 University (Algeria). Received
his Ph.D degree in 2010 from the Biskra
University (Algeria). Prof. Benharzallah is
currently director of laboratory LAMIE
(Batna 2 University). His research interests
include Internet of things, service-oriented
architecture, context aware systems, Social
IoT.

Laid Kahloul Laid Kahloul is a full pro-
fessor in computer science. He received the
engineering, magister, and PhD degrees in
computer science from Biskra University,
Biskra, Algeria, in 2001, 2004, and 2012,
respectively. He has been a teacher of Com-
puter science Department with Biskra Uni-
versity, since 2004, where he has been a Re-
searcher with the Laboratoire d’Informatique
Intelligente since 2013. His current research

interests include software engineering, formal methods, model-
checking, modelling and verification of distributed systems, secu-
rity in multidomain networks, evolutionary methods, deep learn-
ing.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Related works
	Background and definitions
	Causal Consistency
	Causal consistency implementation
	Causal stability

	Conflict-free Replicated Data Type (CRDTs)
	Edge Computing

	An overview of Minidote system
	Concepts and data structures
	Minidote architecture
	Minidote_server
	Camus_middleware
	Storage

	Consistency Protocol

	MinidoteACE: Proposed ameliorations and Adaptive consistency approach
	Detailed functions and Algorithms
	Clarification example
	Implementation

	Evaluation
	Experimental structure
	Traffic generator
	Protocol Buffer Interface and data flow inside the system

	Experiment Setup
	Performance configuration
	Results and discussion
	Throughput results
	Read latency results
	10% update results
	25% update results

	Limitations of the proposed approach

	Conclusion and Future work
	References
	Biographies
	Abdennacer Khelaifa
	Saber Benharzallah
	Laid Kahloul

