
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No. 1 (Oct-2022)

E-mail: wael.farag@aum.edu.kw

http://journals.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/120171

 Navigation of Robotic-Arms using Policy Gradient

Reinforcement Learning

Wael Farag

College of Engineering and Technology, American University of the Middle East, Kuwait.

Received 10 Mar. 2021, Revised 23 Jul. 2022, Accepted 5 Sept. 2022, Published 31 Oct. 2022

Abstract: In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement-learning algorithm is employed to

enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is

carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and

critic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the

DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity

Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms.

The testing shows the robust performance of the DDPG algorithm for empowering robot arm maneuvering in complex

environments.

Keywords: Reinforcement Learning, Policy-Gradients Methods, DDPG, Machine Learning, Robotics, Robot Arm.

1. INTRODUCTION

The development of the artificial intelligence field in the

real-world is measured by the ability to solve complex control

tasks [1][2] that possess a high dimension in input and action

spaces [3][4][5]. Reinforcement Learning (RL) lends itself as

a high-potential player in this field since the advent of the

Deep Q Network (DQN) [6], as it achieved human-level

performance in several early-level 2-dimensional computer

games. Moreover, reinforcement learning has been

developed further to beat human-level performance in board

games such as Go [7] and Chess [8]. However, the mentioned

games and the applied algorithms still have a finite number

(although sometimes huge) of discrete actions.

In most control tasks in real applications (such as robotics

and autonomous driving [9][10]), continuous action spaces

are the most common. Therefore, if algorithms such as DQN

(which depends on the maximization of its policy value

function for action selection) need to be applied to such

control tasks, it needs to go through a computationally

expensive optimization step or a careful discretization step of

the action space. The most common approach, in this case,

is discretization, however, it shows on several occasions that

it is an insufficient approximation particularly in high-

dimensional configurations or in delicate cases that requires

very fine and precise control actions. Consequently, a more

logical approach is exploited that depends on the explicit

parameterization of a certain policy and optimizing its long-

term value while following this policy. The methods that

follow this approach are referred to as Policy-Based Methods

(PBM) [11].

In this work, the focus will be on the PBMs and its

subcategory Policy Gradient Methods (PGM) [12]. Several

research endeavors have been conducted to explore further

and enhance PBMs and PGMs algorithms. Examples such as

REINFORCE Algorithm [13], Proximal Policy Optimization

(PPO) algorithms [14], Asynchronous Advantage Actor-

Critic (A3C) algorithms [15], Advantage Actor-Critic (A2C)

algorithms [16], Generalized Advantage Estimation (GAE)

algorithms [17], Trust Region Policy Optimization (TRPO)

algorithm [18], Truncated Natural Policy Gradient (TNPG)

algorithm [18], Deep Deterministic Policy Gradient (DDPG)

algorithms [18][19], and Distributed Distributional Deep

Deterministic Policy Gradients (D4PG) [20] which integrates

several modifications to the DDPG algorithm.

The DDPG reinforcement learning algorithm [18] is

mainly considered in this work for the following reasons:

860 Wael Farag: Navigation of Robotic-Arms using Policy Gradient Reinforcement Learning

http://journals.uob.edu.bh

1. In DDPG the actor is a deterministic policy network that

outputs the continuous action directly which is highly

desirable by robotics applications.

2. A major advantage of the DDPG algorithm is that it is a

model-free and uses off-policy data (not loke PPO which

is on-policy algorithm) and the Bellman equation to learn

the Q-function and then uses the Q-function to learn the

policy through the specific Experience Replay property.

3. Robotics environments are kind of environments that are

expensive to sample from, therefore DDPG is

advantageous here since it more sample efficient not such

as PPO or REINFORCE-based algorithms.

The fundamental operation of DDPG is based on an off-

policy actor-critic principle, in which the update of the actor-

network particularly depends on a learned critic only.

Therefore, any enhancements to the critic learning process

will positively affect the updates of the actor. DDPG is a

model-free approach that can learn competitive policies using

low-dimensional observations (e.g. Cartesian coordinates or

joint angles of a multi-joint robot arm).

The DDPG algorithm is implemented using deep learning

to realize a deterministic policy, in which the Actor-Critic

framework is employed. The output of the policy is not the

probability of action but a certain action. As a result, the

sampled data is reduced and DDPG can guarantee the

continuity and the smoothness of the joint movement.

The main purpose of the work in this paper is to adopt the

DDPG algorithm to solve control problems that allow the

successful manipulation of a robot arm with multiple joints,

and multiple degrees of freedom to reach and grasp a ball that

moves randomly in a 3D space as shown in Figure 1.

The process of finding the most appropriate actor and

cretic topologies will be presented. The final internal

structures of the actor and critic networks will be described

in detail, and the tuning of the hyperparameters will be also

explained. The training results are demonstrated with

discussion. Testing, evaluation, concluding remarks and

future work will be presented as well.

Figure 1 The Multiple-Agent Tennis Environment.

2. OVERVIEW OF THE DDPG ALGORITHM

In the typical reinforcement learning setup, an agent

interacts with a certain environment in discrete time. At each

time step t, the agent makes observations 𝑥𝑡 ∈ Χ takes action

𝑎𝑡 ∈ Α , and receives reward 𝑟(𝑥𝑡 , 𝑎𝑡) ∈ ℝ . The setup

environment has a real action space Α ∈ ℝ𝑑.

The control of the agent behavior is carried out using a

policy 𝜋: Χ → Α that maps each observation to action. The

expected return is described using the state-action value

function 𝑄𝜋(𝑎, 𝑥) , under the condition of first taking an

arbitrary action 𝑎 ∈ Α from a certain state 𝑥 ∈ Χ and

subsequently acting according to 𝜋 . Hence, the value

function is defined as

𝑄𝜋(𝑎, 𝑥)

= 𝔼 [∑ 𝛾𝑡𝑟(𝑥𝑡 , 𝑎𝑡)

∞

𝑡=0

]
(1)

where 𝑥0 = 𝑥, 𝑎0 = 𝑎, 𝑎𝑡 = 𝜋(𝑥𝑡), 𝑥𝑡 ∼ 𝑝(. |𝑥𝑡−1, 𝑎𝑡−1) is

the transition kernel (probability) to next state, and 𝛾 ∈ [0,1]
is the discount factor. The quality of a policy is commonly

evaluated using Eq. (1). Even though it is possible to derive

an updated policy from 𝑄𝜋 . However, such an approach

typically requires maximizing the value function with respect

to 𝑎 and is made complicated by the existence of continuous

action space. Instead, a parametrized policy 𝜋𝜃 is formed and

the expected value of this policy is maximized by optimizing

the objective function 𝐽(𝜃) = 𝔼[𝑄𝜋𝜃
(𝑥, 𝜋𝜃(𝑥))] . By

incorporating the deterministic policy gradient theorem [21],

the gradient of this objective function is composed as

∇𝜃𝐽(𝜃) ≈ 𝔼𝜌[∇𝜃𝜋𝜃(𝑥)∇𝑎𝑄𝜋𝜃
(𝑥, 𝑎)|𝑎=𝜋𝜃(𝑥)] (2)

where 𝜌 is the state-visitation distribution associated with

some behavior policy. The behavior policy is different than

the policy 𝜋 , consequently, it is possible to evaluate the

behavior policy 𝜌 from data gathered off-policy. The

gradient given by Eq. (2) can be approximated and modeled

using a parameterized critic 𝑄𝑤(𝑥, 𝑎), as the exact gradient

assumes access to the true value of the current policy which

is unreachable.

By introducing the Bell operator

(Τ𝜋𝑄)(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛾𝔼[𝑄(𝑥′, 𝜋(𝑥′))|𝑥, 𝑎] (3)

which include an expectation value calculated with respect

to the next state 𝑥′, the Temporal Difference (TD) error can

be minimized. TD is the difference between the value

function before and after the application of the Bellman

update. Usually, the TD error is evaluated under separate

target policy and value networks, (i.e. networks with

separate parameters (𝜃′, 𝑤′)), to stabilize the learning

process. By taking the two-norm of this error we can write

the resulting loss as

Int. J. Com. Dig. Sys. 12, No. 1, 859-865 (Oct-2022) 861

http://journals.uob.edu.bh

𝐿(𝑤) = 𝔼𝜌 [(𝑄𝑤(𝑥, 𝑎) − (𝑇𝜋𝜃
, 𝑄𝑤′)(𝑥, 𝑎))

2

] (4)

In practice, the target networks will be periodically

replaced with copies of the current network weights.

Ultimately, by training a deep neural network that represents

the policy using the deterministic policy gradient in Eq. (2)

and training another deep neural to minimize the TD error in

Eq. (4), the Deep Deterministic Policy Gradient (DDPG)

algorithm [18] is obtained as illustrated in Figure 2. The actor

produces an action given the current state of the environment,

and the critic produces a TD error signal given the state and

resultant reward. For the critic to estimate the action-value

function, it needs to acquire the output of the actor as one of

its inputs. Therefore, the critic uses the next-state value (TD

target) that is generated from the current action by the given

environment. The output of the critic drives the learning

process in both the actor and the critic.

Figure 2 The workflow of the DDPG algorithm.

To further enhance the DDPG algorithm, the sample-

based approximation to its gradients is preferably employed

by using data gathered in some replay tables as it shows better

convergence.

Next, a modification to the DDPG update is considered in

which it utilizes N-step returns when estimating the TD error.

This can be seen as replacing the Bellman operator Τ𝜋
𝑁 with

an N-step variant as follows:

(Τ𝜋
𝑁𝑄)(𝑥𝑜, 𝑎𝑜) = 𝑟(𝑥𝑜 , 𝑎𝑜)

+ 𝔼 [∑ 𝛾𝑛𝑟(𝑥𝑛, 𝑎𝑛)

𝑁−1

𝑛=1

+ 𝛾𝑁𝑄(𝑥𝑁 , 𝜋(𝑥𝑁))|𝑥𝑜, 𝑎𝑜]

(5)

where the expectation is with respect to the N-step transition

dynamics. The process of gathering experience is distributed

by modifying the standard training procedure. As per Eq. (2)

and (4), the actor and critic updates rely on sampling from

some state-visitation with distribution 𝜌. Nevertheless, as a

significant enhancement included in the D4PG algorithm

[20], the process of gathering experience can be parallelized

by writing to the same reply table in parallel by using K

independent actors. Moreover, during the learning process,

the training algorithm can then sample from the previously

constructed replay table of size R and perform the necessary

network updates using this data. Furthermore, the sampling

can be carried out using non-uniform priorities 𝑝𝑖 as in [21].

However, this requires the use of what is called “importance

sampling”, which is implemented by weighting the critic

update by a factor of 1/𝑅𝑝𝑖
.

The actor (the policy function) and critic (the value

function) parameters are updated using stochastic gradient

descent with learning rates, 𝛼𝑖 and 𝛽𝑖 respectively, which are

adjusted online using ADAM [22] for T iterations in the

episode.

3. THE SETUP OF THE ENVIRONMENT

The simulation environment for training, testing, and

evaluating the DDPG RL algorithm is built using Unity

Technologies [23]. Two versions of the environment have

been deployed:

1. The 1st version includes only a single double-jointed robot

arm. This environment should be solved using a single

agent trained using a designed Deep Deterministic Policy

Gradient (DDPG) algorithm [17]. The training task is

episodic, and to solve this environment, the agent must get

at least an average score of +30 over 100 consecutive

episodes.

2. The 2nd version is the 20 double-jointed arms similar to

the one shown in 0. This environment will be solved using

20 agents trained simultaneously using the designed

Distributed Distributional Deep Deterministic Policy

Gradients (D4PG) [20] as it uses multiple (noninteracting,

parallel) copies of the same agent to distribute the task of

gathering experience. The barrier for solving this

environment is slightly different, to take into account the

presence of many agents (20 in this case). In particular,

the agents must get an average score of +30 (over 100

consecutive episodes, and including all the agents). After

each episode, and to get a score for each agent, the

rewards are added up for each agent separately (without

discounting). This yields 20 (potentially different) scores.

Then the average of these 20 scores is taken. This yields

an average score for each episode (where the average is

including all the 20 agents).

The observation space consists of 33 variables

corresponding to the position, rotation, velocity, and angular

velocities of the robot arm. Each action is a vector with four

numbers, corresponding to torque applicable to two joints.

Every entry in the action vector should be a number between

-1 and 1. In other words, the state space for this experiment

862 Wael Farag: Navigation of Robotic-Arms using Policy Gradient Reinforcement Learning

http://journals.uob.edu.bh

consists of 11 continuous 3-dimensional vectors representing

the position, rotation, velocity, and angular velocities of the

two parts of a virtual "Reacher" arm, along with the position

of the "hand" and the position and speed of the goal sphere.

The goal sphere is programmed to circle around the arm

(within the X-Y planes, with multiple Z values).

The action space is a vector with four numbers, clamped

between -1 and 1, corresponding to the X and Z torques

applicable to the two joints of the arm ("shoulder" and

"elbow"). 0 shows a version of the environment with 10 arms

follow the goal spheres movements.

A reward of +0.1 is provided for each step that the agent's

hand is in the goal location. Thus, the goal of your agent is to

maintain its position at the target location for as many time

steps as possible.

4. EXPERIMENTATIONS AND RESULTS

The DDPG algorithm is implemented for the “Single

Arm” environment and the D4PG is implemented for the “20-

Arms” environment, using several actor-critic topologies and

sizes, and the training is performed separately for each

version. After extensive trials, Table 1.0presents samples of

these training results which show clearly that the size of the

DDPG and D4PG networks does not have to be big to achieve

higher performance, on the contrary, the small-size networks

(#3) show significantly faster and better performance than the

big ones (#1, #2 and #4). Nevertheless, it is needed to mention

here that all the networks are trained with the hyper

parameters listed in Table 2.

Employing the GPU (NVIDIA Tesla K80, 13GB RAM)

[24] instead of the CPU (Intel Xeon Processor @2.3GHz (1

core, 2 threads), 13GB RAM) has reduced the training time

by almost 50%, as demonstrated by comparing cases (#7 and

#8) with cases (#5 and #6).

During training, both the DDPG and D4PG algorithms

employ the Ornstein-Uhlenbeck Process (OUP) [25] to

improve the exploration phase. It generates temporally

correlated noise centered around “0” to explore well in

physical environments that have momentum. The OUP is

used with θ = 0.15 and σ = 0.2 as in [26].

Table 1 Training Results for Different DDPG & D4PG

Topologies.

Version Size #EP*
Training
Time

Comment

1
1-Arm
DDPG

Actor:

Input Layer: 33
1st Hidden Layer: 128

2nd Hidden Layer: 64

Output Layer: 4

Critic:

Input Layer: 33
1st Hidden Layer: 128

2nd Hidden Layer: 64

2493 981.9 min With CPU

Output Layer: 1

2
1-Arm
DDPG

Actor:

Input Layer: 33

1st Hidden Layer: 256
2nd Hidden Layer: 128

Output Layer: 4

Critic:
Input Layer: 33

1st Hidden Layer: 256

2nd Hidden Layer: 128
Output Layer: 1

3006 907.8 min With CPU

3
1-Arm
DDPG

Actor:

Input Layer: 33

1st Hidden Layer: 128

2nd Hidden Layer: 64

Output Layer: 4

Critic:
Input Layer: 33

1st Hidden Layer: 64

2nd Hidden Layer: 32
Output Layer: 1

1290 610.8 min With CPU

4
1-Arm
DDPG

Actor:

Input Layer: 33

1st Hidden Layer: 128
2nd Hidden Layer: 64

Output Layer: 4

Critic:
Input Layer: 33

1st Hidden Layer: 96

2nd Hidden Layer: 48
Output Layer: 1

4470 902.7 min With CPU

5
20-Arms
D4PG

Actor:

Input Layer: 33

1st Hidden Layer: 128
2nd Hidden Layer: 64

Output Layer: 4

Critic:
Input Layer: 33

1st Hidden Layer: 96
2nd Hidden Layer: 48
Output Layer: 1

181 64.5 min With CPU

6
20-Arms
D4PG

Actor:

Input Layer: 33
1st Hidden Layer: 450

2nd Hidden Layer: 450

Output Layer: 4

Critic:

Input Layer: 33

1st Hidden Layer: 250
2nd Hidden Layer: 250
Output Layer: 1

133 81.2 min With CPU

7
20-Arms
D4PG

Actor:

Input Layer: 33
1st Hidden Layer: 350

2nd Hidden Layer: 350

Output Layer: 4

Critic:

136 43.3 min With GPU

Int. J. Com. Dig. Sys. 12, No. 1, 859-865 (Oct-2022) 863

http://journals.uob.edu.bh

Input Layer: 33
1st Hidden Layer: 250

2nd Hidden Layer: 250
Output Layer: 1

8
20-Arms
D4PG

Actor:
Input Layer: 33

1st Hidden Layer: 400

2nd Hidden Layer: 300

Output Layer: 4

Critic:

Input Layer: 33
1st Hidden Layer: 400

2nd Hidden Layer: 300
Output Layer: 1

127 41.3 min With GPU

*Number of Episodes to reach 30.

Table 2 Hyper-parameters Values.

Hyperparameter Value

Replay Buffer Size 100,000

Batch Size 128

Discount Factor (𝛾) 0.97

Soft-update for Target Parameters (𝜏) 0.001

Learning Rate (Actor) 0.0001

Learning Rate (Critic) 0.001

Weight Decay 0.000

Update Every (only for 1-Arm) 12 Samples

Figure 3 and Figure 4 depict the training performance of

the DDPG & D4PG for 1-Arm and 20-Arms environments

respectively to reach the goal of “a score of 30 for the 100-

episode average”. In both cases, the training advanced

smoothly to reach the target score.

The D4PG algorithm shows impressive performance if

compared to that of the DDPG. The training time of D4PG

represents on average 8.6% of the training time of the DDPG,

even though the number of iterations in both algorithms is

almost the same (the average is 2815 for DDPG and 2885 for

D4PG), noting that each D4PG iteration is equivalent to 20

iterations of the DDPG. As has been explained before, the

main difference between the two algorithms is that the D4PG

uses K parallel actors (K=20) learning simultaneously from

data sampled from a shared experience reply buffer

(distributed learning).

After the training phase is accomplished, both the DDPG

and D4PG algorithms are tested on 1-Arm and 20-Arms

environments respectively using a different seed (equals 2).

The network was already trained with a seed (0). The testing

results show that an episode of 1000 time steps scored

“38.59” and “37.1” respectively. More extensive

experimentation produces the same robust performance for

both algorithms.

Figure 3 Training Performance of the DDPG (#1) to reach a 30.0

score.

Figure 4 Training Performance of the D4PG (#6) to reach a 30.0

score.

864 Wael Farag: Navigation of Robotic-Arms using Policy Gradient Reinforcement Learning

http://journals.uob.edu.bh

Figure 5 Training Performance of the PPO in the 20-Arm environment to reach a 30.0 score.

For the purpose of comparison with other possible

reinforcement algorithms for robot arm navigation. The

popular PPO algorithm is applied to the 20-Arm environment

and the training results (the progress of the reward score) are

shown in Figure 5. Compared with the results achieved by the

D4PG algorithm shown in 0, which show faster convergence

rate then the PPO. The D4PG algorithm reached the

prespecified score in around 130 episodes, while the PPO

reached this score in 230 episodes (the D4PG is about 44%

faster).

5. CONCLUSION

The DDPG and D4PG reinforcement learning algorithms

are used to train a double-jointed robotic arm to reach an

object moving in a 3-D space around the arm. The DDPG is

used to train a single arm while the D4PG is used to train

multiple arms simultaneously. The D4PG is an improved

version of the DDPG that uses multiple independent actors

learning together in parallel and write together to a shared

experience reply buffer. This improvement allows building

models that command multiple robot arms instead of one.

This improvement as well shows superior learning

performance as it reduced the training time by almost 90%

with a highly reduced number of training episodes. However,

testing the trained models (agents) from both the DDPG and

the D4PG algorithms shows very comparable robust

performance.

The architecture of both the actor and critic networks of

both the DDPG and D4PG show a significant impact on

mainly the training convergence but not much on the

convergence speed. It is observed that the size of the actor

should be bigger or at least the same size as the critic for a

better convergence, while the learning rate of the critic is

recommended to be larger. Moreover, employing a GPU

speed up the training process by almost double. Furthermore,

both the DDPG and D4PG algorithms successfully employ

the Ornstein-Uhlenbeck Process to improve the exploration

phase.

Finally, the experimentation and the testing results show

the robust performance of the DDPG algorithm for

empowering robot arm maneuvering in complex

environments.

6. FUTURE WORK

Several suggestions can be carried out to further

understand and improve the performance of the Reacher:

1. Trying other algorithms such as REINFORCE, PPO,

A3C, A2C, GAE, TRPO, and TNPG, and compare the

results with the DDPG.

2. Applying the D4PG algorithm for a 3-joint robot arm

environment.

3. Implementing Rainbow Algorithm [27] which combines

good features from different algorithms to form an

integrated agent.

4. Another avenue of future research is to use Multi-Agent

DDPG (MADDPG) [28][29] to coordinate the work of

multiple cooperating robot arms to fulfill a single task.

5. Studying more deeply the effect of the noise parameters

of the Ornstein-Uhlenbeck Process [25] on the training

performance and the convergence [30][31][32][33].

REFERENCES

[1] W. Farag, “Safe-driving cloning by deep learning for autonomous
cars”, International Journal of Advanced Mechatronic Systems,
Inderscience, vol 7(6), pp. 390-397, April 2019.

[2] W. Farag, “A Comprehensive Vehicle-Detection-and-Tracking
Technique for Autonomous Driving”, International Journal of
Computing and Digital Systems, Elsevier, vol 9(4), pp. 567-580, July
2020.

[3] Wael Farag, “Traffic signs classification by deep learning for
advanced driving assistance systems”, Intelligent Decision
Technologies, IOS Press, vol 13(3), pp. 305-314, 2019.

[4] VH Quintana, G Lambert-Torres, “Neuro-Fuzzy Modeling of
Complex Systems Using Genetic Algorithms”, IEEE International
Conference on Neural Networks (IEEE ICNN'97) 1, pp. 444-449,
1997.

[5] VH Quintana, G Lambert-Torres, “Genetic algorithms and back-
propagation: a comparative study”, Conference Proceedings. IEEE
Canadian Conference on Electrical and Computer Engineering, 25-28
May 1998.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A Rusu, J. Veness, M. G
Bellemare, A. Graves, M. Riedmiller, A. K Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning”,
Nature, 518(7540):529–533, 2015.

[7] D. Silver, A. Huang, C. J Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, et al. “Mastering the game of go with deep neural networks
and tree search”, Nature, 529(7587):484–489, 2016.

[8] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K.
Simonyan, D. Hassabis, “A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play”, Science, Vol.
362, Issue 6419, pp. 1140-1144, Dec. 2018.

[9] Z Saleh, “An Advanced Vehicle Detection and Tracking Scheme for
Self-Driving Cars”, 2nd Smart Cities Symposium (SCS 2019),
Bahrain, IET Digital Library, 24-26 March 2019.

[10] HM Hassan, M Shawkey, AL ElShafei, "Designing pitch controller
for large wind turbines via LMI techniques”, Energy Procedia,
Elsevier, vol 12, pp. 808-818, 2011.

[11] Richard S. Satun, Andew G. Barto, “Reinforcement Learning – An
Introduction”, 2nd Edition, The MIT Press, 2018.

[12] Andrej Karpathy, “Deep Reinforcement Learning: Pong from Pixels”,
http://karpathy.github.io/2016/05/31/rl/, May 31, 2016, retrieved on
Oct. 19th, 2019.

[13] Open AI, “Evolution Strategies as a Scalable Alternative to
Reinforcement Learning”, https://openai.com/blog/evolution-
strategies/, retrieved on Oct. 19th, 2019.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg
Klimov, “Proximal Policy Optimization Algorithms”,
arXiv:1707.06347v2 [cs.LG] 28 Aug 2017.

Int. J. Com. Dig. Sys. 12, No. 1, 859-865 (Oct-2022) 865

http://journals.uob.edu.bh

[15] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E.
Turner, Sergey Levine, “Q-PROP: Sample-Efficient Policy Gradient
With an Off-Policy Critic”, arXiv:1611.02247v3 [cs.LG] 27 Feb
2017.

[16] Open AI, “Open AI Baselines: ACKTR & A2C”,
https://openai.com/blog/baselines-acktr-a2c/, retrieved on Oct. 19th,
2019.

[17] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and
Pieter Abbeel, “High-Dimensional Continous Control Using
Generalized Advantage Estimation”, arXiv:1506.02438v6 [cs.LG] 20
Oct 2018.

[18] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra,
“Continous Control With Deep Reinforcement Learning”,
arXiv:1509.02971v6 [cs.LG] 5 Jul 2019.

[19] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine,
“Continuous Deep Q-Learning with Model-based Acceleration”,
arXiv:1603.00748v1 [cs.LG] 2 Mar 2016.

[20] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
Dhruva TB, A. Muldal, N. Heess, T. Lillicrap, “Distributed
Distributional Deterministic Policy Gradients”, arXiv:1804.08617v1
[cs.LG] 23 Apr 2018.

[21] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay”, Inter. Conf. on Learning Representations,
arXiv:1511.05952v4, 2016.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
In Inter. Conf. on Learning Representations, San Diego, USA, 2015.

[23] Unity's Reacher environment, https://github.com/Unity-
Technologies/ml-agents/blob/master/docs/Learning-Environment-
Examples.md#reacher, retrieved on Oct. 19th, 2020.

[24] M. Nagiub, “Automatic selection of compiler options using genetic
techniques for embedded software design”, IEEE 14th Inter.
Symposium on Comp. Intelligence and Informatics (CINTI),
Budapest, Hungary, Nov. 19, (2013).

[25] Ornstein–Uhlenbeck process,
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_proc
ess, retrieved 1st Oct 2020.

[26] G. E. Uhlenbeck and L. S. Ornstein, “On the Theory of the Brownian
Motion”, Phys. Rev. 36, 823, September 1930.

[27] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W.
Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining Improvements in Deep Reinforcement Learning”,
arXiv:1710.02298v1 [cs.AI] 6 Oct 2017.

[28] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive
Environments”, arXiv:1706.02275v4 [cs.LG] 14 Mar 2020.

[29] W. Farag, “Multi-Agent Reinforcement Learning using the Deep
Distributed Distributional Deterministic Policy Gradients Algorithm”,
Intern. Conf. on Innovation and Intelligence for Informatics,
Computing, and Technologies (3ICT'20), Bahrain, 20-21 Dec.,
(2020).

[30] A Tawfik, “On fuzzy model identification and the gas furnace data”,
Proceedings of the IASTED International Conference Intelligent
Systems and Control, Honolulu, Hawaii, USA, 2000.

[31] W Farag, “Kalman-filter-based sensor fusion applied to road-objects
detection and tracking for autonomous vehicles”, Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 235(7), pp. 1125-1138, Aug. 2021.

[32] Zakaria Saleh, “Tuning of PID Track Followers for Autonomous
Driving”, 2018 International Conference on Innovation and
Intelligence for Informatics, Computing, and Technologies (3ICT),
Bahrain, Nov. 2018.

[33] Wael Farag, “Real‑Time Autonomous Vehicle Localization Based on
Particle and Unscented Kalman Filters”, Journal of Control,

Automation and Electrical Systems, Springer, Vol. 32, pp. 309–325,
March 2021.

Wael Farag earned his Ph.D. from the University of Waterloo,
Canada in 1998; M.Sc. from the University of Saskatchewan,

Canada in 1994; and B.Sc. from
Cairo University, Egypt in 1990. His
research, teaching and industrial
experience focus on embedded
systems, mechatronics, autonomous
vehicles, renewable energy, and
control systems. He has combined 17
years of industrial and senior
management experience in
Automotive (Valeo), Oil & Gas
(Schneider) and Construction

Machines (CNH) positioned in several countries including Canada,
USA & Egypt. Moreover, he has 10 Years of academic experience
at Wilfrid Laurier University, Cairo University, and the American
University of the Middle East. Spanning several topics of electrical
and computer engineering. He is the holder of 2 US patents; IEEE
Senior Member; ISO9000 Lead Auditor Certified and Scrum
Master Certified.

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md%23reacher
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md%23reacher
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md%23reacher
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process

