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Abstract: To reuse or not to reuse, that is the question! There is a constant demand in the software development market for new
methodologies and practices that would help to lessen the pressure from the software development projects. Software reuse is one
practice that helped increase software development productivity and improve the software quality attributes. However, until this day,
there is no silver bullet solution that could predict software reuse experience nor estimate software component’s reusability. This work
proposes a reusability estimation model. The model analyzes the static metric of java classes using data clustering and regression
to estimate its reusability. The evaluation results of the proposed model have successfully evaluated java classes reusability with
considerably low error rates.
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1. Introduction
The widespread use of Open Source Software (OSS)

has significantly changed the software development method-
ologies adopted by software developers. Furthermore, the
high availability of OSS has contributed to introducing
agility to software development [1]. Nowadays, software
developers have replaced developing the whole software
from scratch with reusing pre-existed software components.
As a result, the software developers started to rely more and
more on software reuse. Adapting software reuse has helped
reduce the software project schedule and duration. Also,
it helped reduce the project cost. However, software reuse
has introduced new challenges. One of these challenges is
assessing the software component’s reusability, especially
with the significant growth of OSS.

The assessment of software component reusability is
very crucial. The wrong reused component can negatively
impact the progress of the software development project and
its success. Also, it negatively affects the quality attributes
of the developed software. Moreover, retrieving, assessing,
and selecting the required software component requires a lot
of effort and time. In addition, software developers’ skills
and experience play a role in the assessment phase.

Therefore, there is a constant demand for assessment
models that assess software components without relying
on software developers’ expertise. This work proposes a
model that evaluates the reusability of java classes. The

proposal of this model came after studying and analyzing
selected static classes metrics using feature selection, data
clustering, and regression. The rest of this work is structured
as follows. Section 2 reviews some literature related to
software reusability assessment models and the utilization
of machine learning. Followed Section 3, which presents
the used dataset and illustrates the evaluation criteria used
to evaluate the performance of machine learning algorithms.
The following section that is Section 4, presents the mod-
eling is the proposed model. Then Section 5 evaluates the
proposed model. Section 6 presents some threats that may
compromise the validity of this study. Finally, Section 7
concludes this work and highlights the future work too.

2. RelatedWork
Machine learning was leveraged to estimate software

reusability. Kaur and Kaushal [2] used fuzzy logic to
evaluate the reusability of Aspect-Oriented Systems (AOS)
at the package level. The authors validated the proposed
model used by analyzing its predictions. The predictions
analysis showed that the model performed correctly. The
work in [3] selected seven machine learning algorithms
to estimate reusability utilizing data, which were extracted
from social media repositories system. The experimental re-
sults showed that the Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) had the highest
precision results. A fuzzy logic approach was proposed
in [4], which measures the reusability of java classes by
assessing their static and dynamic metrics. The findings
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concluded that the dynamic metrics are considered a bet-
ter reusability prediction factors than the static metrics.
Mangayarkarasi [5] proposed an automated approach that
could select reusable components by analyzing the software
design pattern. The author used two machine learning
algorithms. These algorithms are Decision Tree and Neural
Network. The study’s outcome concluded that the proposed
approach is effective with an accuracy of about 93%. In
[6] machine learning was leveraged to predict successful
software reuse. The empirical results showed that machine
leaning have successfully identified successful software
reuse with accuracy reached 100%. Also, The work in [7]
introduced feature selection techniques in an attempt to
improve the prediction of software reuse. They concluded
to that feature selection have promoted the prediction model
accuracy.

In addition to that, reusability estimation models were
proposed for all software reuse approaches. Wangoo and
Singh [8] proposed a model (CRePT) that uses K-Nearest
Neighbour (KNN) to predict the reuse cost and reuse level
for Component-Based Software Development (CBSD). The
author evaluated reuse level by the ratio of sizes of total
reused components and the application components. The
proposed model did not report any defects. However, the
precision of the model had not been evaluated. Maggo and
Gupta [9] proposed an automated model that assesses and
measures the reusability of Object-Oriented (OO) Software
Components. The model uses Large Margin Nearest Neigh-
bor (LMNN) to identify the correlation between software
metrics and reusability. The evaluation of the proposed
model accuracy has reached about 94.2% and an error rate
of 5.8%. The work in [10] conducted an exploratory study
to identify metrics, which could impact Aspect-Oriented
Software Development (AOSD) by utilizing fuzzy logic.
The study identified four primary metrics that could affect
reusability. These metrics are coupling, size and complexity,
Separation of Concern (SoC), and cohesion.

OO Metrics (OOM)s is a quantitative source code mea-
suring technique. Deshpande et al. [11] proposed a ma-
chine learning classifier that utilizes seven machine learning
algorithms and OOMs to predict software reliability. The
evaluation proposed classifier showed that Random Forest
had scored the best performance results. Also, the work in
[12] used OOM and proposed an estimation model that mea-
sures the complexity of C++ and Python software projects.
The authors analyzed the OOM of forty C++ and Python
programs. The findings showed that Python is more suitable
for OO Programming (OOP), and it had a better OOM
than C++. Kaur and Sharma [13] experimented prediction
of software faults with Artificial Neural Network (ANN).
Experimental results showed that the proposed ANN model
had scored an accuracy of about 92.5% and performance
reached 0.92. Malhotra and Khanna [14] proposed a model
that recognizes classes prone to changes by analyzing the
OOM and evolution-based metrics. The authors introduced
the collected dataset from two Android packages changes

logs to seven machine learning models. Also, the experi-
ments evaluated the prediction of the class change prone
in four scenarios. The scenarios evaluated the prediction
using evolution-based metrics solely, OOM solely, OOM
and evolution-based metrics in conjunction, and the classes’
internal probability of changes. The experimental results
showed that combining OOM and evolution-based metrics
had the best prediction results.

Various software reusability estimation techniques as-
sessed Chidamber & Kemerer (CK) metrics. For instance,
Padhy et al. [15] proposed a model that utilizes Artifi-
cial Neural Networks (ANN), Adaptive Genetic Algorithm
(AGA), Extreme learning machines (ELM), Levenberg Mar-
quardt (LM), and CK metrics to estimate the reusability of
Web of Service (WoS) software. The evaluation showed that
the proposed techniques had outperformed other reusability
prediction techniques with an accuracy of 97.71%. The
work in [16] used clustering and CK metrics to predict
software reusability. The developed prediction model scored
high precision results. A comparative study in [17] eval-
uated the software reusability by assessing CK metrics
using four regression algorithms. The experimental results
should that a tuned Instance Based K-Nearest Neighbour
(IBK) had the best error rate and correlation coefficient.
Negi and Tiwari [18] trained the Random Forest algorithm
on CK metrics to assess reusability software components.
The experimental results concluded that the Random Forest
algorithm has a high potential in assessing components’
reusability with accuracy reaching about 99% and a cor-
relation coefficient of about 0.85.

Several pieces of literature have tackled software
reusability estimation by analyzing software metrics other
than CK metrics. Mahmood et al. [19] proposed a soft-
ware reusability assessment model for Software Product
Lines (SPLs). The authors used the Goal, Question, Metric
(GQM) approach to extract the input for the proposed
reusability assessment model. The evaluation results showed
that the proposed assessment had performed very well.
Also, the evaluation summed up that the selected attributes
have a significant impact on software reusability. The work
in [20] has estimation software components reusability for
java classes and packages using binning and polynomial
regression. The authors collected a dataset that has 28
attributes. These attributes were grouped into six primary
groups. These groups are coupling, cohesion, documenta-
tion, size, complexity, and inheritance. The evaluation of
the estimation model showed that the proposed model had
outperformed the estimation model in [19].

Many pieces of literature have proposed GQM models
for software quality evaluation. The work in [21] proposed
a GQM model that identified the software metrics that could
be used to evaluate adaptive systems quality. The goal of
the proposed model focuses on the success of completing
the project and its phases. Also, improve the development’s
processes quality, adapt effective testing methodologies,
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and improve the effort assessment process. Ito et al. [22]
proposed a requirements analysis approach that combined
the GQM model and requirements analysis techniques. The
GQM was utilized to pinpoint current software issues and
identify the metrics to solve these issues. The evaluation
of the proposed approach proved the effectiveness of the
GQM in identifying the problematic areas and developing
appropriate metrics to resolve these problems. In [23], GQM
model and machine learning were used to explore the
relationship between source metrics and software quality.
Also, the authors proposed a quality assessment model
based on the extracted metrics. The proposed model was
about 75% accurate.

3. Research Background
The used dataset was collected by Papamichail et al.

[24]. This dataset was generated by analyzing the most
popular project in the maven repository. The dataset consists
of static metrics of java classes and packages in addition to
the reuse rate of these components. However, this work will
focus on the reusability of java classes only. Therefore, the
packages’ dataset will be neglected. The primary aim of this
work is to explore the correlation between the classes’ static
metrics and their reuse rate. Table I presents the attributes of
the used dataset. According to dataset has 28 attributes. All
these attributes are numeric. The attribute reuse rate is the
primary attribute, which the estimation reusability model
will based on. Also, the dataset attributes were classified
into six properties. These properties are complexity, size,
cohesion, inheritance, coupling, and documentation. More-
over, the dataset has 24794 instances.

Furthermore, in this work, we have utilized machine
learning algorithms. Therefore, it is required to use some
statistical evaluation criteria to evaluate the performance
of the used machine learning algorithms. The performance
of the data clustering algorithm was assessed using the
Sum of Squared Error (SSE). SSE presents the summation
of the squared distance between the observation and the
cluster centroid [25]. SSE can be obtained according to the
following formula:

S S E =
b∑

s=1

∑
j∈Cs

( j − R j)2 (1)

where b is the number of desired clusters, Cs is the cluster,
Rj is the centroid of the cluster Cs and j is the observed
data point.

Meanwhile, the Support Vector Regression (SVR) per-
formance was evaluated using the three evaluation criteria.
These criteria are the following: noitemsep

• Mean Absolute Error (MAE): This error rate assesses
the regression model performance by measuring the
differences between the predicted and actual values of
the test instances [26]. The given equation computes

TABLE I. Attributes of The Dataset Used in Java Classes’ Reusabil-
ity Estimation

Property Attribute Name and Description
Size TLOC: total number of line of codes

TLLOC: total number of logical lines
LOC: number of line codes
LLOC: number of logical lines
NG: number of getters
TNA: number of attributes
TNG: total number of getters
TNM: number of methods
TNOS: number of statements
TNPM: number of public methods

Cohesion LCOM5: lack of cohesion in methods

Documentation AD: documentation of the API
CD: the density of comments
TCD: the total of comments density
CLOC: number of comments lines
TCLOC: total number of comments lines
DLOC: number of documentation lines
PDA: total lines of documentation

Coupling CBO: coupling between the classes object
CBOI: inverse coupling between the classes
object
NII: number of incoming invocations
NOI: number of outgoing invocations
RFC: response set for class

Inheritance DIT: the inheritance tree depth

Complexity NL: maximum level of nesting
NLE: maximum level of else- if nesting
WMC: weighted methods for each class

Reuse Information Reuse rate: extent which the developers select
the component for reuse

the MAE

MAE =
j∑

s=1

|ys − y′s|/ j (2)

where ys is the actual value, y’s is the predicted value,
and j is the size of the sample.

• Root Mean Square Error (RMSE): Advantages of
the MAE over the root mean square error RMSE
in assessing average model performance. However,
the RMSE measures the square root of the squared
difference total between the predicted and actual
values [27]. The following formula calculates the
RMSE

RMS E =

 j∑
s=1

(ys − y′s)2/ j


−1/2

(3)

where ys is the actual value, y’s is the predicted
value, and j is the size of the sample.

• Pearson Correlation Coefficient (PCC):
This coefficient measures the linear correlation be-
tween pair of variables of the same size. The value
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Feature Selection

Clusters Generation

Reusability Score Generation

Final Reusability Score Aggregation

Figure 1. Model Design Flow Chart

of the PCC could vary between -1 and 1. The sign of
the PCC represents the direction of the correlation.
Negative PCC indicates a negative correlation, while
the positive indicates a positive correlation. Moreover,
the PCC value describes the correlation strength. The
closer the PCC value to 1 or -1, the stronger the
correlation. Meanwhile, the correlation gets weaker
when the PCC value is closer to 0 [28],[29].

4. Reusability EstimationModeling
This section discusses the design of the proposed

reusability estimation model. This model has two foun-
dations elements which are the static metrics and reuse
rate. Also, the model consists of four steps. These steps
are feature selection, clusters generation, reusability score
generation, reusability estimation model construction, as
shown in Figure 1. The following subsection presents the
details of each step.

A. Feature Selection
In this work, we selected the software metrics using the

GQM paradigm. Figure 2 presents the GQM model that was
used to select the static metrics. The goal was to assess the
reusability of java classes by analyzing the classes’ static
metrics. The GQM questions focus on the components’
variability, size, dependability, and complexity, as shown in
Figure 2. A similar model was used in [19]; however, we
could not use the same due to the difference in the dataset
attributes. Software component documentation influences its
reusability. Well-structured and clear documentation helps
the software developers while analyzing and understanding
the software component. As a result, proper component
documentation could increase its reusability. Also, a high
cohesive class indicates that it has good modularity. Hence
cohesive promotes simplicity; therefore, it has a positive
impact on the class reusability. Meanwhile, high coupling
enables class complexity which has a negative influence on

Goal: Measure java classes reusability from the viewpoint of the software developer.
   Question: How cohesive are the class elements? 
       Metrics: LCOM5
   Question: How complex is the java class?
       Metric: NL, WMC    
   Question: Is the component tightly or loosely coupled?
       Metric: CBO
   Question: Is the class well documented?
       Metrics: TCLOC
   Question: How independent is the class?
       Metric: DIT
   Question: What is the size of the class?
       Metric: TLOC, TNOS  
   Question: What is the variability of the class?
       Metric: TNM, TNA, TNPM
   Question: To what extent the class is imported?
       Metric: Reuse Rate

Figure 2. Selected Features Using GQM Model

TABLE II. Reuse Rate Statistical Information

Reuse Rate Interval Number of instances Percentage
0 17932 72.320%

[1,10) 5468 22.054%
[10,20) 546 2.202%
[20,30) 223 0.899%
[30,40) 145 0.585%
[40,50) 92 0.371%
[50,60) 60 0.242%
[60,70) 46 0.186%
[70,80) 37 0.149%
[80,90) 29 0.117%
[90,100) 21 0.085%

[100,1000) 186 0.750%
[1000,2000) 8 0.032%
>=2000 1 0.004%

the components’ reusability. As a result, complex classes are
more likely to be non-reusable [30]. Furthermore, software
components with a deep inheritance tree are more compli-
cated since the high involvement of methods and classes.
However, a high Depth of Inheritance Tree (DIT) produces
more reusable software components [31].

B. Clusters Generation
The used dataset consists of independent attributes.

Therefore, an exploratory data analysis helps to understand
how these attributes and instances are related. The primary
aim of the exploratory data analysis is to identify how reuse
rate is related to the remaining dataset’s attributes. Further-
more, the dataset has a wide range of reuse rates that are
between 0 and 3964. Table II depicts a statistical summary
of the reuse rates. According to Table II, about 72% of the
dataset instances have a zero reuse rate. Meanwhile, the
number of instances with the highest reuse rate is 1, about
0.36% of the dataset.

Moreover, there are similarities between static metrics
regardless the reuse rates are high or low. Table III illus-
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TABLE III. Comparison of Two Dataset Instances

Metric Metric Value Metric Value
LCOM5 1 1

NL 3 3
WMC 62 68
CBO 9 5

TCLOC 104 93
DIT 0 1

TLOC 372 343
TNA 26 11
TNM 23 43
TNOS 129 132
TNPM 3 36

Reuse Rate 3964 0

trates the static metrics of two instances, one with 0 reuse
rate while the other instance has the highest reuse rate of
3964. The two instances almost have the same static metrics
values. However, their reuse rate is different. Therefore, the
is a need to group the dataset instances based on reuse rate
to avoid the effect of similarity between the static metrics
and the gap between the reuse rates while generating the
reusability scores.

Data clustering was utilized to recognize the similarity
patterns among the dataset instances. Also, data clustering
would help to prevent any negative interference of unrelated
instances. In this work, a density-based clustering algorithm
was used. Many clustering algorithms assume that a partic-
ular type of probability distribution was used to generate
the data. As a result, these algorithms produce spherical
shape clusters. Also, density-based clustering can identify
and eliminate outliers and noises [32].

The used dataset was clustered using the WEKA python.
The algorithm was set to act on the reuse rate. The algorithm
generated ten clusters with a Sum of Squared Error (SSE)
of 0.0433. Table IV presents the dataset clusters and the
number of instances their percentage. Cluster 1 has about
86% of the dataset instances; meanwhile, cluster 5 has only
one instance shown in Table IV. Moreover, Cluster 2 and
Cluster 5 were merged into one cluster while establishing
the reuse score since Cluster 5 has one instance.

C. Reusability Score Generation
The second step is to translate the metric values of

each cluster into a reusability score. The estimation of the
reusability score is based on the distribution reuse rate over
the full range of the static metrics. The following steps
were applied for each metric in a cluster to generate the
reusability score.

First, we assigned a reusability score which is the sum
of the reuse rate of the java classes. Figure 3 depicts the
reuse score of the LCOM5 metric in Cluster 8. According
to Figure 3, LCOM5 of value 1 has the highest reuse

TABLE IV. Dataset Instances Distributed Among Clusters

Cluster # Number of Instances Percentage
1 21244 85.682%
2 12 0.048%
3 278 1.121%
4 51 0.205%
5 1 0.004%
6 141 0.056%
7 2497 10.070%
8 532 2.145%
9 15 0.060%

10 23 0.092%
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Figure 3. Reusability Score Distribution of LCOM5 in Cluster 8

score while LCOM5 of 21 has a reusability score of 5.
Theoretically, low LCOM5 indicates good cohesion, which
promotes the component’s reusability. Figure 5 showed
that low LCOM5 values have higher reusability scores,
which aligns with the theoretical interpretation of LCOM5.
However, the reason that LCOM5 with 0 value has a lower
reusability score is due to the number of dataset instances.

Then, we rescaled the reusability scores after assigning
the reuse score for the metric by min-max normalization.
The vales of the normalized reusability scores all fall within
the interval [0,1]. The normalization would unify the value
of the reusability scores for all metrics of all clusters.
The normalized reusability score was calculated using the
following equation:

NRS =
(RS − RS min)

(RS max − RS min)
(4)

where RS is the reuse score, RSmin is the minimum reuse
score, RSmax is the maximum reuse score.

Lastly, Support Vector Regression (SVR) was applied
to the obtained dataset with the static metric value and
the reusability score. The SVR utilizes the Support Vector
Machine (SVM) to generalize the optimal tube shape train-
ing instances with the best continuous values outputs while
reducing the model’s error rates and complexity [33]. Tables
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TABLE V. SVR Results of Cluster 1, Cluster 2 & 5, and Cluster 3

Metric Cluster 1 Cluster 2 & Cluster 5 Cluster 3
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

LCOM5 0.043 0.140 0.79 0.219 0.313 0.56 0.044 0.141 0.62
NL 0.046 0.087 0.98 0.244 0.324 0.61 0.044 0.051 1.00

WMC 0.038 0.092 0.90 0.127 0.238 0.67 0.095 0.143 0.62
CBO 0.040 0.087 0.95 0.264 0.424 0.36 0.087 0.147 0.80

TCLOC 0.021 0.077 0.82 0.120 0.237 0.37 0.122 0.177 0.44
DIT 0.049 0.057 0.99 0.138 0.270 0.94 0.090 0.189 0.90

TLOC 0.038 0.079 0.89 0.121 0.253 0.01 0.078 0.129 0.42
TNA 0.039 0.090 0.93 0.182 0.249 0.82 0.050 0.102 0.81
TNM 0.034 0.092 0.87 0.131 0.248 0.29 0.082 0.148 0.59
TNOS 0.024 0.070 0.90 0.118 0.228 0.74 0.076 0.127 0.56
TNPM 0.035 0.101 0.88 0.122 0.265 0.09 0.079 0.131 0.71

TABLE VI. SVR Results of Cluster 4,6,7

Metric Cluster 4 Cluster 6 Cluste 7
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

LCOM5 0.091 0.221 0.50 0.072 0.169 0.81 0.045 0.138 0.81
NL 0.093 0.144 0.95 0.062 0.091 0.98 0.051 0.109 0.96

WMC 0.109 0.188 0.60 0.097 0.172 0.66 0.039 0.091 0.89
CBO 0.159 0.262 0.35 0.090 0.134 0.90 0.034 0.090 0.92

TCLOC 0.111 0.188 0.02 0.106 0.171 0.72 0.049 0.086 0.80
DIT 0.120 0.220 0.93 0.101 0.222 0.91 0.058 0.112 0.97

TLOC 0.118 0.194 0.11 0.130 0.189 0.51 0.021 0.057 0.80
TNA 0.146 0.224 0.61 0.073 0.132 0.78 0.047 0.115 0.91
TNM 0.126 0.201 0.21 0.098 0.144 0.57 0.032 0.075 0.88
TNOS 0.114 0.173 0.15 0.058 0.108 0.65 0.024 0.071 0.83
TNPM 0.153 0.238 0.09 0.115 0.162 0.58 0.034 0.085 0.90

V-VII presents regression results of all static metrics in
all generated clusters. Overall, error rates of the regression
models are very minimal Cluster 9 scores the highest error
rates where MAE rates vary from 0.195 to 0.104 and RMSE
rates from 0.146 to 0.295. Meanwhile, Cluster 1 had the best
error rates. Also, the Pearson coefficient results show a wide
range of correlations. The grey cells present the metrics
with low correlation with reuse scores. Furthermore, DIT
and reuse scores had high correlations in all clusters, as
shown in Tables V - VII.

D. Final Reusability Score Aggregation
The final process of the proposed reuse estimation

model is to compute the java classes reusability score by
aggregating the static metrics’ reusability scores, which
were obtained in the previous steps. We chose to calculate
the final score is using the weighted average. The reason
for selecting the weighted average rather than the arithmetic
average is that the static metrics have a different influence
on the java class reusability. Therefore, we incorporated
the PCC as the weight to ensure that the static metrics’

TABLE VII. SVR Results of Cluster 8-10

Metric Cluster 8 Cluster 9 Cluster10
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

LCOM5 0.048 0.143 0.85 0.193 0.250 0.72 0.122 0.257 0.53
NL 0.037 0.048 0.99 0.195 0.246 0.82 0.113 0.181 0.92

WMC 0.053 0.101 0.79 0.189 0.266 0.56 0.133 0.249 0.32
CBO 0.066 0.136 0.89 0.122 0.193 0.72 0.158 0.223 0.63

TCLOC 0.083 0.133 0.51 0.141 0.192 0.80 0.132 0.250 0.36
DIT 0.092 0.178 0.92 0.116 0.146 0.97 0.142 0.201 0.97

TLOC 0.044 0.082 0.59 0.175 0.259 0.45 0.109 0.199 0.24
TNA 0.069 0.175 0.77 0.145 0.220 0.74 0.110 0.218 0.54
TNM 0.071 0.115 0.86 0.104 0.198 0.77 0.106 0.198 0.19
TNOS 0.054 0.117 0.67 0.111 0.200 0.74 0.111 0.194 0.25
TNPM 0.079 0.129 0.85 0.125 0.214 0.69 0.145 0.281 0.28

influence on reusability was considered. The Final Reusabil-
ity Score (FRS) of the java class is calculated using the
following formula:

FRS =
j∑

s=1

(w(s) ∗ ReuseS coremetric(s))/

j∑
s=1

w(s) (5)

where j is the number of the static metrics, w(s) is the
obtained cluster’s PCC between the reuse score and the
static metric.

5. Reusability EstimationModel Evaluation
In this section, we evaluated the effectiveness and accu-

racy of our proposed model. The evaluation phase consists
of two phases. In the first phase, we manually evaluate the
reuse score using the proposed model on the static metrics
of selected java classes. Meanwhile, the second phase aims
to assess the accuracy of our methodology by comparing it
with a different reusability model. The following subsection
depicts the evaluation phases in detail.

A. Effectiveness Evaluation
The effectiveness evaluation aims to confirm that the ob-

tained reusability score is reasonable and interpretable. As
mentioned earlier, this evaluation was performed manually
on selected java classes. The first step is to identify the
java class cluster membership. Since cluster membership
helps determine the metrics’ reusability scores and PCC,
which are required to aggregate the java class reusabil-
ity score. Table VIII presents the static metrics of the
selected java classes with their reusability scores. The
cohesive java classes, which have low LCOM5, have scored
higher reusability scores than non-cohesive classes. More-
over, complexity could negatively affect the component’s
reusability. NL and WMC describe the class’s complexity.
The obtained reusability score has shown the expected. The
classes that have high NL and WMC have lower reusability
scores lower.

From a coupling perspective, the components that ap-
pear to have low CBO values had higher reusability scores.
In addition to documented components tend to be more
reusable. However, the quality of the documentation de-
pends on the TCLOC and the component’s size. Therefore,
a high value of TCLOC does not necessarily mean that
the component is well documented since the sufficiency of
the documentation does not depend on the component’s
size. Some classes have TCLOC values; however, their
reusability score is relatively low due to their large size,
as shown in Table VIII.

B. Accuracy Evaluation
To evaluate the accuracy of our proposed estimation

model. We compared the performance of our regression
models with a different reusability estimation model pro-
posed by Papamichail et al. [20]. The reason we chose
this model is that we both used the same dataset. However,
we applied the GQM model as a feature selection strategy.
Meanwhile, the work in [20] used the entire dataset. In
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TABLE VIII. Overview of Java Classes Reusability Scores Computed Using the Proposed Model

Cluster 1
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

1 0 1 1 0 1 2 5 1 1 1 0.70 or 70%
9 1 17 11 35 8 120 2 43 28 34 0.20 or 20%

Cluster 2 & 5
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

4 1 23 2 271 0 373 12 22 14 13 0.44 or 44%
39 3 59 3 263 1 434 1 90 73 85 0.33 or 33%

Cluster 3
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

1 1 30 5 112 0 189 4 16 48 11 0.57 or 57%
2 5 104 12 40 0 785 13 440 393 426 0.24 or 24%

Cluster 4
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

0 0 4 0 21 0 37 2 4 4 4 0.62 or62%
79 1 130 59 978 2 1526 4 170 116 159 0.25 or 25%

Cluster 6
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

1 0 11 2 69 0 139 5 10 32 8 0.61 or 61%
1 8 589 15 190 0 2936 17 117 1591 11 0.26 or 26%

Cluster 7
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

1 1 17 1 15 0 65 4 8 26 8 0.62 or 62%
13 2 99 16 13 1 560 18 141 146 133 0.16 or 16%

Cluster 8
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

0 0 4 1 256 0 334 0 35 1 35 0.63 or 63%
18 1 40 18 200 1 346 5 28 38 26 0.31 or 31%

Cluster 9
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

2 0 4 1 15 1 48 1 29 6 26 0.99 or 99%
21 3 107 31 657 1 1933 53 1742 386 1456 0.27 or 27%

Cluster 10
LCOM5 NL WMC CBO TCLOC DIT TLOC TNA TNM TNOS TNPM Reusability Score

1 0 4 0 12 0 24 1 3 2 2 0.57 or 57%
14 3 161 20 1205 1 1796 12 107 221 101 0.12 or 12%

addition to that, we both used univariate analysis to predict
the reusability scores. Howsoever, our regression model was
trained on each static metric separately within a cluster.

Figure 4 presents a comparison of the MAE values
between our model and the model in [20]. Since our
regression model was trained on each cluster separately,
we selected the best, average, and worst regression model
results to compare them with the MAE results of the
regression model used in [20]. In general, our regression
model has lower error rates than the Papamichail et al.
approach [20]. However, their regression model has lower
error rates for some static metrics. Our proposed model
provided more accurate results on most of the cases, as
shown in Figure 4.
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Figure 4. Comparison of Error Rates
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6. Threats to Validity
There are some factors that may threaten the validity

of our proposed model. First, the dataset was a result
of benchmarking the most popular projects in the Maven
repository. The reuse rate was calculated based on these
projects only. Therefore, projects’ popularity is the primary
influencer of the reuse rate that could change over time.
These changes may affect the effectiveness of our proposed
model. Meanwhile, there might be other factors that could
influence the reusability of the components, such as the
popularity of the project provider. Furthermore, our pro-
posed model depends on the analysis methodology and
machine learning model we decided to use while building
our model. Adapting different analysis methodologies and
machine learning algorithms may produce different results.

7. Conclusion
Software development methodologies have drastically

changed, especially with the rapid increase of OSS avail-
ability. Also, the adaptation of agile development helped
increase the software project productivity by reusing OSS
components rather than developing the projects’ compo-
nents from scratch. However, the decision to reuse compo-
nents is not blindly taken. A software component has thor-
oughly to be assessed to prior any reuse decision. Measuring
the component’s reusability by analyzing its static metric
is one method that can be used in the assessment phase.
In this work, we proposed a reusability score model that
statistically analyzed the static metrics of java classes. These
metrics were collected by [24] and published as a public
dataset. The reuse rate of is dataset is measured by counting
the number of the import lines. Furthermore, we explored
the effect of feature selection using GQM, data clustering,
and regression in aggregating the reusability score. The
error rates of the used machine learning algorithms were
very minimal. Also, the findings of the effectiveness and
accuracy evaluation showed that the proposed model could
effectively estimate the java classes’ reusability. We intend
to explore the effectiveness of our estimation methodology
in different components’ levels. In future work, we will
explore the effectiveness of our methodology in estimating
the reusability of the java methods and packages.
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