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Abstract: the recovery of the transmitted signals, propagated through wireless communication channels, is a complicated process due
to the distortion and interference impairments in such random channels. However, the channel effect can be compensated by using
channel estimation techniques performed at the receiver. Since most of channel estimators are operated in the frequency domain,
i.e., inverse modeling, the Ball’s adaptive channel estimation scheme, which was invented by Michael J. Ball, was not considered in
the literature as an attractive approach due to its time-based and direct modeling features. However, such features are favorable for
time-varying channels. To the best of author’s knowledge, the performance of the Ball’s scheme for channel estimation has not been
investigated in the context of OFDM system with fading channels. Therefore, in this paper, we propose to incorporate Ball’s method
for channel estimation in OFDM receivers and we also investigate the performance of this scheme using variations of the Recursive
Least Squares (RLS)-type algorithms, namely QR Decomposition RLS (QRD-RLS), the Householder RLS (HH-RLS) and the Sliding
Window Householder RLS (SWHH-RLS). Our numerical results indicate that QRD-RLS and HH-RLS outperform traditional RLS in
terms of bit error rate.

Keywords: Ball’s scheme, adaptive channel estimation, recursive least square, QR-decomposition, householder, sliding window
RLS, OFDM.

1. INTRODUCTION

Wireless mobile radio channels are often multipath
channels. In such channels, two or more versions of the
transmitted signal, i.e., the direct signals, or Line-of-Sight
(LOS) signals, and signals reflected or scattered by objects
in the medium, i.e., Non-Line-of-Sight (NLOS) signals
reach the receiving antenna. The aggregated multipath com-
ponents at the receiver yield a signal that is highly distorted
in amplitude, phase and frequency resulting in an effect
called multipath fading [1], [2].

Multipath propagation causes smearing of the sym-
bols transmitted through the channel. This smearing will
lengthen the interval of the symbols resulting in what is
known as Inter-Symbol Interference (ISI) which degrade
system performance highly [1], [2]. To improve the Bit
Error Rate (BER) performance, or increase the number of
correctly-decoded symbols, the channel distortion need to

be identified using channel estimation and then compen-
sated using equalization techniques, at the receiver [3], [4].
Since the multipath fading channel is random and time-
varying, channel estimator and equalizer must be adap-
tive, i.e., able to track the varying channel. The adaptive
estimator or equalizer is basically an adaptive filter with
coefficients that are automatically adjusted with the aid of
the adaptive algorithms [4], [5], [6].

Orthogonal Frequency Division Multiplexing (OFDM)
is a modulation technique suitable for high-speed multi-
carrier data transmission [7]. In a typical OFDM system,
a Cyclic Prefix (CP) is utilized to alleviate the effect of
ISI by allowing more spacing between subcarriers. Because
CP bears no useful information, the use of CP reduces
bandwidth efficiency especially under severe channel con-
ditions that requires the duration of CP to be long. Thus,
channel estimation is one key component in OFDM systems
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by allowing the receiver side to obtain information about
the channel in terms of Channel State Information (CSI)
[1], [2]. Typically, the CSI is not is not known at the
receiver and also changing continuously due to the changing
environment. Therefore, adaptive channel estimators are
deployed at the receiver side to track the time-varying
channel via the utilization of adaptive algorithms. In more
details, the CSI is estimated using pilots symbols in the
training phase. Afterward, data symbols can be transmitted
reliably during transmission phase benefiting from the CSI
obtained in the first phase [8], [9].

Traditional channel estimators work by estimating the
Channel Frequency Response (CFR) [10]. First, pilot-based
estimation of CFRs for some training symbols is performed
[11], [12]. Then, CFRs of data symbols are estimated
using the adaptive algorithms and techniques [13], [14],
[15], [16]. For instance the work [15], [16] considers
pilot-assisted estimator which operated with the maximum
likelihood (ML) and the Bayesian minimum mean square
error (MMSE) techniques. Alternatively, with advent of
Machine Learning (ML) algorithms and its applications in
signal processing and communications, several work have
shown the effectiveness of ML-based approaches, like deep
learning [17], [18], [19], [20] and reinforcement learning
[21], in performing adaptive channel estimation.

Along with the increase importance of Multiple-Input
Multiple-Output (MIMO) in achieving higher capacity for
fading channels and also enhancing system throughput,
MIMO-OFDM receivers become standard in many wireless
applications [22], [23]. However, the Single-Input Single-
Output (SISO) channel estimation techniques discussed
above can not be applied directly to MIMO-OFDM systems.
As a results, several work address this problem. The work in
[24] relies on Discrete Fourier Transform (DFT) to derive
the set of training signals which minimize the estimator
MSE. A blind and semi-blind MIMO channel estimators
are proposed in [25] and [26], [27], respectively.

The literature summarized above consider mainly a
frequency-domain channel estimation for OFDM system. A
relevant, but less interesting, line of work have dealt with
the time-domain based channel estimation as in [28] where
a LMMS estimator is proposed with pilot-data multiplexing
and compared to the scheme in [29] which relies on
pilots tones. The work in [30] shows that Kalman filtering-
based channel estimation is suitable to track and estimate
fading channels. A comparison between time-domain and
frequency-domain channel estimation for OFDM system are
discussed in [31], [32]. Even with this line of work, the
channel estimation scheme for multipath communications
proposed in [4], which was invented by Michael J. Ball,

did not receive much attention in the literature. This is
because most of channel estimators are performed in the
frequency domain, i.e., inverse modeling (see Fig. 1-(a)).
On the contrary, the Ball’s channel estimation scheme tries
to equalize the communications channel directly (see Fig. 1-
(b)) as the inverse of the channel frequency response is not
required. This time-based and direct modeling features of
the Ball’s scheme are favorable for modeling, i.e., estimat-
ing multipath and rapidly time-varying channels like intelli-
gent reflecting surface (IRS)-enabled radio links [33], [34].
Unlike previous work, in this paper, we proposes to leverage
Ball’s-based channel estimation scheme in OFDM systems
using different types of RLS algorithm. The standard RLS
algorithm have been applied in several adaptive filtering
applications [35], [4], [8], [36]. Most of these applications
show a performance gain under different channel conditions,
but they incur extra complexity in computations and raise
some stability issues. Therefore, we will investigate the
performance of the proposed scheme under different types
of the RLS algorithm. In details, the major contributions of
this work are:

o Design an OFDM system receiver by utilizing the
Ball’s method for channel estimation.

o Investigate the performance of the proposed approach
using, in addition to conventional RLS, the QR De-
composition RLS (ORD-RLS), the Householder RLS
(HH-RLS) and the Sliding Window Householder RLS
(SWHH-RLS). It is the first time here that this set of
RLS algorithms is used in an OFDM receivers as well
as in investigating the performance of the proposed
scheme.

e Conduct numerical experiments and select the suit-
able set of algorithms that best fit the proposed
scheme by balancing both the convergence speed and
the complexity of computations.

The rest of the paper is organized as follows. The family
of RLS-type algorithms are explained in Section 3 after
presenting the proposed scheme in Section 2. The simula-
tion results are shown in Section 4 Finally, conclusions are
outlined in Section 5.

Notations: We use lowercase bold letters to denote vec-
tors while matrices are denoted by uppercase bold letters.
For a matrix A, the notations A~', AT and A¥ denote
its inverse, transpose, and Hermitian transpose respectively.
Scalars are denoted by lowercase letters.

2. BALL’s BASED ApAPTIVE CHANNEL ESTIMATION

Apart from conventional channel estimation schemes,
the Ball’s scheme brings two unique features: channel
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Figure 1. Channel estimation schemes: (a) Conventional inverse
modeling scheme; (b) Proposed Ball-based scheme.

impulse response is estimated in time domain, and also the
ability to perform direct channel equalization since channel
frequency response inversion is not required (see Fig. 1).
The actual operation of this adaptive scheme is described
next.

As illustrated in Fig. 2, the transmitted signal is pro-
duced as Pseudo Random (PN) sequence of data. At the
receiver, the channel estimator, or adaptive filter, will tune
its coefficients based on the Least-Square (LS) of the error,
or the difference between output of the filter and the output
of the channel. As a reference, the filter uses synchronized
and local version of the PN sequence. The optimal weight
of the adaptive filter in Fig. 2 is the well-known Wiener
solution formulated as

h(n) = F~'(n)e(n), (1

where F is the correlation matrix of input data U as given

m
n

F(n) = Z 7“u@u®” = U (mUw), @

i=0

while ¢ is the vector denoting the cross correlation of

Transmitter

ONE PN Noise
sequence l

o

ZERO PN
sequence

Multipath Channel ——

. + h.
Receiver Error

ONE PN
sequence

+ ¥
+ —— Adaptive filter

ZERO PN /
sequence

\Channel

model

Figure 2. Block diagram of the adaptive Ball’s-based scheme for
channel estimation during actual data transmission [4].

desired response g and input data which is formulated as
(4], [35]
c(n) = Z 7 g(hu(i) = U (mg(n), 3)
i=0
with 7 being the forgetting parameter. The optimal Wiener
filter in (1) is obtained as the solution that minimizes the
Mean Square Error (MSE) objective function written as

o) =E [ = B g - h' mum]. @)

In every time epoch, denoted as n in (1)-(4), the compo-
nents in the weight vector h(n) are updated according to
the adopted algorithm. The set of algorithms considered in
this paper are presented in the next section.

3. ApAPTIVE RLS-TYPE ALGORITHMS

In this section, we will give a detailed description for
each algorithm considered in this work, namely RLS, QRD-
RLS, HH-RLS and SWHH-RLS.

A. Recursive-Least-Squares (RLS) algorithm

Despite the fact that RLS algorithm has rapid con-
vergence feature, it is still requires high computational
complexity and can experience some stability issues. To
proceed, we rewrite correlation matrix F and the vector of
cross correlation ¢ defined in (2) and (3), respectively, as
(4], [35]

F(n) = u(m)u’’(n) + tF(n — 1) 5)
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and
c(n) = u(n)g(n) + re(n — 1). 6)

By plugging (5) and (6) in (1), we obtain the following
weight update formula

h(n) = h(n — 1) + e()F ' (n)u(n), @)

where the error vector e(n) and F~! are calculated as shown
in Algorithm 1. This table summarizes the steps required for
the RLS algorithm with I'(n) and A(n) being an auxiliary
vectors, while 7 and e are forgetting and gain factors,
respectively.

Algorithm 1: RLS algorithm

initialization: 0 < 7 < 1, e = l/o-ﬁ, F1(0) = I
for all n do

e(n) = gn) —h"(n - 1) u(n)

A@) =F ' -1) u®);

r (I’l) — A(n)

T+uf (n)A(n) Fone
Fl(n) = 1[F'(n — 1) -~ ks
h(n) = h(n - 1) + e()I(n)
end

B. OR decomposition (QRD-RLS) algorithm

To avoid the stability problem of RLS procedures men-
tioned earlier, different approach with enhanced numerical
stability is offered by the QRD-RLS algorithm. This im-
plementation relies essentially on QR factorization for the
matrix of input data along with back substitution procedures
[4], [35]. To proceed, we first note that the matrix u(n) has
dimensions (n + 1) X (N + 1) which dictate that the matrix
order depends on the number of iterations. Accordingly,
the QRD-RLS convert u(n) into a triangular matrix T(n) of
order (N + 1) X (N + 1) via an orthogonal matrix ®(n) of
order (n + 1) X (n + 1) such that [4], [35]

O(nu(n) = [ (8)

0
T(m)|’
where 0¢,—n)xv+1) denotes an array of zeros with unitary

matrix @(n) represents the triangularization steps. Based on
(8), we can rewrite U(n) as

U(n) = O (m)T(n), ©9)

where @g (n) is a unitary matrix partition with size (n+N)X
(n+1). Thus, we rewrite F(n) as

F(n) = U (m)U(n) = T (n)T(n), (10)

where T(n) denotes the Cholesky factor of (10). The rotated
error vector (n+ 1) X 1 is expressed as

_ _leqam| _ |ga(n) 0
e,(n) = O(n)e(n) = [ezz (n)} = [gzz (n)} - [T (n)} h(n). (11)

The weight vector h(n) is selected so as the quantity in
(11) is optimized, i.e., the weighted-square error function
is minimized. It follows that by choosing

h(n) = T™' (W)g(n), (12)

the term T™! (n)g,2(n) in (11) will vanish. The updating steps
of QRD-RLS algorithm are illustrated in Algorithm 2.

Algorithm 2: QRD-RLS algorithm

for all n do

Computing ®y(n) and updating T(n):
o | uf(n)

»T(n)] = 0y(n) [\/?T(n -1

Computing y(n): y(n) = Hf\; o C0s B;(n)

Computing e, (n) and g, (n):

e (n)| _ g (n)

MW‘QMwﬁwmqj

Computing €;;(n):

€51(n) = eq1(n)y(n)

end

C. Householder (HH-RLS) algorithm

Most of QRD-RLS implementations utilize Gram-
Schmidt process and Givens rotation method to orthog-
onalize the data correlation matrix, but none of these
approaches is computationally efficient. Instead, the House-
holder transformation is a rank-n update approach with or-
thogonal matrix transform. Consequently, HH-RLS requires
less computations and provides numerical stability even for
sparse data structure. The key property of this algorithm is
that, at each iteration, the Cholesky factor of F is updated.
Define the square matrix Z(n) of order N + 1 to be factor
for the square root of F, then we can write

Fn) = Z7 (W) Z(n). (13)
Next, we define

T/, _
b(n) = 7" (n l)u(n)’ (14)

where 7 denotes the forgetting parameter. We define the
orthogonal Householder matrix a(n) of order (N+2)xX(N+2)
[4], [35], to formulate

L_ |~
wo|uin) =0 "
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with {(n) being a positive scalar. It is left to mention
that HH-RLS algorithm computes error and weight vectors
according to the formulas

e(n) = g(n) —h"(n - 1) u(n) (16)
with
h(n)=h(n-1) - z% v(n), (17)

respectively, with v(n) being the scaled gain vector. The
complete description of HH-RLS is given in the following
algorithm.

Algorithm 3: HH-RLS algorithm

initialization: 0 < 7 < 1, e = 1/0'3, h(0) = 0,

Z7'(0) = el
for all n do
Computing b(n) using (14)

Finding a(n) and {(n): a(n) [b(ln)] - [
Computing Z; (n—1)

0 | vHn)
an) | 1127, 1)] ‘lz—”(n)
Computing e(n) using (16) and h

—an)]
0

n) using (17)
end

D. Sliding Window Householder (SWHH-RLS) Algorithm

For efficient computations of HH-RLS, the complexity
can be reduced by applying a sliding window (SW) on
the input which organized into blocks of size Q. In a
mathematical formulation, we write [4], [35]

en
€
e(n) = l : 1 ‘ = g(n) — U(n) h(n), (18)
€n—L+1

where L is the size of the window with Un) =
[UnUn—l e Un—LJrl]H and g(”) = [gngn—l s gn—LJrl]H- To
this end, We have the following definitions:

_ [um]_[ uf

v = [Uff_L] - [Um - 1>]’ e
and -

_ g _ g,

B = [gi’_L] - [g(n— Dl 20

The SWHH-RLS requires a two-step procedure for
solving LS problem: an weight-update step and a down-
date step. To this end, we can write for the weight-update
step h(n — 1) — h(n) — h(n), with h(n) being the solution
of the LS problem obtained by replacing (19) and (20) in

(18), respectively for U(n) and g(n). For down-date part, we
write [4], [35]

F(n) = F(n)- U, U7 ,. (1)
Using Cholesky factors, equation (21) reads
T?(n)T(n) = T#()T(n) - U, U7, (22)
The hyper normal matrix H(n) reads
_ UL - [Ooxavsn
Hm = [Tm)] - [ T(n) 29

which is used to calculate T~'(n) from T~!(n) using inverse
Cholesky factor as [4], [35]
H
- [V (”)} , (24)

T (n)

o = G20

where V(n) has dimensions (N + 1) X Q. Let us define the

vector Y(n) = —TT(n)U,_;, then a hyper normal matrix
H(n) is obtained in the form
I A(n)
Hn)|-2 | = , 25
=) [l/f(n)} [0(N+1)><Q] (25)

with A(n) is a square matrix and we defined T(n), ¥(n)
and A(n) as in (19). Finally, the weight update is calculated
recursively according to [4], [35]

h(n) = h(n) + V(n) A (n)(g,_r. — U? , h(n)). (26)

The complete steps of SWHH-RLS algorithm is summa-
rized in Algorithm 4. Since the algorithm applies a window
of size L on the input data and also the fact that the two-
step procedures in Algorithm 4 are executed for n > L, it
is therefore required to run the weight-update initialization
L times and afterward the algorithm will transit to the two-
step method discussed above.

4. NuMmericAL REsuLts

In this section, we present simulation results to assess
the validity of the suggested Ball’s based OFDM receiver,
as shown in Fig. 3, using the four algorithms discussed in
Sec. 3-A through Sec. 3-D. To this end, we consider time
varying multipath Rayleigh fading channel with four paths
specified with gains G = [0 — 3 — 7 — 9] dB and delays
D = [0;0.75;1.66;2.94] us for LOS and the three NLOS
respectively [37]. The FFT size is 64 with CP = 16 samples.
The carrier frequency is f, = 800 MHz and the sampling
rate is fy = 6.78 MHz at channel bandwidth BW = 20
MHz. The comb pilot is based on Superimposed Training
Sequence (STS) technique used in [9]. We select the length
of RLS filter as 80 and also Doppler shift as f; = 60 Hz.

http://journals.uob.edu.bh
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VB BPSKIQAM | | byg ST8 Pilet IFFT |— AddCP |— PIS
bits Modulator Insert
A 4
Multipath Channel
Q/E_ BPSK/QAM — prs FET el STS Pilot | Rem. CP «— g/p AWGN
bits DeModulator Remove

Y

Ball’s channel
estimation
(RLS)

Figure 3. OFDM system using the proposed channel estimation scheme with CP and STS pilot.The blocks labeled as P/S and S/P denote parallel

to serial and serial to parallel conversion, respectively.

Algorithm 4: SWHH-RLS algorithm
for all n> L do

Step 1: Weight-update
Computing: ¥(n) = =T 7 (n - DU,

Computing O(n): O(n) [‘;(%)] = [

A(n)
Ow+1)x0

Updating T~'(n — 1): O(n) [Tog(xg’ji)} = [TT(n)
Computing: B

h(n)=h(n-1) - E(n)A’H(n)(gZ - Uth(n -1)

Step 2: Down-date

Computing ¥(n): ¥(n) = -THn)U,_
Computing H(n) using (24)
Down-dating T~ (n):

H() [OT%I(V;;)] = [VA T )
Updating: _ B

h(n) = h(n) — V(n) A (n) (g _, - UnH_Lh(n))

end

Unless otherwise stated, we set the all initial coefficients
(including h(0) = 0)) to zeros.

The Bit Error Rate (BER) versus the signal-to-noise
ratio, in terms of Ej,/Ny, is plotted in Fig. 4 for BPSK
modulation scheme. It is seen that QRD-RLS and HH-RLS
algorithms provide better performance compared to tradi-
tional RLS. For instance, QRD-RLS provides performance
gains of 15 dB and 8 dB compared to SWHH-RLS and
RLS, respectively, at BER = 0.1. This improvement can be

attributed to the fact that QRD-RLS and HH-RLS eliminate
more errors compared to RLS due to the numerical stability
and the reliable computation of the recursive least square
problem.

10° f

101 E

BER

102 F

—8— SWHH-RLS
RLS
—©— HH-RLS

QRD-RLS

10-3 ! I I
-20 -15 -10 -5 0 5 10
E;/N, (dB)

Figure 4. BER versus SNR for BPSK modulation.

Fig. 5 illustrates the Mean Square Error (MSE) versus
the number of iterations required for the same algorithms
outlined in Fig. 4. We first observe that the QRD-RLS
algorithm, which provided the best BER performance in
Fig. 4, have slower convergence rate that requires about
2000 iterations to reach MSE less than 0.2, compared to
the conventional RLS algorithm. This is a direct result
from the fact that this algorithm is stable and yield better
performance at the cost of having more computational

http://journals.uob.edu.bh
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complexity. The figure also confirms that RLS and HH-RLS
reach typical convergence with less than 500 iterations.

2 T

——— SWHH-RLS
1.8 ——QRD-RLS |
HH-RLS
1.6 1 RLS 1

144

1.2 H
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0.8

0.6

0.4

0.2

I . | T
500 1000 1500 2000 2500 3000
Number of iteration

Figure 5. MSE versus iteration number for BPSK modulation.

1.8 T

I QRD-RLS
I HH-RLS
[IRLS
I SWHH-RLS | |

1.6

14

1.2

MSE

0.8 F

0.6 -

0.4+

0.2+

100 iterations 500 iterations

1 iteration

Figure 6. Numerical comparison of MSE of the four algorithms
considered in Fig. 5 using Bar graph. The figure shows MSE after
1, 100 and 500 iterations with BPSK modulation.

To provide more insight about the convergence behavior
of the proposed scheme, we present in Fig. 6 a numerical
comparison of the MSE, which is computed numerically
from (4), for the considered algorithms after 1, 100 and
500 iterations. Inline with the results from Fig. 5, this
figure confirms the observation that QRD-RLS yields the
worst MSE performance compared to the other algorithm
which reaches moderate MSE (< 0.4) after 500 iterations.
In addition, RLS and HH-RLS maintain the least MSE
performance during iterations. The latter case is attributed
to the fact that the rapid convergence comes at the cost of
having higher BER performance as seen in Fig. 4.

Finally, in order to shed light on the effect of the

modulation type on the suggested scheme, Fig. 7 adopt a
16-QAM modulation scheme for the same set-up studied
in Fig. 4. Numerically, it is noted that the performance of
QRD-RLS outperforms HH-RLS and RLS by 2 dB and
10 dB, respectively, at BER = 0.2. This improvement is
attributed to the same reasons discussed in the comments
on Fig. 4.

10°

10t .

BER

—B— SWHH-RLS
—&—RLS
—o— HH-RLS
QRD-RLS

102 ! . . . .
-20 -15 -10 -5 0 5 10
Ey/N, (dB)

Figure 7. BER versus SNR for 16-QAM modulation.

5. CoNcLupING REMARKS

This paper considers the evaluation of a novel OFDM
receiver, that incorporate Ball’s adaptive channel estimation
scheme, over fading channels. The performance evaluation,
as measured in terms of BER and MSE learning curve,
illustrates that RLS and HH-RLS algorithms show faster
convergence rate and low miss-adjustment at steady states
compared to other RLS-type algorithms, while QRD-RLS
algorithm achieves the best BER performance. As a final
remark, the HH-RLS strikes a good balance in providing
moderate BER performance gain while maintaining accept-
able convergence properties. Among the future directions
for this study are the incorporation of the proposed scheme
in massive MIMO OFDM systems.
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