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Abstract: Dungeon Crawler games are getting a greater prominent rise in attention in the present day. Therefore, managing the pace
in dungeon games is necessary. In this paper, we generate dungeon levels with the game pacing as intended by the game designer
by integrating the concept of the Mission and Space framework and Game Design Patterns to generate dungeon game levels with the
intended pacing. The Mission and Space framework handles the generation of tasks and in-game geometry spaces. We also present
Pacing Patterns as patterns of the pacing on a game level to drive the level generations. We use a genetic algorithm to generate the
potential level candidates. Those processes are encapsulated in a mixed-initiative tool, Pacing-based Dungeon Generator, to generate
meaningful dungeon levels for players based on game designer preferences of game pacing. The proposed approach can minimize both
time and expenses used to create game levels and effectively provide a more formal approach for game designers. Moreover, it keeps
the players’ progression and experience as what the designer expected.
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1. Introduction
Dungeon crawler games are regaining more attention

in last recent years. Steam [1] is a gaming platform made
by Valve where players can buy, gather information, and
discuss digital games. Based on data from the Steam plat-
form alone, more than 350 games have been categorized as
action, rogue-like games (also reflected as dungeon crawler
games) since 2014. Although some said that the market
of the genre is a “niche market”, more than 270 games
are in “mostly positive” and “positive” feedback from the
player, meanings players or buyers prefer over 75% of the
distributed title on the platform. Respectively, there are 21,
33, and 26 games that fall into the genre of action rogue-
like from 2017 to 2019. In 2020 and 2021, around 63
and 104 games fall into the same genre. It also means
the popularity of the genre is still increasing since. For
additional information, since 2017, the game containing
the title with the keyword “dungeon” is also increasing.
There are more than 4000 games in total searched with the
keyword even though the mechanics of the games may not
represent the dungeon crawler games.

Some games have successfully implemented the pro-
cedural generation of dungeon maps, including Diablo,
Spelunky, and Enter the Gungeon. The generated level may
increase the variations and replayability of the game. Espe-
cially in dungeon-crawler games, providing accurate game

pacing to the player is one crucial task that should engage
the player better in the game [2], [3]. Unfortunately, only a
few articles discuss game pacing or pacing in games to fulfil
players’ excitement. Thus, the definitions of game pacing
vary among the designers, making the game pacing poorly
defined and comprehended. Moreover, if a system shows the
pacing information on the game level, the designer will have
a better understanding to make that level more interesting
for the player. The designer provides a meaningful dungeon
level for the player based on the designer’s preferences
of pacing patterns by using such a system. The concept
of design patterns [4] and procedural level generation [5]
has been used in the game design domain, and we can
use such concepts to provide meaningful dungeon levels
to players [6]. In this study, we use pacing patterns to
implement game design patterns.

We proposed an alternative approach that minimizes the
time and expenses used to create a game level and a formal
approach for the game designer to tailor the game pacing
procedurally. Moreover, the system can keep the players’
progression and experience by providing various level can-
didates that follow the game designer’s expectations.

2. RelatedWork
This related-work study aims to convince us that by

using design patterns in the procedural level generation,
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we can provide meaningful game pacing for better player
engagement.

A. Procedural Level Generation
Joris Dormans [7] proposed an approach to construct an

action-adventure game’s level by distinguishing the creation
of a level into two structures: missions and spaces. The
mission structure is a series of tasks of the player, while
the space structure is the geometrical layout of the game
spaces. Dormans claimed that using the mission and space
framework with the application of shape grammar is an
efficient way to generate high varieties of quality levels for
action-adventure games, although the resulting levels are
tightly dependent on the quality of the grammar used in the
rules to drive the generation process.

B. Game Pacing
Davies [8] analyzed what constitutes level pacing and

identified several key aspects of game pace: movement
impetus, threat, tension, and tempo. Movement impetus is
the will or desire of a player to move forwards through a
level. The threat is the notion of danger given by the game
entities, while tension is the perceived danger that occurs
from the belief of an unknown danger. Hence, achieving
the perceived danger (tension) is hard. The easy way to
distinguish between threat and tension is that tension is
created from the fear of the unknown, and threat must be
known in some ways. In this paper, we merge the tension
into the threat. The last aspect of game pacing is tempo,
which mainly describes the level of intensity and timing of
actions from the player. Game pacing can be driven by the
designer or the player’s preferences, parameterized by the
game’s dynamics and aesthetics [3].

Metrics to evaluate the procedural level design are
proposed in [9]. Some of the metrics that were proposed
are related to the threat level, rhythm, completion time, and
awareness. The metrics of threat, rhythm, and awareness
that have been proposed conform with the aspects of pacing
by Davies [8]. The rhythm is similar to the tempo, and the
awareness is arguably related to the movement impetus that
corresponds to what was previously described in [8]. These
metrics can be evaluated quantitatively. However, different
metrics implementation might be needed for two different
games [10]. Therefore, the measurement of each metric is
still abstracted.

Among the definitions of game pacing in [3], [8], [11],
we summarize game pacing as the rate flow of activity in
a video game, such as movement, attacks, or any others
that affect the player’s experiences and it can be separately
observed on the several pacing aspects, such as threat,
movement impetus, and tempo.

C. Mixed-Initiative Tool
Mixed-initiative tool for game level is a tool that helps

the designer to create a game level interactively with the
input parameters set by the designer. Launchpad [12], a
level generator for 2D platformer games, is built on a

rhythm-based game model. The system needs embedded
verbs as commands to generate levels.

Ludoscope [6] uses transformational grammar to gen-
erate the content. It allows the designers to use some
types of grammar and set up commands/recipes to generate
content tailored to particular types of games (i.e., dungeon
and platformer games). However, the system is still in an
experimental state.

Another tool by Wang [13], called Dungeon Generator,
is a tool for helping level designers to create a complete
level of Rogue-like [14] or Darksouls-like game starting
from the generation of missions, spaces, and the game ob-
jects using some fitness functions on genetic algorithm [15]
to drive the evolution of the level. Those fitness functions
mainly focus on the threat of the enemies and trap be-
haviour, called the co-play pattern.

Gu [16] tried to automatically optimize the gameplay of
a slot game based on the expectation of the game designer.
He proposed a graphical curve tool for the designer to
observe and control the gameplay experiences. The curve
control is simple and useful, and it might be integrated with
any level generator as an interactive UI to generate a game
level with the intended pacing.

Table I shows the difference between related works and
our proposed system. We focus on generating dungeon
level using aspects of game pacing defined in this paper.
The concept of pacing aspects and their factors can be
implemented in the different game genres since it is not
tightly related to the specific game mechanics to create
flexibility in implementation by the game designer.

Table II shows the methods and properties from ref-
erences using genetic algorithms in their procedural level
generation taken from [2]. The designer can easily set the
target pacing in our work by using graphs for a more
intuitive user interface. Moreover, the designer can modify
genetic-related parameters and local and global constraints
to drive the generation process. Based on [2], [17] there are
only a few systems are applied to 3D dungeons. We have
implemented the proposed method in 3D dungeon-crawler
games. Hopefully, our system can open new potential in the
research on 3D level creation.

3. Methodology
Our system, the Pacing-based Dungeon Generator, is

a generator that produces dungeon levels as the designer
intended by setting up the pacing patterns and constraints.

A. Level Representation
We describe the representation of a game level in detail,

including the elements of a game level, how we build the
design patterns from those reusable components, and finally,
the metrics that facilitate us to create pacing patterns.
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TABLE I. The summary of the differences between our work and the references.

Ref. Description Game genre

[6] Ludoscope uses transformational grammar and lets the designer setup recipe of rule to generate
level. In experimental state. 2D dungeon

[7] Use shape grammar to separate level generation into two processes: mission and space. 2D dungeon

[12] Launchpad, a rhythm-based model to create platformer games. Need embedded verbs in the
system. 2D platformer

[13] Dungeon Generator, generates level guaranteed to have co-play pattern (a game design pattern)
using genetic algorithm that focus on measuring fitness of the threat level.

3D dungeon, but
not limited to

Our work
Pacing-based Dungeon Generator (PBDG), generates variants of dungeon levels using intended
game pacing and constraints set by the designer. The concept of pacing across genre may differs,
thus provide flexibility on the implementation for designer.

3D dungeon, but
not limited to

TABLE II. Methods and properties across references.

Ref. Approach Control Output Results

[18] Space tree mutation Game story, fitness, player
model 2D game world Combination of premade

locations

[19] Tree mutation Fitness, genetic parameter 2D dungeon Tightly packed rooms con-
nected by hallways

[20], [21]
Combining 4 genetic repre-
sentation and 5 fitness func-
tions

Fitness, genetic parameter 2D maze Larger between combina-
tions

[22] Mixed-initiative: map sketch
and constrained User sketching and fitness 2D dungeon Large, even beyond dun-

geon

Our work As plugin/ tool: pacing pat-
terns and constrained

Target pacing (threat, impetus,
tempo), genetic parameter, lo-
cal and global constraints

3D dungeon level,
but not limited to

List of level candidates
contains rooms and object
within

1) Game Level Structure
Our dungeon level consists of many rooms. Each room

is built from combinations of tiles. Every tile has a specific
tile type that determines the information for the room to
where it belongs. A level is constructed from interconnected
rooms which do not necessarily have the same dimension
and layout, as illustrated in Figure 1. The rooms on a level
are varied, from 4 to 25 rooms. There are four different
room sizes: Mini has 3x3 tiles, Small has 4x4 tiles, Medium
has 6x6 tiles, and 9x9 tiles for Large. The number of exit
connections is between 1 and 3, meaning that every room
must have at least one exit connection, although we may
delete unused exit connections if the connection has no
neighbour room to connect to. We pre-assume the player
paths, enemy paths, and paths to treasures in each room
by computing them using a pathfinding algorithm. Figure 1
shows an example of a level containing eight rooms (left)
with its pacing patterns (right) visualized by the threat,
impetus, and tempo curves. In the first room, the player’s
start position is indicated by the green tile, while the red
tile indicates the exit connection. In contrast, the hexagonal-
like and red object in the first room indicates the weak
and melee enemy. The brown rectangle and green-white
coloured object in the seventh room represent the obstacle
and the boss enemy, while the treasure is visualized with a
small object that has a gold colour.

Tile is the smallest level space on which a game entity

Figure 1. An example of a level and its pacing patterns.

can occupy. Each tile has a type, grid position, isEntrance
(a boolean value to indicate if the tile is an entrance
connection), isExit (a boolean value to indicate if the tile
is an exit connection) and an enemy. There are six types of
tile: None is a mark that marks a grid position, and Empty
is an empty-passable tile that the player and the agents can
traverse onto. Wall is the non-passable tile the entity can
occupy, Treasure is the passable tile where a treasure is
placed on, Enemy is a passable tile where an enemy will
chase the player, and Obstacle is a passable tile where an
obstacle is placed on top of it.
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2) Pacing Patterns: Aspects, Factors, and Metrics
Game pacing is the rate of events affected by the values

of aspects of threat, movement impetus, and tempo for
each segment of the game that will affect the player’s
experiences. The game pacing pattern is a pattern related
to the pace of the game. We limit our pacing pattern as
a pattern of game pacing that occurs in the rooms-like
shape, and present those patterns as a linear sequence of
room pacing, as shown in Figure 1. The metrics we use are
borrowed from studies in [8] and [9]. Please note that our
formulas are intuitively designed since the different game
genres may require different implementations of the pacing
aspects, and pacing formulas in previous studies have not
been proposed.

a) Threat
Threat relates to factors: damage, movement, and dis-

tance between sources of the threat (enemy and obstacle).
We define the fitness function, fThreat (calculated by using
Equation 16), to reward the threat by the weighted sum of
fitness fDmgE , fDmgObs, fDistE , fDistObs, and fMoveE as shown
in Equation 1 to 5 respectively. Where fDmgE rewards total
damage from all enemies, fDmgObs rewards total damage
from all obstacles, fDistE rewards distance effectiveness from
all enemies, fDistObs rewards distance effectiveness from all
obstacles, and fMoveE rewards movement effectiveness from
all enemies. DmgEi is the damage of enemy i, A f Ei is
the attack frequency of enemy i, ArEi is the attack range
of enemy i, DEi is the distance of enemy i to the player
path, S pEi is the speed of enemy i, DObsi is the distance
of obstacle i to the player path, DmgObsi is the damage of
obstacle i, HPPlayer is the health point of player, and S pPlayer
is the speed of the player. NE and NObs are the numbers of
enemies and the number of obstacles, respectively.

fDmgE =

nE∑
i=1

DmgEi × A f Ei

HPPlayer
(1)

fDmgObs =

nObs∑
i=1

DmgObsi

HPPlayer
(2)

fDistE =

nE∑
i=1

ArEi

|DEi − ArEi|
(3)

fDistObs =

nObs∑
i=1

1
DObsi

(4)

fMoveE =

nE∑
i=1

S pEi

S pplayer
(5)

b) Impetus
Impetus relates to factors: velocity of the player, linear-

ity and the object sparseness in a room. We define the fitness
function fImpetus (calculated by using Equation 16) to reward
the impetus by the weighted sum of fitness fV , fLi, fAS pr,
and fTrS pr as shown in Equation 6 to 9. Where fV rewards
velocity or quickness of player to clear the room (face the

enemies and the obstacle, and move through the player path
to the exit), fLi rewards linearity of the room, fAS pr rewards
area sparseness, fTrS pr rewards treasure sparseness. S pPlayer
is the speed of the player, nE is the number of enemies, nObs
is the number of obstacles, nUT is the number of unique tiles
in player paths, nC is the number of connections, nPT is the
number of passable tiles, DTri is the distance of treasure i
to the player path, and nTr is the number of treasure.

fV =
S pPlayer

nE + nObs + nUT
(6)

fLi =
1

nC
(7)

fAS pr =
nPT − (nE + nObs + nUT )

nPT
(8)

fTrS pr =

nTr∑
i=1

DTri (9)

c) Tempo
Tempo relates to the factor of the intensity and the den-

sity of the objects in a room. Intensity is the measurement
of power attributed to the number of objects in a player
path to hinder the player. We also consider the density of
objects, either how close they are to another same type of
object or how close their points are to another point. We use
the term points to define the tile where the player path and
objects path collide. We define the fitness function fTempo
(calculated by using Equation 16), to reward the tempo by
the weighted sum of fitness fI , fDAE , fDAObs, fDATr, and
fDBO as shown in Equation 10 to 14, respectively. Where
fI rewards the intensity of the objects (enemy, obstacle,
and treasure), fDAE rewards the average distance of enemies
to player paths, fDAObs rewards the average distance of
obstacles to player paths, fDATr rewards the average distance
of treasures to player paths, and fDBO rewards the closeness
of the objects (density). nPP is the number of player paths
(literally equal to exit connections), nO is the number of
objects (enemy, treasure, obstacle), RDOi j is the ratio of
density between objects and the number of objects in a tile.
The distance of object used to calculate the object density
includes the distance of the object i to object i + 1 in path
j, start tile to the first object (object i) in path j, or the last
object (object nO) in path j to the exit connection in path
j.

fI =
nE + nObs + nTr

nUT
(10)

fDAE =
1

nE

nE∑
i=1

ArEi

|DEi − ArEi|
(11)

fDAObs =
1

nObs

nObs∑
i=1

1
Dobsi

(12)

fDATr =
1

nTr

nTr∑
i=1

DTri (13)
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fDBO =
nPP + nO∑ j=0

nPP

∑i=0
nO

RDOi j

(14)

Rewards of all fitness are normalized using Equation 15,
where f f actorimin

and f f actorimax
are taken from the global

constraints set by the game designers to make each re-
ward between 0 and 1 in light of their own preferences.
f f actorimin

and f f actorimax
are determined through simulation

of computing each combination of parameter values from
the related equations. Where f f actori is the un-normalized
value of factor i, f f actorimin

is the minimum value allowed
for factor i, and f f actorimax

is the maximum value allowed
for factor i. While f ̂f actori j

is the normalized value of factor
j in pacing aspect i, ω f actori j

is the weight of function of
factor j in pacing aspect i, fAspectsi is the pacing aspect i
(threat, impetus, or tempo), and n f actori is the number of
factors for pacing aspect i.

f ̂f actori
=

f f actori − f f actorimin

f f actorimax
− f f actorimin

(15)

fAspectsi =

n f actori∑
i=1

ω f actori j
· f ̂f actori j

ω f actori j

(16)

B. Pacing-based Dungeon Generator (PBDG)
We implement our system as a Unity game engine

adds-on using C# programming language in Unity 2017.0.1
version. Our system takes a dungeon level as an input, either
manually or procedurally designed by a generator. First, the
designer may observe the pacing patterns of all rooms. The
pacing patterns are visualized by the graphs of threat, impe-
tus, and tempo curves, respectively. Secondly, the designer
can set the intended pacing patterns and the constraints to
generate new rooms with new pacing patterns as candidate
levels using the genetic algorithm. The designer can then
observe and choose one of the level candidates. Finally, the
candidate level the designer prefers most will be used to
replace the original level. Figure 2 shows the framework of
our proposed dungeon generator.

1) Constraints
Constraints are the schemes or rules to drive the process

of level generation by giving the limitation to the system.
There are two types of constraints: global constraints and
local constraints. The local constraints are used to limit the
generation of a room, e.g., the maximum number of enemies
allowed in each room. The use of global constraints occurs
only once in the whole level, while the local constraints
might occur in each room.

2) Level Candidates
Level candidates are several levels that are extremely

close to the designer’s target of pacing patterns. For exam-
ple, two level candidates might have different placement of
game objects while keeping the pacing patterns extremely
similar. Thus, it will benefit the game by providing the
variant of game levels.

C. Genetic Algorithm
We use a straightforward genetic algorithm (GA) as our

initial works; hence, the performance comparisons from
different techniques are not yet presented. This type of
algorithm can naturally find optimal solutions with high
variations of products [23]. Although, it is also very depen-
dent on the meaningful fitness function to separate good and
bad level candidates and stuck in a local optima. We address
this issue by giving the designer full control to configure
the objects generated in a level, also called local and global
constraints in this paper. Our system’s genetic algorithm
is taking a level, which is a list of rooms, the pacing
patterns target, and the constraints as inputs; see Figure 2.
The system will make a chromosome from a sample room.
We use the term chromosome to represent each individual/
solution of the problem. Each chromosome contains a list
of genes, where each gene has an ID (identity), position,
and type. The ID is used as an identity, and the position
is used to store the position information of a sample tile
that is taken from a sample room. The type of the gene is
taken from the type of tile in the sample room. There are
six types of genes, the same as tile types.

The genetic algorithm will run for each room. The
number of genetic runs in each room corresponds to the
intended number of level candidates. The first process is the
initialization which is making a chromosome from a sample
room. The first chromosome is cloned as many as the size of
the population and then randomly mutated. The next process
is selection, which is choosing the best chromosome from
the population and then mating it with the other chromo-
somes (all chromosomes in the population) by a crossover
in the further process to get better successor chromosomes.
Each chromosome is evaluated using Equation 17, where
f ̂Fitness is the final fitness score, ωi is the weight of pacing
aspect i, and fFitnessi is the fitness value of pacing aspect
i. fFitnessi is calculated using Equation 18, where Ti is the
target value of pacing aspect i, and Pi is the current value of
pacing aspect i. The selected chromosome is the first-ranked
chromosome chosen using rank-based selection [24].

f ̂Fitness =
∑

i

ωi × fFitnessi

ωi
, i ∈ {Threat, Impetus,Tempo}

(17)
fFitnessi = 1 − |Ti − Pi| (18)

For each chromosome in the population, the evolution is
performed with a certain probability chance. Our evolution
process is divided into two phases: mutation and crossover.
Given a random value for each chromosome, if the value
is less than the mutation rate value, the mutation is then
performed. In mutation, each gene has a 5% chance of
changing its type into another, and/or a 5% chance of
swapping with the neighbour. Wall and null types of genes
are not allowed to change to another type or swap with their
neighbours. Given a random value for each chromosome, if
the value is less than the crossover rate value, the crossover
is then performed. Each chromosome has a 50% chance to
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Figure 2. An overview of proposed Pacing-based Dungeon Generator.

copy the first or the rest half of the genes from the selected
chromosome from the previous process, and another 50%
chance to copy it vertically or horizontally since we use a
square room in this study (same width and length).

After the chromosomes evolved, we eliminated 50%
of the less-fit chromosomes and replaced them with the
re-evolved top 50% fit chromosomes. There is a penalty
scheme to reduce the score of a non-fit chromosome (the
chromosome which cannot produce the room with intended
constraints). In this study, we reduce the current fitness
score of a chromosome by 0.1 for each unfulfilled target of
pacing aspect and constraint. Then, we get the population
for the next generation by reiterating the second phase,
which is the selection, and continue with the evolution and
evaluation phases again. Our genetic process will stop when
the process has already reached the number of generations,
or the fitness score is higher than the expected value.

4. Experimental Results and Analysis
The analysis of experimental results and user study

is shown in this section. The first part shows the level’s
precision to match the designer’s pacing targets. The factors
that influence the results are also presented. Next, the
actual player experience in playing the generated levels in
the experiment is shown. Finally, we observe and analyze
the effect of pacing patterns towards the actual player
experiences.

A. Experiments
All of the experiments and user studies are performed

in Windows 10 Pro 64-bit OS with Intel Core i5-6400
Processor, 27.4GHz, and 11GB of available RAM. The
3D game assets are bought at Unity Asset Store made
by Suriyun. In the experiments to generate the levels, we
pre-produce the level spaces using the concept of mission

and space from [6]. Therefore, we are focusing more on
the producing the expected pacing patterns and the object
within levels.

We perform level experiments labelled with A to F, refer
to Table III. The purpose of experiments A, B, and C is
to observe whether the system can provide various pacing
patterns using a level space. Upon the experimental result,
we obtain the level average error rates of experiments A,
B, and C as 1.16%, 6.78%, and 0.79%, respectively. We
calculate Ei, the error rate of pacing aspect i in Equation 19,
where Ti is the expected/ target value of pacing aspect i,
while Ri is the experimental result value on pacing aspect
i.

Ei =

∣∣∣∣∣Ri − Ti

Ti

∣∣∣∣∣ × 100 (19)

In experiments D, E, and F, we use different level spaces
but similar pacing pattern targets to show if different level
spaces can produce similar pacing patterns. The impetus of
the second, third, and fourth rooms in experiment D are
not close to the target. That is because the small room size
and the number of exit connections of these rooms make our
system hard to converge to the target. The average error rate
in D is 18.55%, although the threat and tempo are close to
the target. The average error of this experiment is 16.23%.
Experiment F has the best result with a 7.11% of error
rate. In experiments D, E, and F, our system shows the best
result in the patterns of tempo and threat. It happens because
the impetus is tightly affected by the characteristics of the
room space, i.e., room size, number of exit connections, and
number of tiles on the player path, which would not change
at all in the generation process.

Using the same settings of experiment B, experiments
B1, B2, and B3 aim to check whether our system can
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TABLE III. Rooms’ errors comparison across the levels.

Experiment
Label

Pacing
Aspect

Error according to room (%)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Average

A

Threat 0 0 0 0 0.855 0 26.829 0 3.46
Impetus 0 0 0 0 0 0 0 0 0
Tempo 0 0 0 0 0.254 0 0 0 0.032
Average 0 0 0 0 0.37 0 8.943 0 1.164

B

Threat 15.385 17.375 0 12.613 4 0 1.412 70.455 15.155
Impetus 0 0 0 0 0 0 1.803 0 0.225
Tempo 9.766 0.625 5.672 0 2.024 0 16.110 5.676 4.984
Average 8.383 5.999 1.891 4.204 2.008 0 6.442 25.377 6.778

C

Threat 0 3.03 0 2.034 0 12.121 0 0 2.148
Impetus 0 0 0 0 0 0 0 0 0
Tempo 0 0.092 0 1.702 0 0 0.146 0 0.242
Average 0 1.041 0 1.245 0 4.04 0.049 0 0.797

D

Threat 89.423 11.525 20 28.959 8.969 1.836 5.182 62.5 28.549
Impetus 3.344 135.75 35.349 0.152 0.6 0.35 17.615 0.91 24.259
Tempo 4.136 1.757 7.812 0.087 2.513 0.682 0.904 0.904 2.851
Average 32.301 49.678 21.054 9.733 4.027 0.956 21.438 21.438 18.553*

E

Threat 15.385 54.908 1.531 1.357 0 0.847 0.238 131.250 25.690
Impetus 24.396 2.254 10.565 22.369 6.994 0.413 19.413 1.386 10.974
Tempo 6.408 2.434 60.244 0.004 10.847 0.089 10.573 5.774 12.047
Average 15.396 19.865 24.113 7.910 5.947 0.450 10.075 46.137 16.237*

F

Threat 13.462 0 0.714 0 0.448 2.401 1.31 131.25 18.698
Impetus 0 0 0 4.009 1.178 0.474 1.353 4.237 1.406
Tempo 0 0 1.46 0.105 6.328 0.195 0.36 1.479 1.241
Average 4.487 0 0.725 1.371 2.652 1.023 1.008 45.655 7.115

B1

Threat 0 31.081 68.919 12.613 15.2 0 38.983 32.576 24.921
Impetus 0 0 19.456 0 0 0 1.803 0 2.657
Tempo 0 0.156 3.267 0.829 0.99 0 1.0 0.280 0.815
Average 0 10.412 30.547 4.480 5.397 0 13.929 10.952 9.465

B2

Threat 0 33.333 0 0.601 2.4 43.182 3.39 127.273 26.272
Impetus 0 0 0 0 0 0.879 0 0 0.11
Tempo 0 0.092 0 4.903 1.003 7.12 2.614 0.003 1.967
Average 0 11.142 0 1.835 1.134 17.06 2.001 42.425 9.450

B3

Threat 0 36.293 70.27 4.204 0.8 0 18.644 0 16.276
Impetus 0 0 15.063 0.425 0.938 0 1.785 0 2.276
Tempo 0 0.625 1.543 0.218 9.978 0 0.188 2.311 1.858
Average 0 12.306 28.959 1.616 3.905 0 6.872 0.77 6.804

B4

Threat 0 0.644 1.351 1.802 0.8 0 3.672 31.818 5.011
Impetus 0 0 9.728 4.978 0 0 1.803 0.271 2.098
Tempo 0 0.313 0.817 1.116 2.024 0 16.37 2.479 2.89
Average 0 0.319 3.965 2.632 0.941 0 7.282 11.523 3.333

produce various level alternatives (level candidates) given a
level space and pacing patterns. Experiments B1, B2, and
B3 have 9.46%, 9.44%, and 6.80% errors. The error rate of
tempo averaged from experiments B1, B2, and B3 is 1.54%,
the error rate of impetus is 1.68%, and the average error rate
of threat is 22.5%. Due to the extremely low threat value,
the system is difficult to converge on that aspect. Reducing
the function weight of impetus and tempo, as described in
experiment B4, results in a lower error rate of threat which
is 5.01%, and the error rate of impetus and tempo, 2.09%
and 2.88%, respectively, making the average error of B4
3.32%. This error rate is the lowest among B1, B2, and B3.
The highest averaged pacing aspect error is in experiments

D (18.55%) and E (16.23%) when our system hard to give
a better result due to the effect of room spaces towards
impetus where it cannot change at the moment. The lowest
error is the result of experiment C, with only 0.79% of error.

Obviously, the size of the rooms affects the generation
process. Currently, our system is intended to help the
designer generate intended pacing patterns for the player
before the gameplay. We are not focusing on the room space
modifications.
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B. User Studies
In order to analyse the impact of pacing aspects towards

actual player experience, we conduct user studies and then
analyse the data obtained through the questionnaire and
actual recorded gameplay data. We create a simple cute-
themed dungeon game that relies on player actions such
as killing the monsters, finding the treasures, and surviving
until the finish point. The subjects of these user studies
are eight computer science students in GameLab, NTUST
(National Taiwan University of Science and Technology).
These user studies are performed on the same machine we
use for experiments, and the players control the game using
a wired X-Box One Controller.

In the user study, we let the players play seven different
levels, which are the results of our previous level experi-
ments. First, we use levels A, B, and C to observe if the
levels can produce different actual gameplay experiences
as the result of different pacing patterns implemented in
the same level space. Next, using levels D, E, and F, we
observe the player experience as we implement similar
pacing patterns to different level spaces. Last, we compare
the gameplay data from levels B and B4 to understand
the effect of playing the level alternatives (level candidate)
while using similar pacing patterns and level spaces. There
are three questions for each room in a level that the players
need to answer. Q1 asks whether the room is dangerous
(because of the enemies and obstacles), Q2 asks if the room
makes the player can or want to keep moving (regarding
less danger and more treasures found), and Q3 asks if the
players do many actions in the room (including move, jump,
attack, and ravage actions).

We show the summary of the effect of pacing differ-
ences, pacing similarities, and level candidates’ variants on
the actual gameplay experiences, in Table IV and Table V.
The symbol ’

√
’ on the tables indicates the room strongly

matches the expectation (the target pacing or intended
gameplay experience), the symbol ’×’ indicates the room
is unmatched to the expectation, while ’

√
*’ indicates the

room slightly matches the expectation. Therefore, in the
pacing differences section, ’

√
’ means the rooms between

the levels are dissimilar, while the ’×’ means the rooms
between the levels are similar. Likewise, in the pacing
similarities section, ’

√
’ means the rooms between the levels

are similar, while the ’×’ means the rooms between the
levels are dissimilar.

From the recorded gameplay data, it is difficult to ob-
serve the effect of using different pacing patterns on a level
space (levels A, B and C), especially for the factors such as
the number of total actions by player, gameplay time, and
total damage. In contrast, it is easier to observe through the
number of objects (treasure, obstacle, and enemy) and the
number of specific actions. There are 5 out of 8 rooms that
show the expected patterns resulting from pacing similarity
observation (levels D, E, and F). Moreover, 6 out of 8
show similarities in the gameplay experience for the level

candidate’s variants (levels B and B4). Table IV shows
the summary of players’ recorded actions. In summary,
experiments of levels A, B, and C show the closest result
to our expectation, as well as B and B4.

As inferred from the questionnaire data, the pacing
difference’s effect is easier to be observed, where the pacing
patterns of levels A, B, and C result in dissimilar players’
responses. For the observation of pacing similarity using
different level spaces, 4 to 5 out of 8 rooms show the
similarities. Furthermore, the players’ responses regarding
the similarities of level candidates’ variants show that 7
out of 8 show similar players’ feedback. See Table V for
the summary of players’ feedback. We provide the detailed
observation on the pacing differences, pacing similarities,
and variants of level candidates on the following sub-
sections.

1) Pacing Differences
Figure 3 shows the comparison of the original and

resulting pacing patterns from levels A to B4. Based on
the recorded gameplay data in Figure 4(a), levels A, B, and
C, the most different playing times are shown in rooms
2, 4, 5, 6, and 8, while in rooms 1, 3, 7 are not showing
significant difference. For the number of total actions by the
players, level C is so different compared to levels A and B.
Rooms 2, 5, 6, 7, and 8 are quite different as expected,
but rooms 1, 3, and 4 show insignificant dissimilarities
regarding the number of actions. Figure 6(a) confirms that
level C is so different to level A and B for the specific
actions by the players. However, as shown in Figure 5(a),
the number of treasures, obstacles, and enemies in those
levels are much different. Note that the more dissimilar
the pacing patterns, the more diverse the actual gameplay
experiences. Similar to the recorded gameplay data, the
players’ responses shown in Figure 7(a) confirm that the
same level spaces can produce different pacing patterns as
the designer intended.

2) Pacing Similarities
According to Figure 4(b), the number of actions in levels

D, E, and F are quite different in rooms 2, 4 and 7 due to
pacing values differences shown in Figure 3. Rooms 1 and
3 have slight differences, while the rest of the rooms show
quite similar patterns. As shown in Figure 6(b), the jump
and ravage actions in those levels depict the similarities in
most of the room. However, move and attack actions in
some rooms from level E are considerably different from
the other levels, especially for rooms 2, 4, and 7 due to the
high error rate for room 2 in level D. Therefore the resulting
damage is not as expected.

The clear dissimilarities of the time to complete the
objective in the rooms are shown in room 4 due to the
room’s space differences. However, no significant difference
is observed at levels D and F. We observe that room 7 from
all levels produces the highest damage among the rooms on
the same level, meaning the patterns of the room that give
the high damage to the player occur between these levels,
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Figure 3. The comparison of the original and resulting pacing patterns from level experiments (a) A, B, and C, (b) D, E, and F, and (c) B1, B2,
B3, and B4 plotted per pacing aspect.

Figure 4. The comparison of total actions, total time spent, and total damage on (a) the experiments A, B, and C, (b) the experiments D, E, and
F, (c) the experiments B and B4.
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TABLE IV. The recorded gameplay experience expectation regarding to number of total actions, time spent, and total damage on pacing difference,
pacing simiarities, and level candidates’ variants. Note that the number of objects (treasure, obstacle, and enemy) and the specific type of actions
are not presented.

Gameplay Variable Expectation on Pacing Differences (level A, B, C)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Total Actions ×
√

×
√ √ √

×
√

5
Gameplay Time ×

√
× ×

√ √ √ √
5

Total Damage
√ √ √ √ √ √ √ √

8
Total 1 3 1 2 3 3 2 3

Gameplay Variable Expectation on Pacing Similarities (level D, E, F)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Total Actions
√

* ×
√

* ×
√ √

×
√

5
Gameplay Time

√ √
*

√
×

√ √ √ √
7

Total Damage ×
√

× ×
√ √ √ √

5
Total 2 2 2 0 3 3 2 3

Gameplay Variable Expectation on Level Candidates’ Variants (level B, B4)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Total Actions
√ √ √

*
√ √ √ √

× 7
Gameplay Time

√ √ √ √
×

√ √
× 6

Total Damage
√ √ √ √ √ √ √

× 7
Total 3 3 3 3 2 2 3 0

TABLE V. The players’ feedback expectation regarding to number of total actions, time spent, and total damage on pacing difference, pacing
simiarities, and level candidates’ variants. Note that the number of objects (treasure, obstacle, and enemy) and the specific type of actions are not
presented.

Gameplay Variable Expectation on Pacing Differences (level A, B, C)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Q1: Room is dangerous
√ √ √ √ √ √ √ √

8
Q2: Want to keep moving

√ √ √ √ √ √ √ √
8

Q3: Do many actions
√ √ √ √ √ √ √ √

8
Total 3 3 3 3 3 3 3 3

Gameplay Variable Expectation on Pacing Similarities (level D, E, F)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Q1: Room is dangerous × ×
√

×
√ √ √

*
√

5
Q2: Want to keep moving × ×

√
×

√ √ √
*

√
5

Q3: Do many actions
√ √ √ √ √ √ √ √

8
Total 1 1 3 1 3 3 3 3

Gameplay Variable Expectation on Level Candidates’ Variants (level B, B4)
Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Total

Q1: Room is dangerous
√ √ √

×
√ √ √ √

7
Q2: Want to keep moving

√ √
× ×

√ √ √ √
6

Q3: Do many actions
√ √ √

×
√ √ √ √

7
Total 3 3 2 0 3 3 3 3

although their level spaces (the number of connections, tiles
in player’s path, and room size) are different. All rooms
present similar amounts of obstacles. Rooms 1, 2, 4 and
7 show different numbers of treasures as the values of
impetus between these levels are not really close to each
other, possibly due to the weight of impetus is too small.
Rooms 1, 3, and 4 do not show quite similar patterns.
Although the pacing values are similar, the magnitude of
gameplay data might still be different (as shown in the
total damage comparison in Figure 4). The reasons affecting
those results are the player preferences while playing the
game, the object’s position, the error rate of the patterns,
and the closeness of the pacing patterns. Besides, we can

only offer the expected gameplay but we can never give the
perfectly matched-to-intended gameplay experiences.

Rooms 3, 5, 6, and 8 show quite similar patterns of
recorded gameplay experience, while rooms 1, 2, and 4
present dissimilar results to the expected target due to the
error rate of threat and impetus for Q1 and Q2, as shown
in Figure 8. The Q3 show the most similar result since
Q3 is much related to the tempo patterns where the error
rates of tempo among the levels are low. It implies that the
different level spaces might implement the similar pacing
patterns set up by the designer, although the result is still
highly affected by some geometrical factors such as room
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Figure 5. The comparison of the number of treasures, the number of obstacles, and the number of enemies on (a) the experiments A, B, and C,
(b) the experiments D, E, and F, (c) the experiments B and B4.

size. For example, the rooms with the same order (number)
from different levels which the players play might result
in different numbers of movement actions due to the room
size difference, although the pacing patterns for levels D,
E, and F are considerably similar.

3) Variants of Level Candidates
Levels B and B4 show extremely similar pacing patterns

since they are built on the exact inputs. Therefore, between
those two levels, the total actions, the gameplay time, the
total damage is taken by the player, and the number of
objects that the players face are quite similar, as shown
in Figure 4(c), Figure 5(c), and Figure 6(c). There is a
difference between the number of objects on those levels
because, in our experiments, we set the allowed number of
obstacles must be between 0 to 2. Therefore, the system
might produce a different number of obstacles while still
satisfying the constraints. Other than that, the differences
in the number of total actions, the gameplay time, and the
total damage occur because every player might have their
own strategy to defeat the exact same enemy in the same
position and at considerably the same time. Hence, the result
will likely never be perfectly the same.

For the answer to Q1, the only different result is shown

in room 4, where all of the players agree that room 4 in
level B is dangerous while room 4 in level B4 is not really
dangerous. However, Figure 9(b) shows that two players
agree that the room is not dangerous, while the other players
choose to agree and be neutral (due to their unsure feeling).
For Q2, most players disagree that rooms 3 and 4 in level B
do not make them keep moving, whereas all players agree
that room 3 in level B4 keeps them moving, and half of the
players want to keep moving in room 4. For Q3, room 4
shows the different responses of players. All players agree if
they did many actions in room 4, whereas only two players
disagree that they did many actions in room 4 of level B4.
It implies that providing the same pacing patterns in the
same level spaces might offer similar gameplay experiences.
However, there is still a little drawback, as shown in room
4. Every time the player plays a level, they always change
the way they play because they get bored. Therefore, it is a
hard task to get exact similar actual gameplay data in every
generated level and play session.

5. Conclusions, Limitations, and FutureWork
We present our summary, limitations in our system, and

the potential further work as a continuation of this study.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


412 A. B. Harisa and W.-K. Tai: Pacing-based Procedural Dungeon Level Generation

Figure 6. The comparison of move, jump, attack, and ravage actions on (a) the experiments A, B, and C, (b) the experiments D, E, and F, (c) the
experiments B and B4.

1) Conclusions
In this paper, we present game design patterns to control

the generation of action-adventure game levels based on
the game pacing to provide diverse variants of game levels
while keeping the level meaningful to the players. We
proposed a system that helps and guarantees the game
designer to produce meaningful game pacing of the level
according to the designer’s intent. Our system, Pacing-based
Dungeon Generator, is used to create and analyse a level’s
pacing patterns and give suggestions to the designer by
generating level candidates based on the pacing metrics
of threat, impetus, and tempo. Considerably, the system
can produce the expected level that the designer wanted.
Furthermore, the generated levels can follow the target
pacing and the constraints set by the designer. Therefore,
the game designer saves lots of development time to create
a game level with the expected pacing values since the
designer may observe the game pacing of a level in real-
time. The pacing metrics to calculate the pacing values and
the constraints are also presented.

We propose the game pacing as the rate of events
that are affected by complex, cumulative values of the
threat, impetus, and tempo for each segment of the game,
which will bring the players to better engagements. The
designer may set the expected pacing patterns, constraints,
and parameters to limit the generation of level candidates.
There are two types of constraint: a global constraint used
to normalise the pacing aspect values and a local constraint
used to limit the generation.

We perform level experiments to show if the system
can produce room or level with the expected pacing values
and constraints set by the designer. Our global constraints
configurations made the system react sensitively to the small
changes in pacing values. However, it could be addressed
by either changing the global constraint parameter values
or reducing the weights of the threat function. In the level
experiments, the lowest average error rate is at level C
(0.79%), and the highest average error rate is at level D
(18.55%), in which the system seems troubled to provide the
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Figure 7. Players’ feedback comparisons across level A, B, and C regarding (a) the dangerous enemy (Q1), (b) the will of player to move (Q2),
and (c) the quantity of actions by players (Q3).

best result due to the incapability of our current technique to
allow a change in room size and the number of connections,
resulting in the high error of impetus. Generally, the room
with more passable tiles will likely produce the intended
pacing. However, if the designer is provided with such
information, the designer may get a better result.

The closeness of the result to our expectation is tightly
affected by the level’s space (e.g., room size, number of exit
connections, certain types of tiles), while the sensitivity of
the pacing aspect curves is highly affected by the value
range in the global and local constraints. We also notice
that if two rooms with the same average error rates have
different sources of error; one has a high error rate on only
one pacing aspect, and the other has similar small error
rates among the pacing aspects, the second room has a high
tendency to provide a better result as compared to the first
room. The resulting room with the error rates shared among
all the pacing aspects is better than the room with a high
error rate on one of the pacing aspects.

Our system provides game levels with the intended
pacing patterns and follows the constraints given by the
game designer with their own preferences as the results
are measured and presented. In addition, we also let the
designers use their own configuration to calculate the value
of each pacing aspect. It will give the freedom to the game
designer to control the process since we know each game
designer might have a different preference.

Finally, in this paper, we focus on the 3D level of a
dungeon crawler game, but our concept provided with more
flexibility; hence such technical implementation may differ
across different game genres. For example, although the
concept of game pacing strongly appears in an action game
like a dungeon crawler, the concept itself can also be found
in every other genre.

2) Limitations
Our study offers the initial idea for further studies since

there are still only a limited number of research that discuss
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Figure 8. Players’ feedback comparisons across level D, E, and F regarding (a) the dangerous enemy (Q1), (b) the will of player to move (Q2),
and (c) the quantity of actions by players (Q3).

Figure 9. Players’ feedback comparisons regarding the dangerous enemy (Q1), the will of player to move (Q2), and the quantity of actions by
players (Q3) between level B and B4, as shown in (a) and (b) respectively.
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game pacing. The pacing patterns are visualised linearly as
the players play the level as a sequence of room spaces
to do the actions. In some games which allow non-linear
gameplay (room with multiple connections or will be passed
several times), the pacing pattern alternatives are provided
in parallel order. Meaning the player may finish multiple
quests simultaneously or choose which quest is needed to be
finished first in any order. We avoid this issue by applying
the lock and key mechanism to make the rooms be played
linearly from the entrance to the finish point.

3) Future Work
This study can be used as a basis for some potential

future works with the following two steps as our recommen-
dation. First, we need to address a game level that supports
parallel pacing (branched pacing patterns). Secondly, we
can implement the pacing patterns on the smaller scale of
the game segment, e.g., each point in the pacing pattern
represents each tile in the player path. Theoretically, it will
give a more accurate experience for the players. We can use
artificial intelligence to get which configurations produce
the best result, where the AI agent or human players might
qualitatively and quantitatively measure the result.
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