
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Feb-2022)

http://dx.doi.org/10.12785/ijcds/110162

Identifying Duplicate Bug Records Using Word2Vec Prediction
with Software Risk Analysis
Hussain Mahfoodh1 and Mustafa Hammad1

1Department of Computer Science, University of Bahrain, Sakheer, Bahrain

Received 19 Apr. 2021, Revised 24 Aug. 2021, Accepted 18 Jan. 2022, Published 15 Feb. 2022

Abstract: Reporting duplicated bugs in bug reports have serious productivity consequences on software projects. The fewer reporting of
duplicated bugs, the better software maturity processes are set between the internal software stakeholders. Automated identification of
the duplicated category through bug reports could enhance risk identification approaches during the software life cycle. In this paper, we
propose two different similarity measures to identify duplicated bugs using the word-embedding (Word2Vec) natural language processing
technique through Tensorflow tool. We conduct a comparison experiment on two related bug records descriptions from eight different
software components from the Mozilla Core dataset. We choose different sentence types through the duplicated bug category records
to compare and discuss each component’s accuracy results and identify whether the proposed module will be able to detect the related
records. Using an earlier work, this paper calculates software risk values from duplication records and from bug-fix time prediction for the
components that have not been identified as duplicated by the Word2Vec approach. The study results show maximum precision accuracy
of 99.89% for the components that have been identified correctly as duplicated by the used approach. Additionally, we found that
66% of the software components that were excluded from the bug duplication proposed module showed an increase in software risk values.

Keywords: Bug reports, duplicated bugs, bug-fix time, software risk estimation, bug-fix time prediction, software risk management,
word embedding, natural language processing, machine learning

1. Introduction
Early identification approaches of software risk can help

in producing reliable software [1]. The identification allows
developers to plan ahead and reduce bugs and errors in
software projects by pre-detecting failures [2] that could
threaten the software assets. Quantitative risk identification
from the different bug reports attributes enables internal
software stakeholders to manage project resources in ad-
vance before and after the software deployment and thus
providing the highest levels of quality and assurance [3],
[4] for the end-user.

Duplicated bug reporting records are also a software
management issue that is common in many projects during
the software life cycle. Despite its different causes, it
provides discomfort and disturbance to the internal soft-
ware stakeholders interested to resolve these issues [5] and
looking to work on the software pending tasks.

No matter how advanced the tools used to manage
bug-reporting [6], [7] processes, the duplication issue in
a software project will still emerge. The reason is that is
because bug reporting requires human input intervention
and requires validation of existing bug records, which is
difficult to track as the project continues to expand to fulfill

the ongoing requirements. Another reason is that reported
bug description is a natural language text that is written
differently between each developer or quality tester even if
the text represents the same bug meaning, the possibility
of misunderstanding and poor interpretation might bring
confusion and provides inefficient resolving operations.

The software maturity level could increase by providing
an automated approach to discover duplicated bugs through
the different bug report records. The word embedding
(Word2Vec) approach can be used to analyze text similarity
and helps to find the closest word-to-word among the
description of the reported bug by excluding the similar
words that are either same or marked as closely similar
by the used approach. This can assist in reducing the
appearance of duplicated bugs through bug reports and
helps in better software project management.

Estimation of software risk levels is achievable through
in-depth analysis of bug reports. By analyzing specific
attributes such as the number of duplicated unfixed records,
fix priority levels, and extraction of bug-fix time prediction
from related previous fixed bugs. Those attributes can be
used to provide insights to shift the focus of internal
stakeholders to what needs to be addressed and resolved

E-mail address: 20073370@stu.uob.edu.bh, mhammad@uob.edu.bh

http:// journals.uob.edu.bh

764 Hussain Mahfoodh and Mustafa Hammad: Identifying Duplicate Bug Records Using Word2Vec...

first through providing urgency levels estimation values of
software risk through the different software components.

In this paper, we propose two text similarity measures
using natural language processing through a Word2Vec ap-
proach among a list of chosen bugs description records for
the aim to detect two related bugs records within and find
word similarities through these selected sentences. We take
different records with different common and uncommon
actual valid words similarity samples to test the approach
accuracy and check if the approach will be able to detect
related duplicated bug records. We calculate the software
risk values of the selected components and compare them
with the software risk values after gathering the word
similarity results. The purpose is to compare and analyze a
Word2Vec approach similarity measure effect on the overall
software risk levels. The experiment is performed on a
Mozilla Core project bug report from Firefox online public
repositories.

The rest of the paper is organized as follows. Section
2 provides related work. Section 3 describes the method-
ology. Sections 4, 5 presents the experimental results and
discussion. Finally, Sections 6, 7 represents the limitations
of the used approach and the conclusion.

2. RelatedWork
Previously reported existing bugs that are reported again

by the internal software stakeholders can result in negative
productivity to the software development project. The study
by Cavalcanti, Y. C. et al. [8] discussed the negative
impact of the duplication issue by studying nine differ-
ent software projects. The study pointed different metrics
that cause high bugs duplication similarities such as bug
reports frequency, duplication similarity ratio, and dupli-
cation percentage. Another study by Bettenburg, N. et al.
[9], explained that reporting duplicated bugs could occur
because of incompetence users, technological unawareness
of reporting platforms, errors, and accidental resubmission.
The same study discussed that most developers will not
spend much of their working time searching hard-to-find
duplicated bugs in these bug reports. The study also stressed
that high percentages of reported bugs are exact copies of
each other and are wrongly identified as from the same
duplicated bugs category.

Several studies to detect duplicated bugs records through
bug reports have been conducted. The study by Lazar, A.
et al. [10] used binary classification approaches to identify
duplicate bug records using textual similarity. The study
used different metrics such as precision-recall, and the area
under the curve to calculate the results accuracies. The
study by Tian, Y. et al. [11], extended the work by Jalbert,
N., and Weimer, W. [12] and introduced new similarity
detection measures to improve the accuracy of duplication
identification by 160% where it was conducted on Mozilla
open-source bug reports dataset.

Further NLP studies on bug reports have been used to

detect and reduce redundant duplicated bugs records. The
study by Wang, X. [13] et al. detected up to 93% of the
duplicated bug category from a selected Firefox bug reposi-
tory by using both Natural-Language-based and Execution-
information-based similarities approaches. A different study
by Runeson, P. et al. [14] reached up to 66% of accuracy
for detecting duplicated bug records by using a specific
NLP prototype. The same study used different detection
techniques such as Stemming, Stop Words Removal, Tok-
enization, and Vector Space model.

The word-by-word bug duplicates detecting through
machine learning has been used in different researches.
The study by Guthrie, D. et al. [15] worked on predicting
and finding the closest related words for a given set of
words using skip-grams. A different approach by Homma,
Y. et al. [16] used Siamese networks with the use of deep
learning to identify similar equivalent questions within the
same language context. The study by Ma, L. and Zhang, Y.
[17] evaluated word similarities using Word2Vec on corpus
text. Another Word2Vec study by Jatnika, D. et al. [18]
reached a result of 66% similarity accuracy by examining
a different set of English words and finding its similarity
rates equivalently. Further Word2Vec studied has been also
used on different detection bug duplication studies by Lin,
M. J. et al. [19], Deshmukh, J. et al. [20], Xie, Q. et al.
[21], Kang, L. [22], Kukkar, A. et al. [23], and He, J. et al.
[24].

Risk management has an important role in the software
development cycle. Byron, J. et al. [25] emphasized the
high need for early categorizing of software risk in soft-
ware projects development phases. The study expressed the
importance of categorization the risk to start the goal of
risk prioritization. Different attributes need to be studied
such as risk complexity, the project life cycle schedule,
and the overall project size. Kaur, G., and Bahl [26] stated
the difficulty of achieving higher software reliability and
expressed that it can be improved by using better risk
management processes, better configuration management,
and development processes.

The appearance of duplicate bug reports causes negative
incompetence [8], [9] to the software project’s overall
productivity. The detection of duplicate bugs using textual
similarity [10], [11], [12], through NLP [13], [14], or
through Word2Vec [17], [18], [19], [20], [21], [22], [23],
[24] can be used as an automated method to enhance the
early software risk for risk categorization and prioritization
[25] and to increase the overall software reliability [26]. It
is important to look for a correlation between software risk
and duplicated bugs through the overall software project
development to enhance its security and productivity. In
addition, by providing new textual similarity measures,
such a study could provide more aspects for researchers to
identify duplicated bugs records within Word2Vec numeric
close-indexed distance range results which were not the
main focus in the related work. This study will focus on

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 763-773 (Feb-2022) 765

using Tensorflow with Word2Vec word-to-vector closest
technique to find sentence similarities of related duplicates
bug reports by using Squared Euclidean distance. We pro-
pose two closest word-to-word similarity measures with the
use of a neural network. Then, we calculate the software
risk values before and after applying the similarity measures
on the selected bug records to compare the approach’s effect
on the software risk values.

3. Methodology
In the following subsections, we discuss the bug re-

ports dataset structure; then, we demonstrate the software
risk retrieval approach used. Furthermore, the purposed
Word2Vec similarity measures approaches are discussed,
followed by an evaluation criteria explanation to evaluate
whether the proposed module explained could determine
whether the selected bug description text has any relation
with the same duplicated bug record. Finally, we discuss
the experimental results values and a comparison of risk
values is illustrated among the excluded records from the
bug duplication proposed module.

This research uses Mozilla Core [27] Firefox public
open-source bug reports. Table I lists the dataset attributes
definitions including their data types are also shown. The
attribute Days to fix the bug is calculated from the dif-
ference between the attributes Resolved time and Cre-
ated time respectively. This attribute then is converted into
days’ time format and which represents the input point for
the proposed bug-fix prediction process that the risk module
will use.

A non-linear regression prediction algorithm work [28]
is implemented and only experimented on the fixed bugs
records, where only Fixed category values from the Res-
olution attribute are considered. Table II shows the bug
records total number, the Fixed bug records resolution type
total number, the Duplicate resolution type total number,
the bug fixing time average, and the date duration period
for the used dataset.

We conduct the experiment on eight software compo-
nents from the Mozilla Core bug report dataset. Table III
shows the total number of bugs records, the number of
duplicated bugs categorized by their date period.

A. Bug Reports Software Risk Estimation
We use an approach [29] to estimate Software risk

values taken from predictions of bug-fix time and from
unfixed bug duplicates records from the same bug report
dataset.

Fig. 1 shows the overall used risk decision model.
The used approach takes one input, which is the bug
component name from the dataset. The bug records are
then filtered to show only the entered component name
records. To predict the upcoming bug bug-fix time, the
bug-fix time prediction module is used on the filtered

TABLE I. The Used Dataset Structure.

Attributes Definition Type

Issue id Bug record unique ID used. Positive Integer

Priority The Bug priority number as-
signed to the bug record.

String

Component Software component name that
belong to the bug.

String

Duplicated issue Contain duplicated bug ID to
identify if the same issue re-
ported before.

Positive Integer

Title Title of the bug description. String

Description Detailed description for the
bug.

String

Status Assigned by the software
project manager as: Verified,
Resolved, or Closed bug.

String

Resolution Specify whether the bug is
(Fixed/ Invalid/will not be
fixed/ already working or du-
plicated).

String

Version The software version or branch
repository the bug is located in.

String

Created time Date/time of the bug reported. Date/Time

Resolved time Bug resolving Date and time. Date/Time

Days to fix the bug Difference between the
attributes Resolved time and
Created time calculated in
days format.

Float

TABLE II. The Number of Bugs Records Selected and their Period
From The Dataset.

Dataset
name

Total
num-
ber
of bug
records

Number
of the
Fixed
bug
sam-
ples

Number
of the
dupli-
cated
bug
sam-
ples

Average
bug
fixing
time
(days)

Duration of
Bug Reporting
Period

Mozilla
Core

205069 101500 44692 419.59 December
1995 –
December
2013

data. Then, the risk analyzer component takes the bug-
fix time value prediction to process and calculate the risk
estimation value. Furthermore, within the same filtered
software component, the related count number of duplicated
bugs is considered and also passed into the risk analyzer
component module from the proposed approach. The reason
to consider duplicated bugs is because of the probability of
the same bug multi-occurrences among other bug records
within the filtered software component and which could
indicate an unmitigated risk level that the model must take
into consideration. Finally, the predicted bug-fix time and
the duplicates count will be passed to the risk analyzer
module to calculate the overall final risk value.

This study uses non-linear regression with a neural
network to predict the future bug-fix time value [28]. The

http:// journals.uob.edu.bh

766 Hussain Mahfoodh and Mustafa Hammad: Identifying Duplicate Bug Records Using Word2Vec...

TABLE III. Software Components Duplicated Bugs Count Catego-
rized by their Duration.

Software component
name

Bug records
sample count

Duplicated bug
samples count

Timeline period

JavaScript Engine 22073 3118 December 1997 –
December 2013

Graphics 5867 945 December 1995 –
December 2009

Build Config 4260 409 July 2000 - Decem-
ber 2013

Event Handling 2768 932 October 1997 –
August 2013

DOM 7315 885 August 1998 – De-
cember 2013

Widget 488 44 March 2002 – De-
cember 2013

Layout 16402 4621 April 1993 – De-
cember 2009

XUL 9022 2409 April 1994 – De-
cember 2009

Figure 1. The Proposed Risk Estimation Process Model

formula will take into consideration the previous bug-fix
time values to calculate the expected upcoming bug-fix
time. Formula 1 shows the bug-fix time risk mathematical
representation used.

RB =
L
a
∗ 100 (1)

In Formula 1, RB is the risk percentage of the bug-fix
time prediction. This value is calculated from the actual
Fixed samples of the selected and filtered software compo-
nent. We take the last predicted bug-fix time sample value
which represents (L) and divides it over the average of the
actual Fixed samples which represent (a).

The risk values from the duplicated bug category are
calculated only from the duplicates bugs with WONTFIX
resolution type. The reason is this category could contain a
residual level of risk since these types of bugs records will
not be fixed in the current project tasks pipeline. Formula
2 shows the duplicated bug records risk formula.

RD =
DW
T
∗ 100 (2)

In Formula 2, RD represents the duplication bugs’ final
risk percentage. To calculate this values, DW is used for rep-
resenting the duplicated bugs samples with the WONTFIX
resolution type. The calculation will take into consideration
the count of the related WONTFIX records for each of
the other duplicated bug samples; T represents the total
count of the duplicated bugs within the same software
component even if there was no relationship with the
WONTFIX resolution type bugs records.

The final values of risk will be calculated by converting
values of (RB, RD) into a percentage of maximum 50% rate
and adding them together. Formula 3 shows (TR) which is
the total final risk value reaching up to 100% rate level.

TR = RB + RD (3)

B. Word2Vec Duplicates Bug Determination Approach
Fig. 2 shows the process to determine whether two

selected duplicated bug records from the bug report are
related to each other. The proposed approach takes the bug
file reports with records that include bugs description text.
The words separator module then will separate each word
and will be grouped into an array of array data type. The re-
dundant words will be removed from this array to make sure
only unique words are processed for the purpose of a more
efficient machine-learning process. The predefined window
size variable will restrict the combination of words in the
array that the learning process will traverse through. Every
two words pair from the combination array will be passed
to the training module and a result of float vector value
will be obtained for each of the given unique words. These
vector values results will be handled to the duplication
analyzer module along with the selected bug description
to be compared with each other. The duplication analyzer
output results are a boolean value that will determine if each
pair of selected bugs descriptions are duplicated and related
to each other or not. The following text is an example for
demonstration of two bugs description text to be compared
and to determine if there is any duplication relationship
between them.

Bug 1: “First bug description is listed here”.
Bug 2: “The second issue description”.

The process will filter only understandable English valid
words for the purpose of valid words training by the
proposed module. Other invalid words such as alphanumeric
strings or stop words (period, comma, and semicolons)
will be omitted including any redundant words that are
repeated or words with (pronouns, propositions) because of
its insignificant to the duplication text identification module.
The identification of those pronouns and propositions will

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 763-773 (Feb-2022) 767

Figure 2. Bug Duplication Distinguish process.

be done through examining each word with a fixed common
and known words list and omitting the word when there
is a match. The word separator module will combine and
separate the description text of these bugs into an array
of words. Fig. 3 shows the words separated into one array
variable.

Fig. 4 shows the combination of the pair words within a
predefined variable WINDOW SIZE=2 which gives a total
of 28 word combination. Increasing the value of the WIN-
DOW SIZE variable will lead to more words combination
in the array. The more this value is increased the more words
combination in the array will be covered to be trained by
the training module.

A binary vector will be converted for each pair of words
in the array that list every two words together. As an
example, [’first’, ’bug’] pair in the first array where the
word ’first’ will be converted to [0. 1. 0. 0. 0. 0. 0. 0. 0.]
and will be added to X array. Similarly, the word ’bug’ will
be converted to [0. 0. 1. 0. 0. 0. 0. 0. 0.] and will be added
to Y array. Thus, X will have the first-word index for each
word pair in the array, and Y will have the second-word
index for each word pair in the array. Fig. 5 shows both
of the final arrays of (X and Y) to be given to the same
mentioned words.

[’first ’, ’bug’, ’description’, ’is’,
’listed’, ’here’, ’the’, ’second’, ’issue’,
’description’]

Figure 3. Bug Description sentences words separation array.

[[’first’, ’bug’],[’first’, ’description’],
[’bug’, ’first’], [’bug’, ’description’],
[’bug’, ’is’], [’description’, ’first’],
[’description’, ’bug’], [’description’,
’is’], [’description’, ’listed’], [’is’,
’bug’], [’is’, ’description’], [’is’,
’listed’], [’is’, ’here’], [’listed’,
’description’], [’listed’, ’is’], [’listed’,
’here’], [’here’, ’is’], [’here’, ’listed’],
[’the’, ’second’], [’the’, ’issue’],
[’second’, ’the’], [’second’, ’issue’],
[’second’, ’description’], [’issue’,
’the’], [’issue’, ’second’], [’issue’,
’description’], [’description’, ’second’],
[’description’, ’issue’]]

Figure 4. The words combination for the mentioned sentences when
variable WINDOWS IZE = 2.

Figure 5. The X and Y Binary Vector for each pair of the Array
words.

Fig. 6 shows the Word2Vec neural network-training
module conducted on this experiment. The neural network
consists of 3 layers: one input, one hidden, and one output
layer. Different weights (Weight 1, Weight 2) and different
biases (Bias 1, Bias 2) are used for the input and hidden
layers. By using Gradient descent optimization [30], error
propagations are adjusted across the layers of the training
module.

The prediction process happens at the hidden layer
through the use of the Softmax function. The Softmax [31]

http:// journals.uob.edu.bh

768 Hussain Mahfoodh and Mustafa Hammad: Identifying Duplicate Bug Records Using Word2Vec...

Figure 6. one input, one hidden, and one output layers of the Training
Neural Network module.

function is used on non-normalized data output from the
first input layer to provide a probability distribution for
better prediction estimation. Formula 4 shows the Softmax
function representation where σ : Rn → Rn and i, j =
1,, n with z = (z1, ..., zn) ∈ Rn .

σ(z)i =
ezi

n∑
j=1

ez j

(4)

For each given unique word there will be an output of
vector value from the training module. Fig. 7 shows the
output vector numeric values for the same bug description
example discussed earlier at the beginning of the second
subsection of this section. For each given word in the input
sentence, the float numeric output values are ranging from
-0.99 to 0.99 as an output result from the training process.

[(’issue’, 0.21356754), (’listed’,
-0.1225790), (’description’, 0.43123457),
(’first’, -0.53720089), (’the’, 0.7168123),
(’bug’, 0.885157), (’here’, -0.1765210),
(’second’, -0.9964821), (’is’, -0.3213419)]

Figure 7. Sample of the example for the array words final vector
numeric output values results.

C. Duplication Analyzer and Similarity Measures
From the Word2Vec approach results, Squared Eu-

clidean distance [32] is used on the trained vector result
output to find the closest word from two given sentences set
for comparisons. The following formula shows p, q which
are two points to calculate the Euclidean distance between
them in the n Euclidean space.

√√ n∑
i=1

(qi − pn) (5)

To determine if a duplication relation between two
different given bug description texts, this paper uses two
similarity measures for the comparison purpose. From the
discussed Fig. 2, once each valid word in every sentence
has a numeric vector result then the duplication analyzer
module takes each two bugs description text and analyzes
them word-by-word to determine if any duplication simi-
larity exists. By following the same example discussed in
subsection 2 of this section, each valid word in Bug #1
text will be compared with each valid word of Bug #2.
Both similarity measures will iterate for every word in two
different given bug descriptions. The following points will
explain the two similarity measures in detail:

1) First Similarity Measure: This method will iterate
between two given bug sentences and will find
the closest valid word available through the
float vector output results value using Squared
Euclidean distance. The method will use a variable
counter to identify how many words have been
identified as similar to each other by the duplication
analyzer module. Fig. 8 shows the first duplication
similarity measure processes used in detail.

2) Second Similarity Measure: The same iteration ap-
proach method will be used in the first method
discussed, however, it will look for the closest float
value within a specific range (n) in the numeric float
vector array output result. The variable counter is
used to count the similar words if the word in two
different given sentences has been found or identified
as closely similar within the given range. Fig. 9
shows the second duplication similarity measure
processes used in detail.

To determine if two different given words from two
different bug description sentences are identified as the same
or closely similar by the duplication analyzer module, we
use formula 6 for this purpose. p represents the similarity
percentage calculated for the word similarity determination
approach. c represents the counter discussed earlier, w
represents the total number of words given from the second
sentence to compare with the initial first bug sentence.
This paper uses 50% threshold value to determine the
bug duplication similarity determination between the bug
description words. The bug will be identified as the same as
the other compared bug when the value of p is more than or
equal to the same threshold. The same threshold is extracted
from a similar study on Mozilla dataset duplication category
similarity identification measure [33].

p =
c
w
× 100 (6)

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 763-773 (Feb-2022) 769

Figure 8. First Similarity bug duplication identification measure
processes.

Figure 9. Second Similarity bug duplication identification measure
processes.

D. Evaluation Criteria Accuracy
In order to calculate the approach accuracy towards the

identification of bug duplication similarity, the percentage
for True-Positive and False-Positive must be calculated.
True-Positive are the values in which represent the actual
sentences that are originally considered duplicated bugs
and the duplication analyzer module successfully identifies
these sentences as a true duplication bug. The False-Positive
are the values that represent that the duplication analyzer
module falsely identified a non-actual bug description as a
true duplicate even though both sentences were not from
the same category. Since the precision accuracy values
are focused on the positive instances that were classified
correctly, Formula 7 shows the precision formula from
both values of True-Positive (TP) and False-Positive (FP)
percentages that were used in this experiment to evaluate
the duplication module accuracy.

Precision =
T P

(T P + FP)
(7)

To evaluate the bug-fix time prediction results to assess
the risk estimation approach accuracy, we have used four
regression metrics on the bug-fix time predicted samples,
which are: mean absolute error (MAE), mean squared
error (MSE), R2 (R squared), and median absolute error
(MedAE). Considering E is the bug-fix time retrieved from
the bug-fix time dataset selected samples, É is the bug-fix
time predicted sample, Ê is the mean of E, and n is the total
number of the bug records samples. Formulas 8, 9, 10, and
11 show the regression metrics error rate between the actual
bug-fix time and the results of the predicted samples results.

MAE =
∑n

i=1 |Ei − Ei
′|

n
(8)

MS E =
∑n

i=1 (Ei − Ei
′)2

n
(9)

R2 = 1 −
∑n

i=1 (Ei − Ei
′)2∑n

i=1 (Ei − Êi)
2 (10)

MedAE(E, E′) = median(|E1 − E1
′|, ...|En − En

′|) (11)

4. Experimental Results
The experiment is conducted using Tensorflow [34]

version 1.9.0 and using Word2Vec word embedding libraries
[35], which is a Tensorflow natural language processing
module. The machine specification used in this experiment
is a 2.2 GHz Intel Core i7 16 GB 1600 MHz DDR3 machine
with 1536MB GPU.

Table IV shows the result of the experiment. The experi-

http:// journals.uob.edu.bh

770 Hussain Mahfoodh and Mustafa Hammad: Identifying Duplicate Bug Records Using Word2Vec...

TABLE IV. Result of The Eight Selected Software Components for Bug Duplication Identification Experiment.

Software
component name

JavaScript Engine Graphics Build Config Event Handling DOM Widget Layout XUL

Number of actual
similar words from
both of text

14 1 15 0 0 0 0 3

Related bug record
valid words Num-
ber

10 5 9 3 5 3 8 10

Related bug sim-
ilar words num-
ber in the other
record using simi-
larity measure #1

10 0 4 0 1 4 0 2

Related bug sim-
ilar words num-
ber in the other
record using simi-
larity measure #2

10 0 4 0 1 5 0 2

Related bug sim-
ilar words num-
ber in the other
record using simi-
larity measure #3

10 0 4 0 1 7 0 2

Similar words Per-
centage using Sim-
ilarity measure #1

100% 0% 44.4% 0% 20% 133.3% 0% 20%

Similar words Per-
centage using Sim-
ilarity measure #2

100% 0% 44.4% 0% 20% 166.6% %0 20%

Similar words Per-
centage using Sim-
ilarity measure #3

100% 0% 44.4% 0% 20% 233.3% 0% 20%

TP

Method 1 TP: 100%
Method 2 TP: 100%
Method 3 TP: 100%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

Method 1 TP: 100%
Method 2 TP: 100%
Method 3 TP: 100%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

Method 1 TP: 0%
Method 2 TP: 0%
Method 3 TP: 0%

FP

Method 1 FP: 1.79%
Method 2 FP: 2.82%
Method 3 FP: 3.08%

Method 1 FP: 0.74%
Method 2 FP: 0.848%
Method 3 FP: 0.848%

Method 1 FP: 2.21%
Method 2 FP: 2.45%
Method 3 FP: 3.43%

Method 1 FP: 0.43%
Method 2 FP: 1.39%
Method 3 FP: 1.39%

Method 1 FP: 6.10%
Method 2 FP: 7.12%
Method 3 FP: 7.46%

Method 1 FP: 0.10%
Method 2 FP: 0.95%
Method 3 FP: 0.95%

Method 1 FP:0.51%
Method 2 FP: 0.75%
Method 3 FP: 0.75%

Method 1 FP: 0.04%
Method 2 FP: 0.08%
Method 3 FP: 0.12%

Precision from
Similarity measure
#1

98.23% 0% 0% 0% 0% 99.89% 0% 0%

Precision from
Similarity measure
#2

97.25% 0% 0% 0% 0% 99.05% 0% 0%

Precision from
Similarity measure
#3

97.011% 0% 0% 0% 0% 99.05% 0% 0%

ment is applied on the two similarity approaches mentioned
earlier. We have chosen 3 similarity measures where the first
similarity measure follows the Squared Euclidean distance
to find the closest valid word available through the float
vector output results value. The other two remainings are
based on the second similarity measure mentioned earlier
and from the final vector results by finding the closest words
within 2 and 3 range limits respectively. From the different
software components, we take different bug description
sample text to provide multiple comparisons analysis. For
example, we have taken 14 similar word bugs descriptions
between the pair of the text with the existence of 10 valid
words identified for the first component JavaScript Engine.
For the other components, we take the text with similar
words range from 0 to 15 and with valid words from 3
to 10 words. For each selected component, we take one
fixed bug records sample with other duplicated records that
contain one sample that has a relation with the fixed record
using bug ID mapping mentioned in the same bug report.
As shown in Table IV, the precision for the experiment
results ranged from 0 to 99.89% for all the selected software
components and all the chosen similarity measures. The

Widget software component shows the highest similarity
percentage with 133.3% for the first measure, 166.6% for
the second measure, and 233.3% for the third measure.
Graphics, Event Handling, and Layout show the similarity
percentage with the lowest for all of the similarity measures
with 0%.

Table V shows the count of all the duplicated bug
records used on the experiment categorized by their similar-
ity percentage, similarity type, and categorized by their soft-
ware components. Table VI and VII shows the actual risk
values of the used software components on the experiment.
These two tables also shows the software component risk
values after conducting the bug duplication identification
experiment and after excluding the excluded related bug
record by the used approach. This table only uses the
software component that marked by the proposed module
as not related with true-positive and equal to 0% since the
risk values of the 100% true-positive will be the same as the
actual risk values. Some of the excluded bug records are not
read by the module because of the same hardware limitation
discussed on the used bug-fix time prediction study [28] and

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 763-773 (Feb-2022) 771

TABLE V. Count of Bug Duplicated Records Similarity Percentage for the Three Similarity Measures From the Proposed Model.

Count of similarity percentage
>=0% and <25%

Count of similarity percentage
>=25% and <50%

Count of similarity percentage
>=50% and <75%

Count of similarity percentage
>=75% and <100%

Count of similarity percentage
>=100%

Software component name SM1 SM2 SM3 SM1 SM2 SM3 SM1 SM2 SM3 SM1 SM2 SM3 SM1 SM2 SM3
JavaScript Engine 2935 2843 2820 126 186 201 44 76 81 0 0 0 13 13 16
Graphics 923 926 923 15 11 14 7 8 8 0 0 0 0 0 0
Build Config 365 358 339 35 41 56 9 10 13 0 0 0 0 0 1
Event Handling 881 844 828 46 74 90 4 12 10 0 1 3 0 0 0
DOM 786 751 728 45 71 91 13 18 21 0 0 0 41 45 45
Widget 41 34 31 1 0 3 1 5 3 0 2 1 1 3 6
Layout 4484 4445 4438 113 141 148 22 33 33 0 0 0 2 2 2
XUL 2384 2357 2349 24 50 57 1 2 3 0 0 0 0 0 0

TABLE VI. Risk Results For Software Components: Graphics, Build Config, and Event Handling That was marked as Excluded From The Bug
Duplication Proposed Model.

Priority types Graphics
(Actual)

Graphics
(After Excluding the related bug record)

Build Config
(Actual)

Build Config
(After Excluding the related bug record)

Event Handling
(Actual)

Event Handling
(After Excluding the related bug record)

No. of Fixed samples and acceptable by the machine 13373 3373 2056 2056 943 943
Duplicates categorized to WONTFIX records number 208 208 128 128 287 287
WONTFIX records number 363 363 162 162 861 861
Number of Duplicates samples 945 944 409 408 932 931
Last sample predicted of bug-fix time value (days) 0.0296475 0.05211727 0.01509095 0.03829417 0.04175371 0.03113707
Bug-fix time average value (days) 0.08338276 0.08338276 0.08341444 0.08341444 0.08351026 0.08351026
RD 60.42% 60.48% 70.90% 71.07% 123.17% 123.30%
RB 35.55% 162.50% 18.09% 45.90% 49.99% 37.28%
TR 47.98% 61.49% 44.49% 58.49% 86.58% 80.29%

Evaluation criteria accuracy (Bug fix time prediction)

MAE: 0.0605
MSE: 0.0050
R2: 0.1000
MedAE: 0.055

MAE: 0.0608
MSE: 0.0051
R2: 0.0861
MedAE: 0.0527

MAE: 0.0625
MSE: 0.0054
R2: 0.0338
MedAE:0.0609

MAE: 0.0622
MSE: 0.0053
R2: 0.0481
MedAE: 0.0596

MAE: 0.0616
MSE: 0.0052
R2: 0.0685
MedAE: 0.0566

MAE: 0.0616
MSE: 0.0052
R2: 0.0662
MedAE: 0.0579

TABLE VII. Risk Results For Software Components: DOM, Layout, and XUL That was marked as Excluded From The Bug Duplication Proposed
Model.

Priority types DOM
(Actual)

DOM
(After Excluding the related bug record)

Layout
(Actual)

Layout
(After Excluding the related bug record)

XUL
(Actual)

XUL
(After Excluding the related bug record)

No. of Fixed samples and acceptable by the machine 601 601 10 10 2017 2017
Duplicates categorized to WONTFIX records number 131 131 0 0 600 600
WONTFIX records number 216 216 0 0 1083 1083
Number of Duplicates samples 601 601 10 10 932 931
Last sample predicted of bug-fix time value (days) 0.05022792 0.01656917 -0.02291683 -0.00983587 0.0657157 0.09041004
Bug-fix time average value (days) 0.08361111 0.08361111 0.10185185 0.10185185 0.08341601 0.08341601

RD 57.73%
57.73%
(Excluded Bug is not within range) 0%

0%
(Excluded Bug is not within range) 83.44% 83.44%

RB 60.07% 119.81% -22.50% -9.65% 78.78% 108.38%
TR 58.90% 38.77% -11.25% -4.82% 81.11%% 95.91%

Evaluation criteria accuracy (Bug fix time prediction)

MAE: 0.0586
MSE: 0.0049
R2: 0.1208
MedAE: 0.0542

MAE: 0.0575
MSE: 0.0050
R2: 0.1090
MedAE: 0.0545

MAE: 0.0594
MSE: 0.0052
R2: 0.3550
MedAE: 0.0485

MAE: 0.0597
MSE: 0.0053
R2: 0.3386
MedAE: 0.0493

MAE: 0.0652
MSE: 0.0054
R2: 0.0293
MedAE: 0.0655

MAE: 0.0661
MSE: 0.0056
R2: -0.0052
MedAE: 0.0683

also means that the excluded bug record was not in range
to be included in the calculation.

5. Discussions
From Table IV, the proposed module gave low False-

positive values from 0.04% to 7.46% for all the three simi-
larity measures. The module succeeded to identify the bug
duplication record for the Javascript Engine for a maximum
of 98.2% precision percentage and the Widget component
for a maximum of 99.8%. The similarity percentage mea-
sure of the Widget component gave better results than the
Javascript Engine reaching more than 100% and giving
up to 233.3%. The Build Config software component gave
the highest of the lowest results with a 44.4% similarity
percentage across all of the three measures. The Graphics,
Layout, and Event Handling software components gave the
lowest similarity percentage and precision with 0% for both.

From Table V, the most of duplication values similarity
percentages are within 0% and 25% for all the software
components. Generally, the count will decrease as we go for
more percentage reaching up to 100% and more with the
exception of Javascript Engine, DOM, Widget, and Layout
software components. By showing that the count decreased
for a higher percentage, it means the module is able to
exclude a variety of false category types at below 50%

similarity percentage.

From Table VI and VII, the numbers of duplicated
bug records along with software risk results are illustrated.
The most values of total software risk among the software
components tend to increase since the total of duplicated
samples is decreased by the excluded bug record identified
by the module.

The TR value can reach up to 95.9% for the XUL
software component. The lowest TR value given is for the
Layout component reaching -4.82% because of minus RB
values predicted by the bug-fix time prediction module. The
risk values are only getting decreased from the actual risk
values for the components Event Handling and DOM.

6. Threats To Validity
Invalid words contained in some bug duplication records

such as technical expressions, alphanumeric variables, or
some module names are eliminated by the approach used
since they are not considered valid words. If these words
were considered, the accuracy results could be improved.
Furthermore, we have used a fixed Window size variable in
this work and by manipulating this value then more training
words can be taken and improve the results accuracy more.
In addition, the samples taken are selected to fit specific

http:// journals.uob.edu.bh

772 Hussain Mahfoodh and Mustafa Hammad: Identifying Duplicate Bug Records Using Word2Vec...

text comparison criteria, and by choosing different bug
text records, then accuracy rates could get improved [36].
Finally, the hardware limitation on the used bug-fix time
prediction study [28] has eliminated some records from the
calculation and could affect the final risk results obtained
with its bug-fix time value accuracy.

7. Conclusions
Two similarity measures have been proposed in this

study to identify bug duplication records using the
Word2Vec embedding approach with maximum precision
accuracy of 99.89%; compared to the work by Deshmukh,
J. et al. [20] to give a maximum of 90% accuracy. Fur-
thermore, we have used the data of bug-fix time, and bug
duplication to estimate the total software risk for specific
software components and analyze their relationship with
proposed automated bug duplication identification. We have
calculated software risk values per software component
where it shows 4 components of the selected dataset com-
ponents showed an increase in software risk giving 66%
percentage value when removing the duplicated related
bug from the dataset that includes the RD calculation.
This similarity detection proposed approach could be used
by other researchers to provide different techniques and
insights on Word2Vec text similarity methods to identify
bug duplication issues across bug reports.

References
[1] S. R. Dalal, J. R. Horgan, and J. R. Kettenring, “Reliable software

and communication: software quality, reliability, and safety,” in
Proceedings of 1993 15th International Conference on Software
Engineering. IEEE, 1993, pp. 425–435.

[2] R. R. Lutz, “Analyzing software requirements errors in safety-
critical, embedded systems,” in [1993] Proceedings of the IEEE
International Symposium on Requirements Engineering. IEEE,
1993, pp. 126–133.

[3] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive
target [special issues section],” IEEE software, vol. 13, no. 1, pp.
12–21, 1996.

[4] G. McGraw, “Software assurance for security,” Computer, vol. 32,
no. 4, pp. 103–105, 1999.

[5] M. S. Rakha, W. Shang, and A. E. Hassan, “Studying the needed
effort for identifying duplicate issues,” Empirical Software Engi-
neering, vol. 21, no. 5, pp. 1960–1989, 2016.

[6] J. Fisher, D. Koning, and A. Ludwigsen, “Utilizing atlassian jira
for large-scale software development management,” Citeseer, Tech.
Rep., 2013.

[7] N. Serrano and I. Ciordia, “Bugzilla, itracker, and other bug track-
ers,” IEEE software, vol. 22, no. 2, pp. 11–13, 2005.

[8] Y. C. Cavalcanti, E. S. de Almeida, C. E. A. da Cunha, D. Lucrédio,
and S. R. de Lemos Meira, “An initial study on the bug report du-
plication problem,” in 2010 14th European Conference on Software
Maintenance and Reengineering. IEEE, 2010, pp. 264–267.

[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful. . . really?” in 2008 IEEE Interna-
tional Conference on Software Maintenance. IEEE, 2008, pp. 337–
345.

[10] A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of
duplicate bug report detection using textual similarity measures,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 308–311.

[11] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identifi-
cation,” in 2012 16th European conference on software maintenance
and reengineering. IEEE, 2012, pp. 385–390.

[12] N. Jalbert and W. Weimer, “Automated duplicate detection for
bug tracking systems,” in 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC (DSN).
IEEE, 2008, pp. 52–61.

[13] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[14] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in
29th International Conference on Software Engineering (ICSE’07).
IEEE, 2007, pp. 499–510.

[15] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks, “A closer
look at skip-gram modelling.” in LREC, vol. 6. Citeseer, 2006, pp.
1222–1225.

[16] Y. Homma, S. Sy, and C. Yeh, “Detecting duplicate questions with
deep learning,” in Proceedings of the International Conference on
Neural Information Processing Systems (NIPS, 2016.

[17] L. Ma and Y. Zhang, “Using word2vec to process big text data,”
in 2015 IEEE International Conference on Big Data (Big Data).
IEEE, 2015, pp. 2895–2897.

[18] D. Jatnika, M. A. Bijaksana, and A. A. Suryani, “Word2vec model
analysis for semantic similarities in english words,” Procedia Com-
puter Science, vol. 157, pp. 160–167, 2019.

[19] M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, “Enhancements
for duplication detection in bug reports with manifold correlation
features,” Journal of Systems and Software, vol. 121, pp. 223–233,
2016.

[20] J. Deshmukh, K. Annervaz, S. Podder, S. Sengupta, and N. Dubash,
“Towards accurate duplicate bug retrieval using deep learning
techniques,” in 2017 IEEE International conference on software
maintenance and evolution (ICSME). IEEE, 2017, pp. 115–124.

[21] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, “Detecting duplicate
bug reports with convolutional neural networks,” in 2018 25th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2018,
pp. 416–425.

[22] L. Kang, “Automated duplicate bug reports detection-an experiment
at axis communication ab,” 2017.

[23] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and
K.-S. Kwak, “Duplicate bug report detection and classification
system based on deep learning technique,” IEEE Access, vol. 8,
pp. 200 749–200 763, 2020.

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 763-773 (Feb-2022) 773

[24] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report
detection using dual-channel convolutional neural networks,” in
Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 117–127.

[25] B. J. Williams, J. C. Carver, and R. B. Vaughn, “Change risk
assessment: Understanding risks involved in changing software
requirements.” in Software Engineering Research and Practice.
Citeseer, 2006, pp. 966–971.

[26] G. Kaur and K. Bahl, “Software reliability, metrics, reliability im-
provement using agile process,” International Journal of Innovative
Science, Engineering & Technology, vol. 1, no. 3, pp. 143–147,
2014.

[27] J. Zhu, BugRepo, July 2018 (accessed November, 2019), https://
github.com/logpai/bugrepo.

[28] H. Mahfoodh and M. Hammad, “Bug-fix time prediction using
non-linear regression through neural network,” in 3rd Smart Cities
Symposium (SCS 2020), vol. 2020. IET, 2020, pp. 622–627.

[29] H. Mahfoodh and Q. Obediat, “Software risk estimation through
bug reports analysis and bug-fix time predictions,” in 2020 Interna-
tional Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT). IEEE, 2020, pp. 1–6.

[30] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv preprint arXiv:1609.04747, 2016.

[31] B. Gao and L. Pavel, “On the properties of the softmax function
with application in game theory and reinforcement learning,” arXiv
preprint arXiv:1704.00805, 2017.

[32] J. Dattorro, Convex optimization & Euclidean distance geometry.
Lulu. com, 2010.

[33] L. Hiew, “Assisted detection of duplicate bug reports,” Ph.D. dis-
sertation, University of British Columbia, 2006.

[34] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
A system for large-scale machine learning,” in 12th {USENIX} sym-

posium on operating systems design and implementation ({OSDI}
16), 2016, pp. 265–283.

[35] A. Joshi, Word2Vec by implementing it in tensorflow, July 9,
2017 (accessed February, 2020), https://towardsdatascience.com/
learn-word2vec-by-implementing-it-in-tensorflow-45641adaf2ac.

[36] S. Gandrabur, G. Foster, and G. Lapalme, “Confidence estimation
for nlp applications,” ACM Transactions on Speech and Language
Processing (TSLP), vol. 3, no. 3, pp. 1–29, 2006.

Hussain Mahfoodh is a M.Sc. Software
Engineering student in the college of IT
at the University of Bahrain. He received
his B.Sc. in Computer Engineering from
University of Bahrain. He has more than
10 years experience working in software
development and technical operations in dif-
ferent business fields (Software, Govern-
ment, Telecommunication, Retail, and mul-
tiple Startups). His research interest includes

Artificial intelligence, software engineering, and computer secu-
rity.

Mustafa Hammad is an Associate Profes-
sor in the Department of Computer Science
at the University of Bahrain. He received
his Ph.D. in Computer Science from New
Mexico State University, USA in 2010. He
received his Masters degree in Computer
Science from Al-Balqa Applied University,
Jordan in 2005 and his B.Sc. in Computer
Science from The Hashemite University, Jor-
dan in 2002. His research interests include

machine learning, software engineering with focus on software
analysis and evolution.

http:// journals.uob.edu.bh

