
https://dx.doi.org/10.12785/ijcds/120131

Software-Defined Networking Security Challenges and
Solutions: A Comprehensive Survey

Pulkit Ohri1 and Subhrendu Guha Neogi2

1,2ASET, Amity University Madhya Pradesh, Gwalior, India

Received 15 Aug.2021, Revised 22 Mar. 2022, Accepted 9 Jul. 2022, Published 20 July 2022

Abstract: Software-Defined Networking (SDN) has revolutionized the networking field by addressing scalability, flexibility, and control
mechanism issues, which are present in Traditional Networks. One of the major advantages of SDN over Traditional Networks is
centralized control over the network. In Traditional Networks, no separate Control Layer is present, due to which configuration and
management of the network become extremely difficult. SDN introduces a separate Control Layer, which makes network management
an easy and reliable process. Network management is now flexible and does not require expensive hardware and configuration changes.
From this, not only the network administrator but also the network intruder benefits. SDN separates the Control and Data Plane of the
Network. Due to the separation of the Control Plane, DoS/DDoS attacks on SDN Controller can cause a Single Point of Failure of the
entire network, and hence security becomes vital for SDN. In this paper, the security challenges of all three layers of SDN, and solutions
that need to be taken by the network administrator has been discussed. Various key benefits of SDN Security has been discussed in this
paper. SDN security remains one of the hot topics in the field of networking, and our main goal remains to review the major security
advancements, with their scope and limitations.
Keywords: Distributed Denial-of-Service, Open Network Operating System, OpenDaylight, Intrusion Detection System, Blockchain

1. Introduction

New era of Network-Design Paradigm has changed
the way of communication, due to transformation from
Traditional Network to Internet of Things (IoT) enabled
network, and invention of low cost digital devices [1].
Traditional hardware-based networks are strongly coupled
with the control and data plane. Due to diverse policies
implemented in routers and switches, the devices in the
network need to be controlled and SDN can help to control
devices remotely. To make a configuration change in the
network, devices need to be configured separately, which is
a cumbersome task.

Software-Defined Networking (SDN) is a dynamic, pro-
grammable, and centrally controlled network management
approach [2]. SDN solves the issues of Traditional net-
works, by separating the Control and Data Plane of a net-
work. This heterogeneous approach makes networks agile
and flexible. The North-Bound Application Programming
Interface (API) Interface provides communication between
SDN Controllers and applications of higher layer whereas
South-Bound API provides interface between SDN Con-
troller and other network nodes connected with lower level
devices. By deployment of the programming interface, net-
work administrators can now centrally control the network
and can reinforce, update and manage network policies on

the fly. Due to the separation of forwarding and data plane,
management of SDN becomes flexible and easily config-
urable. Open Networking Foundation (ONF) started the
separation of forwarding and data plane in 2011 [3]. Open-
Flow protocol was standardized for communication between
forwarding and control plane in 2012. Open Network
Operating System (ONOS) released an open-source SDN
Controller in 2014 [4]. To date, SDN has revolutionized the
way Network administrators control their Networks. Using
SDN, administrators can apply customization to devices on
the fly rather than waiting for the vendors to apply these
policies separately in the switches and routers. The major
advantages of SDN are virtualization of the Network, lower
operational costs, and reduced capital expenditures [5].

With the diverse advantages provided by the SDN,
security is still a major concern. The separation of the
forwarding plane causes SDN to get attacked by malware.
Once the SDN Controller is compromised, the whole net-
work consisting of switches, routers, and network hosts will
go down. SDN suffers from a Single Point of Failure in
the Control layer. This Single Point of Failure of SDN
has raised a lot of concern among Network Administrators.
Multiple issues are identified by the research community
regarding SDN and diverse solutions are also provided for
the same.

E-mail address: pulkit.ohri@s.amity.edu, sgneogi@gwa.amity.edu

http:// journals.uob.edu.bh

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Jul-2022)



384 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

This paper delves out various state-of-the-art SDN secu-
rity paradigm and their recent trends with various develop-
ments proposed for the new era of network communication.
The remaining part of the article has been organized as:

1. This paper consists of three sections. The first section
discusses the architecture of SDN in depth. The second
section discusses security issues present in each layer with
their detailed impact on the SDN architecture. The major
and state-of-art countermeasures proposed by the research
community over a period of time are analyzed in detail with
the discussion of their limitations.

2. The last section discusses the research gap present
between the security issues and existing research. Open
security challenges and solutions for the SDN security
paradigm are helpful for future developments have been
discussed at the end.

2. THREE-TIER ARCHITECTURE OF SDN

SDN separates programming from the underlying hard-
ware and thus by programming on Control Layer infor-
mation delivery is centralized. SDN follows three-layered
architecture that includes Application, Control, and Data
Layer [6]. SDN separates the routing decision from the
Data plane to Control Plane. The Control plane decides
from which path to transfer data and the data plane simply
forwards the data through specific routers and switches.

A. Control Layer: The Brain of SDN

The Control layer is the brain of SDN and consists
of SDN Controller for routing decisions. Different vendors
have provided SDN Controllers and the major stakehold-
ers are Open Daylight (ODL), Open Networking Operat-
ing System (ONOS), Network Operating System (NOX),
Python Operating System (POX), Beacon, and Ryu. Among
these SDN Controllers, ODL and ONOS are the most
popular and trending ones in the market. ODL controller
follows OpenFlow Protocol to cater to the need of the
communication between Data and Control Plane of the
SDN. Routing decisions are decided by the Control layer
and the Data layer merely forwards the data to a specific
port.

Separate SDN Controller provides Network Abstraction
to the Network administrators. They can change policies
using a programmable interface without worrying about the
underlining hardware interface. South-Bound Application
Programming Interface (API) acts as a bridge between SDN
Controller and Data Plane. Communication between these
two is done using OpenFlow Protocol. Using OpenFlow
Protocol, the Controller can update flow table rules directly
in the Data Plane OpenFlow Switch [7].

B. Data Infrastructure/Forwarding Layer

Data Layer, the bottom-most layer consists of switches
that are known as OpenFlow Switches. OpenFlow Switches

contain a flow table and a group table. OpenFlow Switches
merely send the data to the destined port according to
the flow table rules [8]. OpenFlow Switches only receive
instructions from SDN Controller. Communication from
SDN Controller to OpenFlow Switches is done securely
using OpenFlow Protocol. OpenFlow Protocol uses Se-
cure Sockets Layer (SSL) to preserve the integrity and
confidentiality of data. When any Data Packet arrives at
the OpenFlow Switch, it checks its flow tables to find a
matching entry of IP Network. If the entry is found, it
merely forwards the data to the destined port. If the entry is
not found it sends the packet to the SDN Controller using
the OpenFlow Protocol. The Controller will send an updated
rule back to the OpenFlow Switch and then the Switch can
forward the data to the destination port.

Traditional Switches are capable of both forwarding and
routing decisions. OpenFlow Switch decouples these two
and offers a variety of advantages. SDN Controller has
now the high-level view of the routing path used and it
can transfer data now to less utilized routes to increase
Network speed and thus reduce network bottlenecks. Load
Balancing, Traffic Management, Scalability are some of the
other advantages of using OpenFlow Switches.

C. Application Layer

SDN Application layer, the topmost layer contains Net-
work Applications for Intrusion Detection System (IDS),
Intrusion Prevention System (IPS), Firewall, and Cloud Or-
chestration. It also contains load Balancing, Policy Enforce-
ment, Topology Viewer, Network Automation, and Manage-
ment Application. Communication between the Application
and Control Layer is done via North Bound Interface.
Using the Application Layer, Network Administrators can
program the SDN Controller to enforce new administrative
policies and to control switches centrally. New Applications
can be added by the Network Vendors in the Application
layer by using Network statistics, Topology, and State.

North-Bound Application Programming Interface (API)
acts as a bridge between SDN Applications and the Control
Layer. Using Graphical User Interface Network administra-
tor can access the North-Bound API. Using this Abstraction
administrators can change network Policies on the fly
without worrying about the underlying hardware. Detailed
SDN Architecture has been depicted in Figure 1 containing
the three layers: Application, Control, and Data Layer.

A packet originating from the Application layer is
processed in the following manner. When a request packet
arrives from an outside IP Address to the OpenFlow Switch,
it checks its flow table entries for a match. If the match is
found, the packet is sent to the specified destination port.
If not, a PACKET-IN message is generated and the packet
is sent to the SDN controller using South-Bound Interface
for closer inspection. The controller now decides where to
send the packet and it sends the new flow table rule back to
the OpenFlow Switch. OpenFlow Switch now simply passes

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 385

Figure 1. Three-Tier Architecture of SDN.

the packet to the destination port.

Decision-making lies solely in the hand of the SDN
Controller and OpenFlow Switches simply becomes an
information transfer device.

3. ADVANTAGES OF SDN OVER CLASSIC TRADI-
TIONAL NETWORKS

SDN offers numerous advantages to the network admin-
istrator which was not possible with Traditional Networks.
Traditional Networks works on hardware-based mecha-
nisms and SDN works on software-based mechanism. The
main advantage of SDN is the programmability provided by
SDN. In Traditional Networks, networking was hardware-
based and re-configuration of devices was not an easy task.
Updating of devices requires a change of code in each and
every router and switch. These are written in vendor-specific
code, which is difficult to understand and update. But in
SDN using simple programming, the network administrator
can make changes in the entire network at will.

Traffic management is centralized and easily manage-
able since all traffic passes through the control layer. In
such cases, a full map of the traffic flow is available to the
network administrator. Benign and malicious applications
can be easily identified by measuring the traffic flow and
hence security becomes tightened. Error management and
fault tolerance are high in SDN as compared to Traditional
Networks. In Traditional Networks, due to distributed con-

Figure 2. Communication Layers of the Traditional Network. Here,
Network layer acts as a Control Layer for the hardware devices.

trol identifying a faulty router or switch is difficult and a
time-consuming task. In SDN, due to programming, it is an
easy and automatic process to identify faulty devices.

4. SDN SECURITY ISSUES AND SOLUTIONS

The traditional network offers a variety of advantages,
some of which are discussed below. In Traditional networks,
the network layer consists of Data and Control Plane. So,
unlike SDN Traditional Network does not have separate
Data and Control layer. The combined Data and Control
layer has its advantages. Traditional Network supports
higher bandwidth performance and low response time as
compared to SDN [9]. Figure 2 shows the basic architecture
of Traditional Networks which consists of two layers,
Application Layer and Network Layer.

Another biggest advantage is the security. The Control
layer defines security and forwarding policies and one
defined device needs to be configured separately again to
change the network policy. It becomes very difficult for
a malicious user to re-configure each device. But in SDN,
once Control Plane is compromised, the whole network will
go down at once. In SDN single point of failure is present in
the Control Layer. South-bound Interface is not present, and
the controller cannot be tapped or fed with false messages in
Traditional Networks. Communication between controller
and data layer cannot be tapped easily due to the tight cou-
pling of these layers. Single Point of failure is very difficult
in Traditional Networks, unlike SDN. Individual routers,
switches, and gateways need to be attacked separately in
Traditional Networks, which is a very cumbersome task for
the attacker. Lack of centralized control makes Traditional
Networks more immune to network attacks.

Even with these myriads of advantages provided by
Traditional Networks, it is a cumbersome operation to
update, reconfigure and manage the devices due to the
absence of a separate Control Layer. But in SDN it is very

http:// journals.uob.edu.bh



386 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

easy to manage the devices. In SDN, the control plane is
centralized. Individual devices are not needed to be updated
individually. Just by sending a command to Control Plane,
all the devices are updated at once. SDN centralization of
control plane has provided numerous benefits but it has also
introduced Single Point of Failure for SDN Controller.

Attacks on SDN controllers are one of the most pre-
ferred choices of network intruders. In Traditional Net-
works, intruders must target individual routers and switches
to halt the network but SDN centralization of important fea-
tures has made their task straightforward. Spoofing attacks
can be done in the Data Plane to steal confidential data
without the knowledge of the administrator.

In the next section, we will discuss attack vectors for
SDN Application, Control, and Data layer, with their latest
countermeasures proposed by different researchers. We will
also discuss the need for decentralized security management
aspects of SDN, to provide enhanced security to a variety
of threats.

5. ATTACKS ON THE CONTROL PLANE

In this section, we will enlighten various types of
attacks that are possible in SDN Application, Control, and
Data Layer, with the solutions proposed by the research
community over a period. The effectiveness of each method
is also evaluated. Security remains the foremost important
issue in the SDN Architecture and the same is discussed
below section. SDN architecture has not dealt with security
issues in-depth and the security of SDN has downgraded
when compared with the Traditional Networks. Layer-by-
layer attacks with their countermeasures are also discussed
in depth.

A. DoS/DDoS Attacks on the Control Plane

Distributed Denial of Service (DoS) Attacks on SDN
Controller obstructs legitimate user requests by exhausting
the memory and CPU resources. Various types of DDoS
attacks like SYN Flood, HTTP flood, Ping of Death, and
low-rate DDoS attacks can cause a single point of failure
in the SDN controller. These attacks with their counter-
measures given by the research community are discussed
comprehensively.

SDN suffers from a PACKET-IN bombarding attack.
Network Intruder can generate a variety of malevolent
packets from several IP addresses. Intruders can generate
many BOT’s by sending malicious code to them. These
IP addresses are also spoofed so that identity of the host
also cannot be checked and trusted. Once a packet arrives
from an unknown IP address whose entry is not present in
the OpenFlow Switch TCAM table, the packet is sent for
inspection to the SDN controller. SDN Controller generates
a new flow table rule and sends back the rule to the
OpenFlow Switch. But if the intruder generates many un-
known packets, OpenFlow Switch will pass a large number
of PACKET-IN messages that will overwhelm the SDN

controller. Legitimate user requests cannot be processed
now.

Attackers can also manipulate TCP three-way handshake
to generate TCP SYN Flood attacks. During this attack,
the intruder bombards the switch with lots of TCP SYN
messages. This creates a lot of half connections that quickly
depletes the system resources and legitimate users cannot
now make a connection with the switch. Dang et al. [10]
proposed an SDN-based SYN Proxy Framework (SSP)
to mitigate TCP SYN Flood attacks. Real-time traffic is
analyzed of around 100 servers to get the typical time-out
period in the case of normal traffic. They found out that in
normal traffic TCP Handshake process finishes in less than
2 seconds. This time is calculated dynamically to delete
half-open connection faster from the OpenFlow Switch to
free switch resources. They developed an application named
SYN Proxy Module (SPM) that runs in an SDN controller.
For each flow entry, SPM calculates a time-out period. If the
timeout exceeds the threshold value, the entry is removed
from the OpenFlow Switch flow table removing the half-
open TCP SYN connection. The advantage of this method is
its easy deployment since it does not require any hardware
or protocol revision or extension.

Mohammadi et al. [11] proposed SLICOTS, a
lightweight TCP Handshake detection mechanism. First,
temporary rules are inserted in the flow table, and only
upon validation permanent rules are inserted. The proposed
method takes additional memory when many users are
present in the network. Fichera et al. [12], presented
An OpenFlow-based REmedy (OPERETTA) to mitigate
TCP SYNFLOOD Attacks against web servers that block
the MAC Address that crosses the threshold. An attacker
can surpass OPERETTA easily by just completing TCP
Three-way Handshake Mechanism. Both OPERETTA and
SLICOTS are unable to distinguish between the flash crowd
and DDoS traffic. In other words, which is legitimate traffic,
and which is malevolent traffic.

Ravi et al. [13] proposed AEGIS, a lightweight TCP
SYN Flood detection mechanism. AEGIS application runs
in the SDN Controller and uses two modules Assessment
for detection and Analysis for prevention. In the Assessment
phase, eight metrics are used to check whether degradation
in service has happened or not in SDN Controller. These
separate eight values are converted into a standalone value
using Merrill’s Figure of Merit (FOM). FOM is further di-
vided into five stages ranging from low to high performance
of the SDN Controller. If the FOM value lies in medium,
low, or very low category then for further investigation stage
2 is deployed. In stage 2, the proposed algorithm checks
whether it is flash crowd traffic or DDoS traffic. This method
cannot perform early detection of DDoS attacks.Only when
the performance of the SDN controller has degraded, the
controller finds the attack.

Man-in-the-Middle attack intercepts communication be-

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 387

Figure 3. Vulnerabilities present in different layers of SDN.

tween Client and SDN controller. Once communication
done by the SDN controller is intercepted, there will be no
privacy of data in the whole network. Address Resolution
Protocol (ARP) Spoofing is used to intercept communica-
tion between client and controller. The attacker forges the
address table in the SDN controller and thus controller sends
packets to the attacker. Brooks et al. [14] performed an
ARP Spoofing attack on Open Daylight Controller using
Kali Linux Operating System. Three physical machines
were used in this experiment. One running ODL Controller,
another running Kali Linux OS that catches communication
between controller and host. The third machine runs SDN
hosts using the ODL web interface.

Using the kali Linux ettercap tool, communication be-
tween controller and host passes first through Kali Linux.
Kali Linux then intercepts the communication and was
able to sniff the username and password of the ODL web
interface. ODL Controller uses HTTP plaintext mechanism
instead of secure HTTPS and thus attacker was able to sniff
network credentials. This small vulnerability can compro-
mise the full privacy of the network and MITM attacks are
hard to detect. The author proposed the use of third-party
tools to detect MITM attacks. Zhang et al. [15] proposed
CMD as a proactive detection mechanism to detect MITM
attacks like ARP, DNS, DHCP, ICMP spoofing. Bloom

filters are used to detect MITM and hence no packet
inspection is done to detect MITM attacks. CMD catches
all the flow information in the network and it is checked
whether any flow matches the flow description used in the
MITM attack. CMD showed promising results like low
positive rates and satisfactory performance.

In HTTP Flood Attack, the attacker bombards the SDN
controller with legitimate GET or POST requests to exhaust
its resources that will cause a denial of service to legitimate
users. Sangeetha et al. [16] mitigated HTTP GET Flood
attacks using SDN Controller. DDoS attacks are mitigated
using traffic analysis by the webserver, but it consumes a
significant number of resources on the webserver. Traffic
from legitimate hosts is captured for some duration and
their statistics is saved to be used later as a benchmark. If
the traffic received is higher than the benchmark, a DDoS
attack is in progress. Once a malicious host is detected, it is
not blocked permanently but it is blocked for some duration
to continue receiving data from the legitimate host. In the
real world, multiple controllers are used, so this study has
limited use in real-world networks.

A low-rate DDoS attack sends a burst of small DDoS
traffic and it is very difficult to detect since its pattern is
very similar to the genuine traffic. Large DDoS attacks can
be detected easily but small and low-rate DDoS attacks
can remain undetected for a long period of time. Zhijun
et al. [17], proposed low-rate DDoS attack detection using
Factorization Machine (FM). First, four features of flow
rules namely duration of time flow rule are present in the
Switch, several packets matched by the flow rule, Relative
dispersion of match bytes (RDMB), and Relative dispersion
of packet interval (RDPI) are extracted and are passed to
FM Machine learning Algorithm for detection of DDoS
attack. FM Machine Learning Algorithm combined with
multi-feature combination achieved a detection rate of 95.8
percent. FM used a large amount of training data which
is a time-consuming process and early detection of DDoS
attacks is also not possible.

Zhu et al. [18], proposed a timeout mechanism to
dynamically adjust the entry’s time period in the flow
table. The current timeout method available in the SDN
is static, not dynamic which leads to the large number of
PACKET-IN messages sent to the controller. The controller
becomes overwhelmed and the resource consumption on the
SDN controller increases. Load Aware feedback Algorithm
optimizes the flow table limited resources and reduces the
amount of PACKET-IN messages sent to the SDN con-
troller. This mechanism can be used to stop overwhelming
the SDN controller in case of a low-rate DDoS attack.

To detect DDoS attacks, researchers have developed
their own customized algorithms. But these algorithms
needs to be developed again and again over the period of
time, to strengthen their performance. Instead of developing
and upgrading customized solutions, solutions available

http:// journals.uob.edu.bh



388 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

already in the market can be used. Badotra et. al [19]
used SNORT Intrusion Detection System (IDS) to detect
DDoS attack on ODL and ONOS Controller in its early
phase. Once an attack is detected in its earlier phase,
mitigation steps can be taken to thwart the attack before
the entire network goes offline. New rules were written
inside the SNORT rules directory to detect DDoS attacks.
SNORT is one of the oldest and leading IDS system and
its detection rate is undoubtedly remarkable. But SNORT
uses a single processor to process the data. SDN networks
process gigabits of data and SNORT performance to process
that much data effectively, remains doubt full.

B. Countermeasures of DoS/DDoS Attacks

A myriad of customized algorithms is proposed by the
research community to provide SDN security, some of
which are discussed in the previous section. In this section,
we discuss the benefits and limitations of the most common
techniques used to secure SDN layers.

1) Entropy-Based Solutions:

The entropy-based approach can be used for earlier and
lightweight detection of DDoS attacks. Mousavi et al. [20]
gave the first idea of using entropy to detect earlier and
timely detection of such attacks. This method detects attacks
in the first stage, but it suffers from high false-positive rates.
Different methods based on the variation of information
entropy are proposed by the research community over a
period. Li et al. [21] proposed a lightweight detection
scheme using Information Entropy to detect DDoS attacks.
In their approach, instead of collecting and analyzing
the data of the flow table they have extracted and ana-
lyzed PACKET-IN messages. They observed in PACKET-
IN message three fields namely, the entropy of fake IP
source address increases and the entropy of IP destination
address and port address decreases during DDoS attack.
Detection mechanism schemes based on the Information
Entropy approach cannot detect well-known DDoS attacks
and choosing the threshold value is also a challenging task.
Further only simulated results were shown and whether this
approach will work in a real-world environment or not is
unconfirmed. Sudar et al. [22] had combined entropy and
machine learning approaches to reduce false positives in a
DDoS attack. Early detection of DDoS attacks is performed
by information entropy, and the false positives are reduced
in the second stage by the deployment of machine learning
algorithms.

In nearly all entropy-based solutions, if the attacker
sends data from a spoofed IP Address to a random des-
tination, the entropy approach will result in a high false-
positive rate. Hybrid approaches that combine the entropy
method with other methods are recently introduced by
the research community. Shohani et al. [23] proposed a
three-stage approach to detect such types of random DDoS
attacks. Here, the trapezoidal relation between the number
of received packets and the missed packets is analyzed. In

stage 1, the controller asks OpenFlow switches for the total
number of received packets and missed flow table entries.
In stage 2, using Exponentially Weighted Moving Average
(EMWA) method two thresholds are calculated to create the
trapezoidal pattern. In stage 3, if the table switch misses
entries exceeding the computed threshold then a DDoS
attack is in progress. Figure 3 shows list of vulnerabilities
present in all the three layers of SDN.

AbdelAzim et al. [24] proposed another two-stage hy-
brid approach. They combined entropy and the KL method
to detect concurrent DDoS attacks that were not possible in
other hybrid approaches. Their assumption follows that till
attack network traffic follows a specific constant pattern.
When an attack occurs, this normal traffic flow changes
abruptly, and the comparison of these two-time internals
will yield that an attack is in progress. Probability Density
functions (PDF) are created using the count of source and
destination IP addresses. Distance between PDFs at any two
successive times internal is calculated using the KL method
to check whether the normal behavior of the network has
changed or not. The distance will rise during the starting
phase and ending phase of the attack leading to the detection
of a DDoS attack. Upon successful detection, malicious
nodes are first banned and a first and final warning is given
to them, failing which they will be blocked indefinitely.

Blockchain is a decentralized, distributed ledger that
securely keeps a record of transactions. Blockchain is
majorly used to secure digital crypto-currency transactions
like Bitcoin [25]. Other applications of Blockchain are like
securing medical research data, voting mechanisms, and
cross-border payments data. Blockchain consists of Blocks
that are connected in a chain, hence the name Block-Chain.

2) Blockchain-Based Solution to secure SDN

Before discussing Blockchain integration with SDN,
we discuss briefly about the functionality of Blockchain.
Blockchain consists of chain of blocks. Each block consists
of a hash of data of the previous block, timestamp value,
version information, a nonce, and Merkle tree root hash.
Genesis Block is the parent block in the Blockchain, and it
contains the private key. It is practically impossible to alter
and delete transactions once they are added to Blockchain.
If an attacker wants to alter a Block, he must change the
previous block hash also. If the attacker wants to change the
previous node, he must change the previous previous node
also. In a way, the attacker must change all the nodes in
a Blockchain simultaneously to avoid detection and that is
nearly impossible. Blockchain enjoys heightened security
architecture and is a proven technology to secure crypto-
currency.

Each block contains a block header and block body.
Block header contains a 256-bit hash of data of the previous
block, timestamp value, version information, a nonce, and
Merkle tree root hash that contains the hash of all transac-
tions in a block. The body contains the transaction counter

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 389

and transaction. The size of the block decides how many
transactions (TX) a block can handle. Popular Blockchain
platforms are Ethereum Blockchain, Hyperledger, Ripple,
Corda, Open ledger, IBM Blockchain, etc.

Using Smart Contracts in Blockchain provides variety of
advantages. For the transaction management in Blockchain
mining, which is performed by miners, requires some
computational energy of the processing devices. This task
is cumbersome and can be made easier by using smart
contracts of Blockchain. Smart Contracts avoid the ne-
cessity of any Third Party involvement for the Proof of
Work. Based on the protocols written inside a Smart Con-
tract, transactions are added to the Blockchain. Ethereum
Blockchain uses the Solidity programming language to
create Smart Contracts. Blockchain provides myriad of
benefits like enhanced security, distinguished security, data
integrity, transparency and instantaneous traceability. This
scenario is depicted in figure 5.

In a Multi SDN Controller environment, Blockchain
can be added horizontally or vertically. As a horizontal
layer, Blockchain sits between SDN controllers and the
Data Infrastructure layer to secure communication between
them. As a vertical layer, Blockchain is used to secure
communication between SDN controllers itself to provide
more security.

Following proposals are given by research community to
secure SDN Controller using Blockchain. Basnet et al. [26]
proposed BSS (Blockchain Security Over SDN) that uses
Blockchain to securely transfer files between SDN nodes.
Using mininet emulator, 10 hosts are created and Open
Daylight is chosen as the SDN controller. To share a file
securely between hosts Blockchain network is used. All
10 hosts are registered on the private Blockchain network.
Serpent Programming is used to create smart contracts.
Blockchain Pyethereum Platform issued to secure files by
password using SHA256 encryption. Host h1 sends the file
to host h5 by encrypting it with an h5 private key. So,
only h5 can successfully decrypt the file. In this scenario,
Blockchain ensures secure transmission of files in the SDN
network.

Steichen et al. [27] proposed Chain Guard- A Firewall
for Blockchain Applications. Some nodes in the SDN
network are “Guarded Nodes”. These nodes are secured
using Blockchain and they forward the traffic to other
nodes in the Blockchain. Chainguard uses Open Daylight
Controller. It can listen to the incoming Packet-in messages
from the SDN Controller and can install new table flow
rules to the connected OpenFlow switches. Chain Guard
divides all nodes in the network into three categories namely
Blacklisted, Whitelisted and Gray listed nodes. White-listed
nodes can connect in the Blockchain network. Blacklisted
nodes are the prohibited remote nodes and are not allowed
to connect in the Blockchain. Gray-listed nodes are yet to be
considered. This list contains IP Addresses, Ports, Transport

protocol, timeout fields, etc. Once a Packet-in message is
received by the OpenFlow Switch from the SDN controller,
that entry is checked whether it is already present in any
of the three lists. If not and if the entry does not violate
the network rules, it is added to the gray list. Then, the
request is passed to the next module and if the matching
entry is found in the flow rule table or the whitelist, the
packet is sent to the destination nodes. The entries in the
Gray list are removed after the timer expires. Gray List
capacity has been capped means it can receive only a limited
number of requests. Once the gray list is full, new items
cannot be added further. If the gray list becomes full, it
shows an attack is in progress and all the entries in the
gray list are dropped off. In this situation, some entries can
still pass the gray list but most of them are dropped off.
This architecture allows the working of SDN nodes even
in case of a DDoS attack with reduced processing speed.
SYN Flooding attack is done by the author and still, nodes
were able to communicate with each other but with reduced
speed. This architecture allows communication between
Blockchain nodes with limited packet processing in case
of a DoS or DDoS attack.

DoS/DDoS attacks like TCP SYN flooding attacks can
be detected using packet sniffing tools. Once an attack
is detected, the attacker’s IP Address is added to the
Ethereum Blockchain. Now all nodes in the network know
the address of the attacker and hence they will not receive
any communication from them. The author created a DDoS
attack using hping3 tool. Once the random IP packets are
recognized, their IP addresses is added in a file and are
shared with the Blockchain network. These IP addresses
will be blacklisted; hence further communication will be
suspended from these IP Addresses. This architecture allows
efficient processing of packets by the OpenFlow Switches.

Single SDN controller suffers from Single Point of
Failure and scalability issues. To prevent this type of failure,
multi-SDN controller architecture is proposed. However,
the multi-SDN controller suffers from inconsistency and
scalability issues. Yazdinejad et al. [28] tried to solve these
issues using Blockchain technology by combining both
horizontal and vertical architecture of SDN controller. The
Control layer is changed and now uses both horizontal
and vertical architecture for controllers. The Control layer
contains domains that contain various SDN controllers in
vertical order. Blockchain is applied between horizontal
SDN controllers to record network information that ensures
data integrity and reliability. Table 1 shows comparison of
different Blockchain-Based Security Mechanisms for SDN
Controller.

Each table entry in the SDN controller contains source
IP, destination IP, domain name, state, priority, and time
to live field. Similar entries are present for each and every
link also. Blockchain between horizontal SDN controllers
ensures state consistency and protection from malicious
attacks from the outside environment. Table 1 shows a com-

http:// journals.uob.edu.bh



390 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

TABLE I. Blockchain Based Security Solutions for SDN Controller

Comparison of different Blockchain-Based Security Mechanisms for SDN Controller

S.No Methods used in SDN Features of the Mechanism Limitations

1. BSS (Blockchain Security Over SDN)

Solves file transfer security is-
sues in SDN. Securely trans-
fer files between SDN Hosts
using Blockchain Technology.
Uses receiving host public key
as the password.

File encryption algorithms, use
of private and public key delays
communication speed and this
method should be optimized for
large files.

2. Chain Guard- A Firewall for
Blockchain applications

Uses attacker IP address to
block communication during
DDoS attack. Attackers’ IP
addresses are stored in the
Blockchain to permanently stop
communication from illegiti-
mate nodes.

In case of flooding attack
from multiple sources, network
works with reduced bandwidth
only.

3.
Causing a DDOS attack and mitigating
it using Blockchain and smart con-
tracts

Enhances detection of DDoS
attacks by using netstat and
nmap to detect spoofed IP ad-
dresses. Blacklists IP address
that causes DDoS attack and
store them permanently using
Blockchain.

Log files created are very large
and should be stored efficiently.
Nmap detects DDoS attacks but
is slow. Packages other than
nmap shall be deployed to gain
processing speed.

4. Block flow: A Decentralized SDN
Controller using Blockchain

Uses Smart contracts to add
or delete SDN switches. Re-
moves security issues between
SDN Control and data layer
like DDoS, Single Point of fail-
ure of SDN Controller.

Devices are added manually to
the network, and this design
may suffer from ”Ice Age Prob-
lem”.

5.
BCFR: Blockchain-based Controller
Against False Flow Rule Injection in
SDN.

Communication between the
Control layer and Data Layer
is not secure and is suscep-
tible to false flow injection
rule attacks. The proposed solu-
tion uses Blockchain to secure
against the attack.

Time taken by the Attack Pre-
vention stage is not evaluated
and its performance is un-
known.

6.
Brain Chain - A Machine-learning Ap-
proach for protecting Blockchain ap-
plications using SDN

Protects Blockchain applica-
tions against DNS Amplifica-
tion Attacks and has a low false
positivity rate.

Machine learning algorithms
need to be trained and hence
cannot detect DDoS attacks in
the early stage.

7. A Blockchain-based security model for
SDNs

Protects SDN Control and Data
Plane using specialized algo-
rithms to protect them against
myriad attacks. The proposed
algorithm takes O(n*logn) time
which is linear and satisfactory.

Does not clearly define what
type of attacks the proposed al-
gorithm can protect from. Addi-
tional Blockchain blocks ABC,
CBC, and DBC introduce ad-
ditional overhead and delays
communication speed.

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 391

parison of various Blockchain security techniques, proposed
by the research community for SDN, with their features and
limitations.

Theviyanthan et al. [29] proposed Block Flow, A
Decentralized SDN Controller using Blockchain. Over-
centralization of the SDN control layer has decreased its
security by introducing a Single Point of Failure. Intro-
ducing Blockchain in the Control layer decentralizes its
features. Ethereum is used as the Blockchain and Solidity
is used as a programming language to develop a smart
contract. Using Smart Contract switches can be added or
deleted in the SDN network. Blockchain solves the Single
Point of Failure of the SDN Controller, the DoS/DDoS
attack, and the communication issue between the Control
and Data layer. This method can also be deployed on
multiple SDN controllers and offers several advantages like
state synchronization across all devices, even distribution
of workload, and permanent storage of log files for future
security auditing.

Boukria et al. [30] presented a Blockchain-based con-
troller to protect against false flow rule Injection attacks.
Two separate stages, Attack Detection, and Attack Preven-
tion are applied to secure communication between SDN
Controller and OpenFlow Switches. In the attack detection
phase, the VMFw node compares the rule sent by the
attacker with the rules stored in the Blockchain. If both rules
are not matched, then the attacker is blocked permanently.
Performance of Attack Detection stage is evaluated and
shows promising results. Stage 2, namely the attack pre-
vention stage is not evaluated, and its performance remains
unknown.

Houda et al. [31] proposed Brain chain, which uses a
Machine learning algorithm with Blockchain for protecting
SDN nodes against Domain Name System (DNS) amplifi-
cation attacks. Brain chain uses an information collection
scheme called FS (Flow statistics collection scheme) to
collect features of flow, an entropy-based scheme called ES,
a machine learning algorithm called BF (Bayes Network-
based Filtering scheme) to detect network anomalies, and a
DNS Mitigation (DM) scheme to remove illegitimate DNS
requests. Using a combination of FS, ES, and BF DNS
Amplification attack is detected and is removed using DM
scheme.

Lokesh et al. [32] proposed three Blockchain Networks
namely Application Blockchain (ABC), Device Blockchain
(DBC), and Controller Blockchain (CBC). CBC block
contains log files, Metadata, previous block hash, and
root block hash. DBC contains Merkley Hash Values to
validate transactions of devices in a cluster. ABC and CBC
Blockchain prevent malicious activity at the Northbound
API and CBC prevents SDN controller from Single Point
of Failure.

C. Machine Learning Techniques to prevent DoS/DDoS

Various Machine learning algorithms have been pro-
posed by the research community over the years to detect
and prevent SDN layers. Artificial neural networks, Self-
Organizing Maps, Bayesian Networks, and fuzzy logic are
used to create an Intrusion Detection System (IDS). Here,
we will discuss only dominant and latest findings in this
area.

Braga et al. [33] proposed a lightweight technique that
uses Self-Organizing maps to detect DDoS attacks on the
NOX/OpenFlow controllers. Their algorithm used three
modules flow collector, feature extractor, and classifier that
classifies the traffic as benign or malicious based on six pa-
rameters. These include Average of Packets per flow (APf),
Average of Bytes per flow (ABf), Average of Duration
per flow (ADf), Percentage of Pair-flows (PPf), Growth of
Single-flows (GSf), and Growth of Different Ports (GDP)
that filters malicious traffic. This algorithm ensures very
few false negatives and a very high rate of detection. This
algorithm cannot work on multiple controllers, only perform
detection not mitigation, and experiments are collection
and analysis of data will overwhelm and degrade controller
performance.

Dotcenko et al. [34] proposed an Intrusion Detection
System (IDS) for SDN using fuzzy logic. These IDS used
Rate Limiting Algorithm, TRW algorithm, and fuzzy logic.
The combination of this security algorithm with fuzzy logic
showed better results than the security algorithms used
separately. Using this approach, fewer lines of code have
to be written and external modules can be easily added to
the existing code.

Chung et al. [35] proposed NICE, A Multiphase Dis-
tributed vulnerability detection, measurement, and counter-
measure selection mechanism, that prevents vulnerable vir-
tual machines to be compromised in the cloud. NICE creates
an attack graph based on three parameters Cloud System
Information, Virtual network topology and configuration
information, and Vulnerability information that identifies
atomic attacks which can lead a system to an undesirable
state. NICE cannot work alone and needs additional host-
based IDS to improve attack detection accuracy.

Dillon et al. [36] proposed a DDoS mitigation algorithm
that utilizes the OpenFlow protocol used in SDN. Open-
Flow Switch stores flow entries in the Ternary Content-
Addressable Memory (TCAM) table. It consists of three
phases Initial Detection, Identification, and Blocking phase.
In Initial Detection Phase, Standard Deviation is calculated
of packet/byte rate for the last 60 entries of the flow
table. The difference between expected and real deviation is
calculated to detect anomalies that can cause a DDoS attack.
In the Identification phase, the traffic sent by the initial
detection phase is again filtered to remove false negatives.
Packet Symmetry is used to filter malicious packets and
traffic is blocked temporarily to detect malicious clients

http:// journals.uob.edu.bh



392 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

sending DDoS traffic. Finally, malicious traffic is blocked
using their IP address. OpenFlow Switches have limited
memory available for the TCAM tables which makes this
application have limited performance and use in the real
world.

Rahman et al. [37] evaluated state-of-the-art machine
learning algorithms like J48, Random Forest (RF), Support
Vector Machine (SVM), and K-Nearest Neighbors (K-NN)
that are used to detect and block DDoS traffic. DDoS traffic
is captured for 30 minutes and legitimate traffic for 3 hours.
This data is preprocessed and is used to train and test
the above four machine learning algorithms. J48 classifier
performed better in terms of accuracy, sensitivity, kappa
statistic, and training time, testing time, recall, and precision
than Random Forest, SVM, and K-NN Algorithms to detect
DDoS traffic.

Perez-Diaz et al. [38] proposed IDS that used six
machine-learning algorithms to prevent low-rate DDoS at-
tacks that are difficult to detect. Low-Rate DDoS attacks like
DDoS Sim, GoldenEye, H.U.L.K., R.U.D.Y., Slow Body,
Slow Headers, Slowloris, and Slow Read are performed
on the ONOS Controller. HTTP flows are collected in
the Identification Phase where Flow Management Module
creates JSON Object that indicates which Machine Learning
Model to use. After identification is complete, the Suspi-
cious Attacker list is installed in the ONOS Controller. In
incremental stages, the flow from malicious users is dropped
to lower the false positives.

IDS and IPS are separate and can be deployed on sep-
arate hardware due to the requirement of heavy processing
power. Machine learning Algorithm solves security loop-
holes present in the layers of SDN, but machine learning
algorithm requires training on the datasets that make them
slow and training requires resource-intensive processing
power. Due to the need for training the algorithms, DDoS
attacks cannot be detected in the early stage. Machine learn-
ing algorithms can be combined with other attack mitigation
schemes like entropy, to decrease the false positivity rate
and to improve attack detection accuracy.

6. ATTACKS ON DATA PLANE

Attacks on Data Plane are directed to steal information
from the South-bound interface. Sebbar et al. [39] found
that popular SDN Controllers like Open Daylight (ODL),
Ryu, and Open Network Operating System (ONOS) are
susceptible to data-stealing Man-in-the-Middle (MITM) at-
tacks. Virtual switch, router, and hosts were set up using
the Mininet emulator. Kali Linux was used to capture
information using data sniffing tools like ettercap and
Wireshark. Experiments revealed that the ODL interface
uses unsecured HTTP ports like 8080 and 8181. Due to
this small vulnerability information transferred between the
control and data layer of SDN can be tapped.

Cao et al. [40] proposed a stealthy attack on the SDN

data plane. LOFT (Low Rate Flow Table Attack) was done
to overflow flow tables to perform a DoS attack. The attack
was done in two stages. In stage 1, namely, the Probing
Phase, probing packets are sent to the switches to calculate
the timeout configuration of flow rules. Packets that do not
have their entries in OpenFlow switches will be sent to
the SDN controller and hence will take a longer time to
respond. In stage 2, the attacking phase, the attacker sends
only minimum packets to overflow the flow tables causing
a DoS attack. According to the author himself, the LOFT
attack is difficult to craft though not impossible.

SDN switches can be hijacked to initiate the attack on
the SDN controller. Mitigating such attacks in a limited
time frame becomes necessary to protect the network from
further damage. Zhou et al. [41] deployed backup con-
trollers that audit the network information to find com-
promised SDN controllers and switches. Network Update
state information like addition, updating, and deletion of
flow table entries are collected from both primary SDN
controller and SDN switches by the auditor-controller. An
audit ID is assigned to every network updating request.
The auditor-controller re-executes every received request
and adds its execution result to its audit record. If both
records match, the request is from a legitimate user else
the network device or controller has been compromised.
Auditing requires extra storage space and takes a long
time in processing and match audit records. It may happen
that all the network switches may have been compromised
before the auditor SDN controller detects the compromised
devices. The proposed method also does not detect Satura-
tion attacks targeted on OpenFlow switches.

Malicious Applications running on the Controller can
generate new flow rules that can cause conflict with the
existing rules proposed by the SDN controller in the SDN
data plane. SDN allows large space i.e. 35 fields to specify
rules from the users. So, it becomes difficult to enforce
the rules defined by the users. Porras et al. [42] presented
FortNox, a software extension for the NOX SDN controller
to prevent conflicting flow rules. FortNox detects malicious
flow rules and does priority-based filtering of flow rules.
The priority is assigned to human administrators creating
flow rules, second to security applications, and third to other
non-security applications. Using the Alias Rule Reduction
Algorithm conflicting rules are detected and are removed
according to their authorization roles.

Hu et al. [43] proposed Flow Guard, a robust firewall for
SDN. Flow Guard does real-time detection using different
modules like flow path space analysis, firewall authorization
space, and packet blocking. Experiments were done in a
real-world environment and shows acceptable performance
overhead.

Mai et al. [44] proposed Net Plumber, a real-time
protocol-independent policy checking tool that uses Header
Space Analysis (HSA) and dependency graph to check state

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 393

TABLE II. Security Solutions for Data Layer

Comparison of different security Mechanisms for the Infrastructure/Data Layer

S.No Attack Type Proposed Solution Features Limitations

1. Attacking SDN
Switches Backup Controllers

Backup controllers
audit every transaction
performed by the main
SDN controller and if
both results do not match,
the attack is in progress.

The auditing process is slow
and may report an attack when
an attack has already infil-
trated the system.

2. Flow Rule Conflict
in Data Plane FortNoX

Using custom Alias Rule
Reduction Algorithm, con-
flicting rules are detected
and removed according to
their authorization roles.

Works on old NOX Controller,
has not been extended further
and this prototype version has
multiple loopholes present in
it.

3. Flow Rule Conflict
in Data Plane FlowGuard

Does real-time detection
flow path space analysis
and packet blocking.

Flowguard was integrated
with Floodlight Controller,
which is obsolete now. It has
multiple performance issues,
when deployed on real-world
environment.

4. Flow Rule Conflict
in Data Plane NetPlumber

Real-time, Protocol
Independent Policy
checking tool that uses
Header Space Analysis
and dependency graph.

Memory Intensive and a sin-
gle computer system cannot
process the same.

5. Flow Rule Conflict
in Data Plane VeriFlow

Extra layer between SDN
Controller and Data Plane
that detects flow rule vio-
lation in real-time.

Has issues while working in
a Multi-Controller Environ-
ment.

6. Flow Rule Conflict
in Data Plane Anteater Uses SAT to detect con-

flicting policy rules.

Has very low processing time
making it unsuitable in a real-
world environment.

7. Flow Rule Conflict
in Data Plane ndb

A network debugger tool
similar to a popular gdb
debugger. ndb provides
various debugging opera-
tions like backtrace, break-
point, continue, etc

Only troubleshoots the flow
rule issue but cannot trace the
malicious application IP ad-
dress so that attacker can be
stopped from further attacking
the network.

8. Flow Rule Conflict
in Data Plane Brew

Works efficiently in multi-
tenant SDN-based cloud
environments where mul-
tiple applications make it
difficult to detect flow rule
conflicts.

The topology of the environ-
ment is not taken into account
and thus performance and ac-
curacy of the framework may
suffer.

http:// journals.uob.edu.bh



394 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

changes in real-time. Net Plumber is memory intensive and
will not run on a single system. Multiple high-grade pro-
cessors are required which will increase the infrastructure
cost.

Haohui et al. [45] proposed Anteater, A Protocol In-
dependent Tool that uses Boolean Satisfiability Problems
(SAT) to detect conflicting policy rules. Anteater suffers
from low processing time and is not the best choice for real-
world data centers. Khurshid et al. [46] proposed VeriFlow
which is an additional layer between SDN Control and
Data Plane and detects flow rule violation in real-time.
VeriFlow divides the flow rule into equivalence classes and
checks network configuration in real-time to find buggy
and malicious applications causing disrupting flow rules.
VeriFlow’s performance seems remarkable since it can do
the verification of rules in hundreds of microseconds.

Handigol et al. [47] proposed ndb, which is a network
debugger like gdb network debugger. NDB provides various
debugging operations like back trace, breakpoint, continue,
etc. Buggy or malicious OpenFlow Switches are recognized
by ndb using ndb postcards. ndb postcards are sent by the
OpenFlow switch to the collector for analysis and contain
information like switch id, version id, and port number.
All the techniques discussed above cannot detect cross-
layer and multiple-layer flow rule conflict. Pisharody [48]
proposed Brew-A Security Policy Analysis Framework that
efficiently scrubs the flow table present in the Data layer and
mitigates intrusion from buggy or malicious applications.
The main characteristic of Brew is that it works in Multi-
Tenant SDN-based Cloud Environment where multiple ap-
plications interacting with each other make it extremely
difficult to manage policy conflicts.

7. ATTACKS ON APPLICATION PLANE

Northbound Interface provides communication between
SDN application and controller. This interface provides
two types of services. One is reading network state and
the other is writing to the network state. Applications
transfers an HTTP GET message to the controller and the
controller interprets and sends the request to the data layer
as an OpenFlow request. The data layer sends the relevant
response to the controller and the controller responds with
the result as an HTTP response to the application. Similarly,
an application can send an HTTP POST request to the
controller to install flow rules in the flow table. The con-
troller then sends either success or failure to the application.
This blind trust approach on Third-party applications causes
several security vulnerabilities. Any application, whether
legitimate or malicious can read and write to the network
state since the origin of the HTTP requests is not considered
into account. Behavior inspection check is not required for
applications and hence legitimate applications can be turned
into malicious ones without alerting the controller.

Lee et al. [49] showed how using small and lightweight
malicious applications, three leading SDN Controllers

namely Open Daylight, ONOS and Floodlight can be com-
promised. A malicious application is first uploaded on the
SDN store. The once-installed malicious application stays
undetected since SDN Controllers does not adopt a deep
inspection mechanism for the newly installed third-party
applications. Using this vulnerability, the author success-
fully tapped the PACKET-IN message in the case of the
Floodlight controller. Their malicious application becomes
the first one to receive a PACKET-IN message that can be
used for malicious purposes. In ONOS Controller PACKET-
OUT-ONLY parameter is manipulated by the malicious
third-party application to downgrade the performance of the
controller. In the Open Daylight controller, ArpHandler is a
default application that manages ARP requests and replies.
This application is attacked and deactivated by the malicious
application so that the controller loses its functionality. A
variety of solutions is proposed by the research community
to prevent abusive third-party SDN applications.

Applications can ask SDN Controller for a complete
view of the SDN Network. This information can be used
for malicious purposes. So, an SDN application should be
given only limited permissions as per their use. Granting
all permissions to an application poses a security risk. For
example, an SDN application that creates a circuit in the
network should not be allowed to receive a PACKET-IN
message. Network traffic information can be inferred from
the same and can be used for further attacks. Granting
complete control of the network state to the application is
a security risk and should be mitigated.

Scott et al. [50] secured the Northbound Interface of
SDN using Operation Checkpoint so that the SDN controller
remains available to trusted applications only. Their model
works like Android System in which an application is given
limited permissions according to its usability. A simple
gaming application should not be allowed to read contacts
details in the Android system. Similarly, an Application
should be given only limited permissions as per their
usability. Logfile of the unauthorized operations to read
and write the network state is also maintained. Intrusion
Detection System can use this log file to block the malicious
applications to prevent the system from further attacks.

Wen et al. [51] proposed SDN Shield, a lightweight
mechanism that helps network administrators to enforce
only essential permissions to the SDN applications. A vari-
ety of attacks can be done by compromising an application
in the control plane. The author divided the attacks into
four classes for which above mentioned approaches do not
provide any protection. In Class 1 attack, PACKET-IN and
PACKET-OUT messages can be used to manipulate the traf-
fic between controller and data plane OpenFlow switches.
In a Class 2 attack, a compromised application can attack a
security application running on an SDN controller. In Class
3 attacks, Man-in-the-Middle and Blackhole attacks can be
done by modifying OpenFlow flow table rules and in Class
4 attacks, sensitive information about the network can be

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 395

TABLE III. Security Solutions for Application Layer

This Table shows different attacks and proposed solutions for the Application Layer

S.No Attack Type Proposed Solution Features Limitations

1.
Illegal use of Permis-
sions by Third Party
Applications

Operation
Checkpoint

Similar to Android Per-
mission System, where
permissions are given
to the applications only
according to their use.

Covers only a lim-
ited amount of Permis-
sion attacks and re-
quires manual process-
ing by the administra-
tor.

2.
Illegal use of Permis-
sions by Third Party
Applications

SDN Shield

Similar to the Android
Permission System
Model and covers four
classes of permission
attacks.

The process is not au-
tomatic but is man-
ual, where network ad-
ministrator is required
for cross-checking, up-
dating the permissions,
API usage, etc.

3.
Illegal use of Permis-
sions by Third Party
Applications

ASTRAEA

Uses Natural language
Processing (NLP) to
check permissions.
The process is nearly
automatic, and the
manual intervention
of the administrator is
minimal.

Implementation is
tightly coupled with
ONOS controller only.
The same model cannot
be used with other
controllers like Open
Daylight, floodlight,
POX, etc.

4.
Illegal use of Permis-
sions by Third Party
Applications

VOGUE

Cross-Platform and will
work on all leading
SDN Controllers like
Open Daylight, ONOS,
Floodlight, etc.

SDN API should be
well documented only
then it will work effec-
tively, and performance
is also not up to the
mark.

5.
Illegal use of Permis-
sions by Third Party
Applications

Verificare

Based on Verificare
Modeling Language
(VML) which verifies
application properties
like QoS, secuirty,
reliability.

Does not perform
Packet History and
Packet Injection,
that are needed for
advanced debugging.

6. DoS/DDoS on Ap-
plication Layer

DDoS Detection
and Mitigation using
Deep Learning

Deep Learning is used
to detect and mitigate
HTTP-based fast and
slow rate DDoS attacks.

Does not detect the at-
tack in an early phase.

http:// journals.uob.edu.bh



396 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

leaked by compromised applications using a side channel.
SDN Shield protects against these four types of attacks. In
SDN Shield administrator explicitly provides permissions to
the applications. Whenever an application demands permis-
sion that is not assigned to it, the administrator is alerted.

This permission model is not completely fool-proof
and suffers from a Permission and Semantic gap. SDN
is a new technology and it is not easy for the network
administrator to comprehend all the available features of a
Third-party application. Hence, network administrators can
allow some permission without their sufficient knowledge
that can cause a security risk. Adversaries can trick end
users to install malicious applications by giving a false
description of the SDN application. Since, majority of end-
users normally cannot understand the application behavior
by looking at the description, they can be easily tricked
by the adversaries to allow unnecessary permissions. The
permission model of SDN is based on Android Permission
Model that also suffers from the same issue. Manually
processing permissions is not a satisfactory method and
should be converted into an automatic process.

Kang et al. [52] resolved the permission model issues
using an automatic tool called ASTRAEA, that runs on
an ONOS controller. ASTRAEA uses static analytic tools
using Natural Language Processing (NLP) to extract the
necessary permissions and checks the same with the per-
mission demanded by the application. ASTRAEA alerts
the administrator in case an application demands more
permissions than needed. ASTRAEA was further developed
in the real world and positive feedback came from real
world SDN developers. The downside of ASTRAEA is that
its implementation is tightly coupled only for the ONOS
controller.

Kang et al. [53] resolved this issue using VOGUE,
which can be applied to any SDN Controller. VOGUE uses
both manual and automatic methods for granting permis-
sion. VOGUE inputs SDN API documents and uses Natural
Language Processing techniques to create a tree diagram
that specifies which critical assets should be protected. After
that SDN asset map is created that helps the network admin-
istrator to easily understand which application is accessing
a specific resource and permission. VOGUE also provides
generic and independent SDN Controller implementation
and can be used with leading SDN Controllers like Open
Daylight, Floodlight, ONOS, or RYU. VOGUE has some
limitations like if SDN API is not well documented then its
functionality will be limited. Performance is also an issue
and should be optimized. According to the author, VOGUE
is still in the prototype phase and the development is in
progress.

DDoS or DoS attacks can be targeted against the ap-
plication layer. Benzaid et al. [54] proposed a DDoS self-
protection framework based on Deep Learning and SDN
enablers. It consists of four modules namely Network Flow

Collector, Features Extractor, Detector, and Security Policy
Manager. It successfully detects and mitigates HTTP-based
fast and slow rate flooding attacks on the SDN application
layer.

SDN Architecture uses OpenFlow Random Host
Mutation and Resonance for security purposes but they
cannot defend against DDoS attacks. Jantila et al. [55]
proposed a hybrid approach that uses Entropy and trust
value to tackle DDoS attacks in the Application Layer of
SDN. Based on Client behavior, trust values are assigned
to the users. Malicious users will have low trust value and
legitimate ones will have a higher one. Even if a malicious
user gains high trust value to misbehave later, he is caught
using the information entropy approach. Using two filters
makes malicious users difficult to infiltrate the system.
Finally, the vulnerability of SDN is checked using the
STRIDE threat model [56].

8. MISSING LINKS IN SDN SECURITY

1) Less focus on enhancement of SDN Controllers Security

Open-Source SDN Controllers like ODL, ONOS, RYU,
POX, etc. process gigabits of network data per second.
These Open-Source SDN Controllers are used as a back-
bone for the creation of customized SDN Controllers by
commercial firms. These customized SDN Controllers are
used to process live traffic, where the high performance
of the servers becomes one of the top-most requirements
for commercial firms. Due to the same, the SDN com-
munity has focused mainly on improving the performance
of these controllers only. As these controllers are used in
commercial markets, high performance becomes one of the
most important factors in deciding their market share and
popularity. For example, ONOS Controller depicts the best
performance overall other SDN Controllers available in the
market [57]. Hence, it has the largest market share so far.

Strengthening the security of SDN Controllers will
somehow decrease the performance of SDN Controllers, as
network data needs to be filtered out before use by the
security algorithms. Due to this reason, security has been
overlooked most of the time by the SDN community. But for
a long-term benefit, security needs to be considered as the
second-most important factor by the research community
for SDN Controllers. As Single Point of Failure in the
Control layer will make the entire SDN network useless
for the customers. Hence, both performance and security
both should be strengthened for SDN Controllers, before
deploying them in a live environment.

2) Handful of Security Assessment Frameworks, that can
automatically identify vulnerabilities present in the three
layers of SDN

Researchers have developed a security assessment
framework called DELTA, the first framework of its kind,
that evaluates security performance of SDN environment in

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 397

depth [58]. DELTA provides systematic coverage of attacks
that can be done on an SDN environment which was miss-
ing in earlier studies. With DELTA, network administrator
can now find the loopholes and backdoors in the specific
SDN environment, in a very limited time. Appropriate
security countermeasures can now be applied to the SDN
environment by the network administrator. Unknown attacks
are also discovered using specialized fuzzy modeling tools.
But still DELTA covers only a limited number of attacks,
that be initiated by the nefarious users in SDN. New attacks
like Race condition attacks, flow-based attacks and many
similar attacks recently found by research communities,
remains uncovered by DELTA [59] [60].

In case a new attack is identified by DELTA, manual
intervention of network administrator is required to assess
the attack using log files. The process of discovering vulner-
abilities by DELTA is not fully automatic, and in manual
intervention some process can be overlooked by the net-
work administrator. Penetration testing frameworks that can
automatically identify known and unknown vulnerabilities
like DELTA, are very few in number. According to our best
knowledge, DELTA is the only quality security vulnerability
assessment framework that can identify in depth, known and
unknown attacks on SDN layers.

3) Centralization of Control Layer without strengthening
its Security

Centralization without strengthening security aspects
causes Single-Point-of-Failure in SDN. In the case of a
Traditional Network, every device has a firewall installed
in it, and malicious users must penetrate all firewalls to
enter the system. Even after penetrating the system, it is
difficult to halt the entire network, due to the separation
of individual hardware devices. In SDN, the control layer
is the brain and does all processing for the devices. Once
security mechanisms like firewall and IPS are bypassed,
the entire SDN network will go down at once [61]. Due to
the centralization of the control layer without strengthening
its security, the security of the whole SDN network gets
compromised in SDN.

Hence, techniques like Entropy, Machine-learning,
Blockchain should be used individually or collaboratively to
reduce single-point-of-failure presence in the Control layer.

4) Failure of In-Built Security Mechanisms of SDN Con-
trollers

ODL and ONOS are the top two leading Open-Source
SDN Controllers available in the market [62]. Other Com-
mercial SDN solutions also use either ODL or ONOS as
the backbone to create their customized SDN software.

DDoS attacks on Control Layer are the most dreadful
attacks, as they will cause Single-Point-of-failure, which in
turn will make the entire SDN network offline. So, to thwart
these attacks ODL community has created the Defense4All
application, which is a dedicated DDoS detection and

mitigation application [63]. Similarly, ONOS uses Security
Mode ONOS application to thwart web-based attacks. Both
Defense4All and Security Mode ONOS fails to protect
against DDoS attacks. Defense4All uses traffic redirection
to divert DDoS traffic. This approach fails to protect SDN
Controllers when multiple nodes are used by the attacker
to send network traffic [64]. Similarly, other leading SDN
controllers like ONOS, RYU, Beacon, Floodlight, etc. are
also prone to web-based attacks. Either SDN developers
should deploy third-party DDoS mitigation software or shall
enhance the existing in-built mechanism to mitigate these
attacks. As in Control Layer Single Point of Failure is
present, DDoS attack on Control Layer would make the
entire SDN network offline. Hence, this security gap should
be fixed by ODL and ONOS community.

9. CONCLUSION

A famous proverb says, “A Chain is strong as the weak-
est link” and in SDN, security is the weakest link. Similarly,
centralization of the control layer, without strengthening its
security, has degraded SDN security exponentially. Cen-
tralization is a major advantage of SDN over Traditional
networks, but without enhanced security, it creates a Single
Point of Failure. This Single-Point-of-Failure makes the
entire SDN Chain defenseless against even naive DDoS
attacks. So, centralization of the control layer has become
a disadvantage itself due to lack of security.

Other layers of SDN, like Application and Data Layer,
are also not immune to web-based attacks. Multiple vul-
nerabilities have been found in these layers of SDN. In the
Application layer, illegal use of permissions by Third-Party
applications jeopardizes the security of the SDN network.
In the Data layer, attacks like MITM are used to steal
information flowing between Control and Data Layer.

To provide security for SDN layers many techniques
like Entropy, Machine Learning, Blockchain, etc. can be
deployed. One such new technique that seems to be promis-
ing is Blockchain, which is widely used over the internet
to secure cryptocurrency like Bitcoin. Blockchain can be
integrated with SDN to provide decentralized security ben-
efits to the SDN. So far, not much research has been done
to successfully and completely integrate these two different
technologies. Blockchain provides trustworthy security ben-
efits that Conventional Security Algorithms cannot provide.
Other techniques like Entropy and Machine Learning are
also in the development phase to protect SDN Layers.

Security assessment frameworks like DELTA that can
automatically detect vulnerabilities present in SDN are very
limited in number. Similar cross-penetration penetration
testing tools are necessary to automatically assess the degree
of security of SDN. SDN security is a road far less
traveled. SDN is still in its juvenile phase of development,
particularly in the case of security. SDN provides a myriad
of benefits over Traditional Networks, but its security should
be furnished deeply and systematically by the research

http:// journals.uob.edu.bh



398 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

community, to get its full benefits.

References
[1] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined net-

working for internet of things: A survey,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 1994–2008, 2017.

[2] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-
defined networking (sdn): a survey,” Security and communication
networks, vol. 9, no. 18, pp. 5803–5833, 2016.

[3] “Software-defined networking (sdn) definition,” accessed: 2022-03-
14. [Online]. Available: https://opennetworking.org/sdn-definition/

[4] “Architecture and internals guide,” accessed: 2022-03-14. [Online].
Available: https://wiki.onosproject.org/display/ONOS/Architecture+
and+Internals+Guide

[5] N. Bizanis and F. A. Kuipers, “Sdn and virtualization solutions for
the internet of things: A survey,” IEEE Access, vol. 4, pp. 5591–
5606, 2016.

[6] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security:
A survey,” in 2013 IEEE SDN For Future Networks and Services
(SDN4FNS). IEEE, 2013, pp. 1–7.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” ACM SIGCOMM computer com-
munication review, vol. 38, no. 2, pp. 69–74, 2008.

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, 2014.

[9] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready
for sdn? implementation challenges for software-defined networks,”
IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[10] V. T. Dang, T. T. Huong, N. H. Thanh, P. N. Nam, N. N. Thanh,
and A. Marshall, “Sdn-based syn proxy—a solution to enhance per-
formance of attack mitigation under tcp syn flood,” The Computer
Journal, vol. 62, no. 4, pp. 518–534, 2019.

[11] R. Mohammadi, R. Javidan, and M. Conti, “Slicots: An sdn-based
lightweight countermeasure for tcp syn flooding attacks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 2,
pp. 487–497, 2017.

[12] K. Kemp, J. Griffiths, S. Campbell, and K. Lovell, “An exploration
of the follow-up up needs of patients with inflammatory bowel
disease,” Journal of Crohn’s and Colitis, vol. 7, no. 9, pp. e386–
e395, 2013.

[13] N. Ravi, S. M. Shalinie, C. Lal, and M. Conti, “Aegis: Detection and
mitigation of tcp syn flood on sdn controller,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 745–759,
2020.

[14] M. Brooks and B. Yang, “A man-in-the-middle attack against
opendaylight sdn controller,” in Proceedings of the 4th Annual ACM
Conference on Research in Information Technology, 2015, pp. 45–
49.

[15] K. Zhang and X. Qiu, “Cmd: A convincing mechanism for mitm
detection in sdn,” in 2018 IEEE International Conference on Con-
sumer Electronics (ICCE). IEEE, 2018, pp. 1–6.

[16] R. Sanjeetha, K. A. Shastry, H. Chetan, and A. Kanavalli, “Mit-
igating http get flood ddos attack using an sdn controller,” in
2020 International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT). IEEE, 2020,
pp. 6–10.

[17] W. Zhijun, X. Qing, W. Jingjie, Y. Meng, and L. Liang, “Low-rate
ddos attack detection based on factorization machine in software
defined network,” IEEE Access, vol. 8, pp. 17 404–17 418, 2020.

[18] H. Zhu, H. Fan, X. Luo, and Y. Jin, “Intelligent timeout master:
Dynamic timeout for sdn-based data centers,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2015, pp. 734–737.

[19] S. Badotra and S. N. Panda, “SNORT based early DDoS detection
system using opendaylight and open networking operating
system in software defined networking,” Cluster Computing,
vol. 24, no. 1, pp. 501–513, May 2020. [Online]. Available:
https://doi.org/10.1007/s10586-020-03133-y

[20] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks
against sdn controllers,” in 2015 International Conference on Com-
puting, Networking and Communications (ICNC). IEEE, 2015, pp.
77–81.

[21] R. Li and B. Wu, “Early detection of ddos based on phi-entropy
in sdn networks,” in 2020 IEEE 4th Information Technology, Net-
working, Electronic and Automation Control Conference (ITNEC),
vol. 1. IEEE, 2020, pp. 731–735.

[22] K. Muthamil Sudar and P. Deepalakshmi, “A two level security
mechanism to detect a ddos flooding attack in software-defined
networks using entropy-based and c4. 5 technique,” Journal of High
Speed Networks, vol. 26, no. 1, pp. 55–76, 2020.

[23] R. B. Shohani and S. A. Mostafavi, “Introducing a new linear
regression based method for early ddos attack detection in sdn,”
in 2020 6th International Conference on Web Research (ICWR).
IEEE, 2020, pp. 126–132.

[24] N. M. AbdelAzim, S. F. Fahmy, M. A. Sobh, and A. M. B. Eldin,
“A hybrid entropy-based dos attacks detection system for software
defined networks (sdn): A proposed trust mechanism,” Egyptian
Informatics Journal, vol. 22, no. 1, pp. 85–90, 2021.

[25] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in 2017 IEEE international congress on big data (BigData
congress). IEEE, 2017, pp. 557–564.

[26] S. R. Basnet and S. Shakya, “Bss: Blockchain security over software
defined network,” in 2017 International Conference on Computing,
Communication and Automation (ICCCA). IEEE, 2017, pp. 720–
725.

[27] M. Steichen, S. Hommes, and R. State, “Chainguard—a firewall
for blockchain applications using sdn with openflow,” in 2017
Principles, Systems and Applications of IP Telecommunications
(IPTComm). IEEE, 2017, pp. 1–8.

[28] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and K.-
K. R. Choo, “An energy-efficient sdn controller architecture for iot

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 12, No.1, 383-400 (Jul-2022) 399

networks with blockchain-based security,” IEEE Transactions on
Services Computing, vol. 13, no. 4, pp. 625–638, 2020.

[29] T. Krishnamohan, “Blockflow: A decentralized sdn controller us-
ing block-chain,” Theviyanthan Krishnamohan, Kugathasan Ja-
narthanan, Peramune PRLC, Ranaweera AT (2020), 2020.

[30] S. Boukria, M. Guerroumi, and I. Romdhani, “Bcfr: Blockchain-
based controller against false flow rule injection in sdn,” in 2019
IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2019, pp. 1034–1039.

[31] Z. Abou El Houda, A. Hafid, and L. Khoukhi, “Brainchain-a
machine learning approach for protecting blockchain applications
using sdn,” in ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1–6.

[32] B. Lokesh and N. Rajagopalan, “A blockchain-based security model
for sdns,” in 2020 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT). IEEE,
2020, pp. 1–6.

[33] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding
attack detection using nox/openflow,” in IEEE Local Computer
Network Conference. IEEE, 2010, pp. 408–415.

[34] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based
information security management for software-defined networks,”
in 16th International Conference on Advanced Communication
Technology. IEEE, 2014, pp. 167–171.

[35] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice:
Network intrusion detection and countermeasure selection in virtual
network systems,” IEEE transactions on dependable and secure
computing, vol. 10, no. 4, pp. 198–211, 2013.

[36] N. Z. Bawany, J. A. Shamsi, and K. Salah, “Ddos attack detec-
tion and mitigation using sdn: methods, practices, and solutions,”
Arabian Journal for Science and Engineering, vol. 42, no. 2, pp.
425–441, 2017.

[37] O. Rahman, M. A. G. Quraishi, and C.-H. Lung, “Ddos attacks
detection and mitigation in sdn using machine learning,” in 2019
IEEE World Congress on Services (SERVICES), vol. 2642. IEEE,
2019, pp. 184–189.

[38] Arturo, I. A. Valdovinos, K.-K. R. Choo, and D. Zhu, “A flexible
sdn-based architecture for identifying and mitigating low-rate ddos
attacks using machine learning,” IEEE Access, vol. 8, pp. 155 859–
155 872, 2020.

[39] A. Sebbar, M. Boulmalf, M. D. E.-C. El Kettani, and Y. Baddi,
“Detection mitm attack in multi-sdn controller,” in 2018 IEEE
5th International Congress on Information Science and Technology
(CiSt). IEEE, 2018, pp. 583–587.

[40] J. Cao, M. Xu, Q. Li, K. Sun, Y. Yang, and J. Zheng, “Disrupting
sdn via the data plane: a low-rate flow table overflow attack,” in In-
ternational Conference on Security and Privacy in Communication
Systems. Springer, 2017, pp. 356–376.

[41] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng,
“Sdn-rdcd: A real-time and reliable method for detecting compro-
mised sdn devices,” IEEE/ACM Transactions on Networking, vol. 26,
no. 5, pp. 2048–2061, 2018.

[42] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and

G. Gu, “A security enforcement kernel for openflow networks,” in
Proceedings of the first workshop on Hot topics in software defined
networks, 2012, pp. 121–126.

[43] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: building robust
firewalls for software-defined networks,” in Proceedings of the third
workshop on Hot topics in software defined networking, 2014, pp.
97–102.

[44] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King, “Debugging the data plane with anteater,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.
290–301, 2011.

[45] H. Mai, A. Khurshid, R. Agarwal, and Caesar, “Debugging the data
plane with anteater,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 290–301, 2011.

[46] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,” pp. 15–
27, 2013.

[47] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McK-
eown, “Where is the debugger for my software-defined network?”
pp. 55–60, 2012.

[48] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and
D. Huang, “Brew: A security policy analysis framework for dis-
tributed sdn-based cloud environments,” IEEE transactions on de-
pendable and secure computing, vol. 16, no. 6, pp. 1011–1025,
2017.

[49] S. Lee, C. Yoon, and S. Shin, “The smaller, the shrewder: A
simple malicious application can kill an entire sdn environment,” in
Proceedings of the 2016 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization,
2016, pp. 23–28.

[50] S. Scott-Hayward, C. Kane, and S. Sezer, “Operationcheckpoint:
Sdn application control,” in 2014 IEEE 22nd International Confer-
ence on Network Protocols. IEEE, 2014, pp. 618–623.

[51] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen,
“Sdnshield: Reconciliating configurable application permissions for
sdn app markets,” in 2016 46th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). IEEE,
2016, pp. 121–132.

[52] H. Kang, C. Yoon, and S. Shin, “Astraea: Towards an effective and
usable application permission system for sdn,” Computer Networks,
vol. 155, pp. 1–14, 2019.

[53] H. Kang, V. Yegneswaran, S. Ghosh, P. Porras, and S. Shin,
“Automated permission model generation for securing sdn control-
plane,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1668–1682, 2019.

[54] C. Benzaı̈d, M. Boukhalfa, and T. Taleb, “Robust self-protection
against application-layer (d) dos attacks in sdn environment,” in
2020 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2020, pp. 1–6.

[55] S. Jantila and Chaipah, “A security analysis of a hybrid mechanism
to defend ddos attacks in sdn,” Procedia Computer Science, vol. 86,
pp. 437–440, 2016.

[56] S. Jantila and K. Chaipah, “A security analysis of a hybrid mech-

http:// journals.uob.edu.bh



400 Pulkit Ohri, Subhrendu Guha Neogi : Software-Defined Networking Security Challenges and Solutions..

anism to defend ddos attacks in sdn,” Procedia Computer Science,
vol. 86, pp. 437–440, 2016.

[57] “Comparison of software defined controlling controllers,”
https://aptira.com/comparison-of-software-defined-networking-
sdn- controllers- part-7-comparison-and-product-rating/, accessed:
2022-03-14.

[58] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan,
E. Bursztein, M. Bailey, J. A. Halderman, and V. Paxson, “The
security impact of https interception.” in NDSS, 2017.

[59] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the
brain: Races in the sdn control plane,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 451–468.

[60] M. P. Singh and A. Bhandari, “New-flow based ddos attacks in
sdn: Taxonomy, rationales, and research challenges,” Computer
Communications, vol. 154, pp. 509–527, 2020.

[61] “Benefits and the security risk of sdn: Isaca
journal,” Jul 2016. [Online]. Available: https:
//www.isaca.org/resources/isaca-journal/issues/2016/volume-4/
benefits-and-the-security-risk-of-software-defined-networking#:∼:
text=Unlike%20traditional%20network%20design%2C%20SDN,
well%2Ddefined%20application%20programming%20interface

[62] “Sdn controllers - a comparative approach to market trends,,”
Feb 2021. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-03133692/document

[63] Defense4all overview. https://www.radware.com/newsevents/
pressreleases/ radware-releases-defense4all-industry-first-open-sdn-
security-application-for-opendaylight-project. Accessed: 2022-03-
14.

[64] H. Polat and O. Polat, “The effects of dos attacks on odl and pox sdn
controllers,” in 2017 8th International Conference on Information
Technology (ICIT), 2017, pp. 554–558.

Mr. Pulkit Ohri is currently working as
Senior Analyst (Digital Vertical) in eClerx,
Chandigarh, India. He worked as Training
Specialist in Department of Computer Sci-
ence, Amity University, Madhya Pradesh,
India. He completed Bachelor’s (2014) and
Master’s Degree (2016) in Computer Sci-
ence from University of Delhi. Currently he
is pursuing PhD (Engineering), Computer
Science from Amity University, Madhya

Pradesh, India. His research area is Software Defined Networking
Security enhancement.

Dr. Subhrendu Guha Neogi is currently
working as Associate Professor in the De-
partment of Computer Science and Engi-
neering, Amity University Madhya Pradesh.
He has been awarded Masters in Engineer-
ing, from West Bengal University of Tech-
nology. He has more than 20 years of expe-
rience in teaching. He served many reputed
educational Institutes in India in various
academic positions.

http:// journals.uob.edu.bh


