
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Feb-2022)

https://dx.doi.org/10.12785/ijcds/110161

ClassifyWiki: An Experimental Study on Building
Generic-Type Wikipedia Classifiers

Michel Naim Gerguis1, M. Watheq El-Kharashi2 and Cherif Salama3,2

1Microsoft, Cairo, Egypt
2Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt

3The American University in Cairo, Cairo, Egypt. Ain Shams University, Cairo, Egypt

Received 26 Aug. 2021, Revised 28 Jan. 2022, Accepted 1 Feb. 2022, Published 15 Feb. 2022

Abstract: This paper introduces ClassifyWiki, a framework that automatically generates Wikipedia-based text classifiers using a small
set of positive training articles. ClassifyWiki aims to simplify the process of collecting hundreds or thousands of Wikipedia pages with
the same entity class, using a set of positive articles with sizes possibly as small as 10 pages. The customer could define the small
initial set at any different level of granularity (i.e. people, sports people, or even footballers). ClassifyWiki leveraged many previous
efforts in Wikipedia entity classification in order to build a generic framework that works for any entity at any level of granularity with
few examples. The framework does not only offer a set of pre-built models for many entity classes but a tool tuned through hundreds of
experiments to generate models for any given set of articles. To test the framework, we manually tagged a data set of 2500 Wikipedia
pages. This data set covers 808 unique entity classes on different levels of granularity. ClassifyWiki was tested over 103 different entity
classes varying in size down to only 5 positive articles. On our blind set, ClassifyWiki achieved a macro-averaged f1-score of 83%
with 96% precision and 74% recall using 50 or more positive articles.

Keywords: ClassifyWiki, Entity Classification, Fine-Grained Entity Classification, Text Classification, Wikipedia Classification.

1. Introduction
Machine understanding attracted lots of researchers in

the last decade. Extracting the types, entity classes, of any
text is a main task for machine understanding. Hoffart
et al. [1] simply state it as converting strings to things.
Fine grained classification is urgently needed to support a
better experience in machine understanding [2]. Wikipedia
is considered a great source for many knowledge extraction
systems from free text [3], [4] and from its rich structured
and semi-structured data [5], [6]. Wikipedia hyperlinks
inspired lots of named entity extractors [2], [7].

In this paper, we present ClassifyWiki, a framework
that can automatically build a reliable binary classifier for
any input set of Wikipedia articles. This set can be of any
level of granularity. For example, it can be a set of pages
about female singers, rock albums, Spanish football clubs,
populated places, or even natural disasters. The smaller
the set size is, the better for the real world scenarios. We
defined the problem as entity classification problem as we
mainly target entities not generic concepts. We’re motivated
to build a framework that is not bounded by specific set
of entity classes like previous efforts. Generating a reliable
classifier for any entity class in any level of granularity is the

goal of this framework. ClassifyWiki dose not target head
entity classes only but tail ones that is why we tuned Clas-
sifyWiki to the best marco-averaged f1-scores. Currently,
many knowledge bases (KBs) like Dbpedia contain precise
structured information, ClassifyWiki could be questionable.
Although precise information could be easily grasped from
KBs due to the human intervention, they suffer from the
limited coverage and probably outdated or incomplete infor-
mation. Having such a lightweight framework that runs over
any Wikipedia dump using a small set of positive articles
could help bridging this gap.

Lots of applications could emerge using ClassifyWiki.
[1] introduced a new flavor for Culturomics [8] by shifting
the analytics direction from spotting trends of strings to
things, entities, and also categories from news articles. Clas-
sifyWiki adds a new experience for the Culturomics projects
by ingesting lots of fine grained classifiers to track any type
of interest. This framework is a major building block in an
culturomics-like analytics framework for Wikipedia content
[9].

Although ClassifyWiki is about entity classification
(song, novel, or football player) not topic modeling (sports,

E-mail address: mgerguis@microsoft.com, watheq.elkharashi@eng.asu.edu.eg, cherif.salama@aucegypt.edu

http:// journals.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/110161
http://journals.uob.edu.bh

754 Michel Gerguis, et al.: ClassifyWiki: An experimental study on building generic-type wikipedia classifiers

finance, or entertainment), it can be easily experimented
to model topics. Every Wikipedia page represents the his-
tory of an entity or a concept which is not the case in
web/text documents. To model sports, ClassifyWiki could
be positioned to generate classifiers for sports people, clubs,
and stadiums collecting lots of articles starting from few
examples. Starting from tens of pages, ClassifyWiki would
collect a reasonable size of training data for a generic
text classifier to model sports using non-Wikipedia spe-
cific features such as text grams. Hence, ClassifyWiki can
reduce the manual tagging effort needed as long as the
modeled topic is covered by Wikipedia pages like [10].
The same experience could be extended to model topics in
many languages as ClassifyWiki is a language independent
framework. Using few English seeds, ClassifyWiki would
generate many articles in the same entity classes which can
be mapped using Wikipedia language links to the desired
language. Then, the framework could build a new classifier
using the mapped articles.

ClassifyWiki could also, help in fine-grained Named
Entity Recognizers (NERs). Many NERs are built using
Wikipedia hyperlinks after classifying Wikipedia articles.
ClassifyWiki could step in to build NERs for fine-grained
entity classes or any user defined ones that will be very
useful in information extraction tasks [2], [11].

Our main contributions could be summarized as follows:

• ClassifyWiki, a framework to build generic-type
Wikipedia classifiers. ClassifyWiki automates the
process of generating Wikipedia classifiers out of
small-sized sets of positive articles. The input set can
potentially have as little as 10 pages (Sections 5, 6).

• A survey of Wikipedia-based classification features
suggested by the literature along with an analysis
of the dominance of each one across the whole
Wikipedia dump (Section 4).

• A detailed analysis and comparison of the contri-
bution of every feature (Sections 5-B, 6-C) along
with an experimentation study using forward feature
selection. This feature set targets reducing the di-
mensionality in order to support the small number
of training instances (Sections 5-C, 6-D).

• A new data set of 2500 randomly selected and labeled
Wikipedia articles. Whenever applicable, each page
was manually tagged with multiple labels of various
granularity levels. In total the data set covers 808 fine-
grained classes (Section 3).

ClassifyWiki’s implementation and the data set are made
available for the research community upon request.

2. RelatedWork
In this section we briefly summarize some efforts re-

lated to Wikipedia articles classification and compare our

framework against them. ClassifyWiki cannot be directly
compared with previous Wikipedia classifiers since it builds
a new generic layer that complements them. Most of the
previous efforts targeted specific classes (person, location,
and organization) and tuned their systems consequently
whereas ClassifyWiki provide a framework to generate
classifiers for any given set of pages.

In previous efforts, mainly heuristic rules were adopted
to classify Wikipedia [12], [13], [14]. DBpedia [15] and
Freebase [16] are the largest well-known sources of struc-
tured data, knowledge bases (KBs), out of Wikipedia based
on heuristics. The patterns mainly relied on infoboxes,
coordinate templates, and keywords derived from the first
sentences or the categories. Although the patterns showed
good results in terms of precision, the recall was an issue
due to their limited coverage. YAGO ontology [17], [18]
was introduced using heuristics on Wikipedia structured
and semi-structured resources. YAGO classifies the pages
relying on Wikipedia’s categorization scheme. Heuristics
were used in extracting the page type out of its categories
using the stem of the plural head noun of the category. It
cannot collect Wikipedia pages for any user-defined entity
class as it is bounded by Wikipedia categorization. Heuristic
patterns are not scalable. That is why building a classifier
for a new entity class would require a new list of patterns.
ClassifyWiki is not about heuristic patterns in order to scale.
The framework can build a classifier for any user-defined set
of Wikipedia articles whether it is a coarse-grained entity
class, a fine-grained entity class, or even a different concept.

A novel approach was introduced to generate NER train-
ing data out of Wikipedia using hyperlinks after classifying
the articles [7]. A heuristic-based bootstrapping approach
to classify Wikipedia was adopted depending mainly on
category type and definition sentence type heuristics [19],
[17]. Bhole et al. [12] classified Wikipedia pages using
the page tokens in a pre-processing step in their dynamic
timeline generation approach. Also, Kazama and Torisawa
[19] experimented leveraging the types of Wikipedia pages
as features in NER. They introduced deducing the page type
from the head noun of the first sentence after a copula, is,
was, are, or were. Dakka and Cucerzan [20] introduced two-
views concept for any page (local and global). A local view
in which the features are derived from the page itself and a
global one inspired by Wikipedia hyperlinks, the incoming
links for any page from another one. The first paragraph
was a major source for features used in previous efforts.

Lots of efforts tackled the problem as a text classification
problem adopting support vector machine (SVM) based
classifiers. Most of the efforts were directed mainly to 3
classes: persons, locations, and organizations. A miscella-
neous class was considered in some previous efforts in order
to collect entities that do not fit in the previous 3 classes and
improve the precision of the overall system. ClassifyWiki
leveraged those previous systems. Although they tackled
the classification process of few top entity classes, the huge

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 753-762 (Feb-2022) 755

effort in feature engineering is valuable for ClassifyWiki.

Targeting non-English Wikipedia classifiers [21] and
language independent feature sets was the evolution of this
problem in order to use the same classifier in any Wikipedia
language [22]. The problem then, extended to target fine-
grained classification. Tkachenko et al. [23] tackled 15
entity classes. ClassifyWiki was inspired by the idea to
enable fine-grained and user-defined entity classes as well.
ClassifyWiki tackled the problem of building a framework,
which can generate a classifier for any input Wikipedia
pages not to generate a model for some predefined classes
in any language.

Most of the previous systems collected and labeled
their own dataset. No unified dataset was used in the
task. Some systems used random sampling out of the
whole dump. Other systems used heuristics after labeling
a random sample whether to automatically tag more pages
using Wikipedia list pages [20] or to select popular pages
to be manually tagged using incoming links count and
existance of the page in many langauges as popularity
measures [7], [24]. Collecting lists from web pages given
a sample for each class was another selection process that
was used [23]. Some concerns were raised against random
sampling in the dataset selection process in order not to
miss important types like countries in location class. We
were in favor of random sampling technique to represent
the whole spectrum.

The number of training examples considered in previous
efforts is the range of thousands of articles. ClassifyWiki
aimed to minimize the number of training examples. We
experimented with different sizes as little as only five
examples for each entity class.

We can summarize the novelty of ClassifyWiki frame-
work against previous similar efforts as follows:

• Offering hundreds of pre-built classifiers for all entity
classes in ClassifyWiki dataset.

• The ability to classify coarse-grained, fine-grained,
and user-defined entity classes.

• The considered number of training articles as little as
few tens of examples.

3. Data Set
In this section, we present the data set we built. We also

explain why we had to construct one, how we constructed
it, including the challenges we encountered, and finally we
give some interesting insights about it. A 2015 Wikipedia
English XML dump was used containing 4.85 million
pages.

A. Rationale
Previously developed data sets started with the idea of

collecting pages around targeted classes so the resultant

could be considered a class-driven data set. Even if the
selection methodology was set to random, all pages out
of the targeted classes were labeled with an OUT tag.
Also some data sets were biased to popular pages or pages
with rich content. We aimed to have a data-driven data set
so we did not select a list of types beforehand, leaving
the random selection of the pages to drive the judgment
process. We have concerns with biasing previous data sets
to head entities ignoring the long tail, which is the majority.
We mean by tail entities, entities which have very limited
features and are possibly marked as stubs in Wikipedia. So
we decided to build our own data set with some constraints:

• Ensure randomness to represent the real case.

• Each page could have tags in different level of gran-
ularity. (e.g., Petros Christo is a guitarist, a musician,
and a person).

• Each page can have multiple tags even in the same
level of granularity. (e.g., Bob Golic is a footballer,
an actor, and an announcer).

B. Data Set Building Process
We implemented a simple application that randomly

selects a Wikipedia page and opens it in the browser to
fasten the judgment process. The tool enables the judge to
tag each page with multiple classes whether fine or coarse
grained. We have managed to tag 2500 Wikipedia pages at
a rate of 100 pages per hour after ramping up.

C. Entity Classes
We invistigated three ontologies: The extended named

entity hierarchy [25], DBPedia ontology1, and Schema.org2.
Although Sekine’s set considered a detailed one containing
about 150 classes, lots of fine grained classes we faced in
our judgment process were not covered. After we started
using it, we experienced lots of misses, so we decide to
switch to Schema.org. We have a very good experience with
Schema.org as. By finishing our judgment phase over 2500
pages, we had 3 tiers of refinement and unification to make
sure of consistent behaviors. The inter annotator agreement
was around 96%. Our data set recorded 808 unique classes.
Table I shows some selected types along with their densities
(i.e., the number of pages labeled with that type).

D. Data Set Analysis
Our coarse-grained classes could be grouped as:

• Main classes like: persons, locations, organizations,
events, products, awards, and species.

• Wikipedia specific classes like: disambiguation pages,
list pages, and chronology pages.

1http://mappings.dbpedia.org/server/ontology/classes/ (January 2022)
2http://schema.org/docs/full.html (January 2022)

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

756 Michel Gerguis, et al.: ClassifyWiki: An experimental study on building generic-type wikipedia classifiers

TABLE I. Sample classes and their densities from ClassifyWiki’s data set (2500 Wikipedia articles).

Class [density] Class [density]
award [8] event > election [7]
event > crime - attack [6] event > natural disaster [2]
event > sports competition > football [20] event > war - battle [10]
location > architectural structure > building > hospital [1] location > architectural structure > building > museum

[8]
location > architectural structure > building > worship place
> church [13]

location > architectural structure > infrastructure > line
> road > highway [12]

location > architectural structure > infrastructure > station
> railway station [21]

location > architectural structure > sports venue - sta-
dium [5]

location > landform > mountain [15] location > landform > river [19]
location > populated place > settlement > city [10] location > populated place > settlement > village [135]
organization > company [43] organization > company > bank [2]
organization > group > band - orchestra [34] organization > local business > restaurant [4]
organization > educational institution > school [14] organization > political organization > political party [9]
organization > ngo [3] person > actor [47]
person > musician > guitarist [8] person > politician [73]
person > sports player > athletics > track and field [17] product > creative work > broadcast program > tv series

[24]
product > creative work > book > novel [25] product > creative work > music > song [35]
product > creative work > picture > painting [5] product > vehicle > ship [13]
species > animal [106] species > plant [30]

TABLE II. Number of unique classes for each targeted slice in
ClassifyWiki data set, training set, development set, and test set.

Slice
Num.
Pages
(>=)

All
Set
(2500)

Train
Set
(1000)

Dev.
Set
(1250)

Test
Set
(250)

50 pages 30 13 18 1
25 pages 46 25 27 5
10 pages 106 50 58 19
5 pages 201 103 112 36
1 page 808 543 535 216

• Generic class that represents a definition or a concept
like: Solar zenith angle, Snow boating, and Focal
length.

Since our target is to build a random set, we assessed
the randomness of the data set by applying 2 heuristic rules:

• We noticed in the judgment phase that most of the
pages of species class contained a taxobox template.
By applying a simple heuristic to collect all pages
with this template, we found 0.28M out of 4.85M
(5.8%).

• As advised by the literature, person pages could be
identified by persondata templates. Applying this rule
resulted in 1.20M out of 4.85M (24.7%).

Table III summarizes the percentage of each one of

TABLE III. Top ClassifyWiki data set classes’ percentages.

Class Percent Class Percent
Person 27% Location 21%
Organization 9% Event 13%
Product 6% Species 6%

our top 6 classes versus the whole set. We found a good
correlation between the results of the 2 previous heuristics
and the percentages table. We splitted our data set into 3
parts: 1000 pages for training, 1250 as a development set,
and 250 as a blind one. As ClassifyWiki targets to build
generic-type classifiers for any given input set while trying
to minimize the training instances as much as possible,
we sliced our data set putting a minimum threshold for
the number of pages in any class in order to experiment
separately with each slice. Table II summarizes the number
of classes fulfilling the density range of each slice of
interest.

4. Feature Set
This section presents an exhaustive list of features

collected from previous work in Wikipedia classification
and also from some other sister tasks like fact extraction,
linking, and disambiguation. The feature set could be classi-
fied into 2 main groups; local and global features. Also, we
illustrate a study of the dominance of each feature across
the whole dump.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 753-762 (Feb-2022) 757

A. Local Features
Local features are features extracted at the page level,

from the page content.

1. Category Type: Introduced by Suchanek et al. [17].
Categories are tokenized and pos tagged then the first
plural noun is selected and stemmed (e.g., “North African
countries” Wikipedia category contains the page “Libya”
so its type would be “country”). We noticed that some
categories have a sort of coupling that we can leverage
like “Buildings and structures”, so we extended the rule
to accept it.

2. Category Grams: n-gram representation of tokenized
categories.

3. Header Grams: n-gram representation of tokenized
sections and subsections.

4. Page Title Grams: n-gram representation of tok-
enized page titles after removing the disambiguation suffix
(e.g., “1989 film” considered a disambiguation suffix for the
page “Batman (1989 film)”).

5. Disambiguation Suffix Grams: n-gram representa-
tion of tokenized disambiguation suffixes.

6. First Sentence Grams: n-gram representation of to-
kenized first sentences. Dakka and Cucerzan [20] observed
that a human can judge a page using only the first sentence.

7. Page Text Grams: n-gram representation of tok-
enized page contents.

8. Infobox Grams: n-gram representation of tokenized
infobox attributes.

9. Selected Templates: Whether the page contains each
one of the 3 templates: coord (co-ordinates), persondata,
and taxobox.

10. Sidebar Template Grams: n-gram representation
of tokenized sidebars.

11. Definition Sentence Type: The head noun after the
copula (is, are, was, or were) in the first sentence [19]
(e.g., “Existere” has a definition sentence of “is a Canadian
magazine” so its type would be “magazine”).

12. Definition Sentence Grams: n-gram representation
of the definition sentence, not to account only for the head
noun but also to support classes like: “Nationality book”,
“Sport player”, or “Genre song”.

B. Global Features
These features are corpus level features extracted from

the whole dump out of the page content.

1. Context Grams: n-gram representation of tokenized
context. Context is represented by all sentences having a
hyperlink to the page in hand.

TABLE IV. Feature dominance.

Feature % Feature %
Category Type 84.6% Header Grams 93.0%
Category Grams 93.9% SideBar Grams 0.1%
Disamb. Suffix Grams 11.5% Infobox Grams 50.9%
Page Title Grams 100.0% Coord 14.4%
Page Text Grams 99.8% PersonData 24.8%
First Sentence Grams 99.8% Taxobox 5.8%
Def. Sentence Grams 77.4% Context Grams 73.5%
Def. Sentence Type 77.4% List Page Type 43.3%
List Page Grams 47.1%

2. List Page Grams: n-gram representation for each
tokenized list page title that includes the target article [23].
We remove “list, lists, and table of” markers before applying
the rule (e.g., “List of Spanish-language authors” is a list
page contains “Gutierre de Cetina”).

3. List Page Type: Same heuristic adopted in YAGO
was used to introduce the list page type (e.g., “Gutierre de
Cetina” Wikipedia page could have the type “author” as it
is contained in “List of Spanish-language authors”).

C. Features Dominance
We examined the dominance of each feature across the

whole dump to measure its effectiveness. Table IV presents
each feature along with the percent of Wikipedia pages with
this feature.

5. ClassifyWiki Approach
In this section, we present ClassifyWiki’s modules in

both training and testing modes. Also, we summarize our
efforts in experimenting with each feature to assess its con-
tribution. Finally, we introduce our incremental approach in
combining the features till reaching out our final feature set.

A. ClassifyWiki Modules
The flow of our automated pipeline (see Figure 1) has

2 modes. A training mode in which we experimented to
best tune our framework and a testing one which simulates
the real time usage of the framework. The flow in the
training mode is as follows. Wikipedia parser cleans the
training set pages out of the XML dump. Feature extractor
extracts the selected features for this experiment. Trainer
accepts the positive set, generates a negative one, and
launches the training process to build a new model. While in
testing mode, the parser cleans the pages of the set. Feature
extractor collects the same feature set as in the training
of this experiment. The Evaluator accepts the featured set
along with the model to label the set and generate an
evaluation report.

1. Wikipedia Parser: Responsible for converting the
raw XML dump into a clean form. It eliminates HTML
tags, cleans Wikipedia specific markups, removes tables,
cleans templates, and resolves hyperlinks. Useful structures
removed by the parser are stored in a parallel stream

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

758 Michel Gerguis, et al.: ClassifyWiki: An experimental study on building generic-type wikipedia classifiers

Figure 1. ClassifyWiki pipeline.

for other scenarios like templates. We experimented with
several open source parsers, but we ended up implementing
our own. Also, the parser runs through a pipeline of NLP
components, sentence breaker, tokenizer, stemmer, and a
POS tagger, in order to clean the text and prepare for the
feature engineering step.

2. Feature Extractor: Implements the local and global
features (Section 4). A normalization post processor was
placed to normalize the case, if enabled, and to mask the
numbers, replace digit sequences with a unified marker to
reduce the sparsity.

3. Trainer: Owns the training process. It has 2 main
steps: 1) Negative training data selection. 2) Launching
the training process and serializing the model. As a base-
line module for selecting negative training data, it selects
random pages out of the whole dump in the same size
of the positive training pages. Random selection showed
experimentally its credibility.

4. Evaluator: Owns the evaluation process. Accepting
a model and the featured test data, it launches the testing
process and calculates the macro-averaged precision, recall,
and f1-score for each slice of classes (Table II).

B. Feature Contribution
After building the baseline framework, our goal was

to asses the value of each feature to avoid adding useless
features. We conducted a series of experiments to build a
classifier for each feature on its own then we compared
them all in order that we can select a reduced feature set
to reduce the dimensionality. Only Bhole et al. [12], to the
best of our knowledge, reported using n-grams other than
uni-grams. Effect of adding more n-grams to our feature
set was addressed in ClassifyWiki. We checked the value
of adding different combinations of n-grams (uni, bi, tri, uni
+ bi, bi + tri, uni + tri, and uni + bi + tri grams). A series
of 7 experiments were conducted for each feature to detect
the best n-grams to be used (Section 6-C).

C. Feature Selection
Forward feature selection was adopted to reduce the

set of features in order to fit with a small number of
training examples. We started to combine the features in one

TABLE V. Different systems f1-scores on our test set.

System >=
50

>=
25

>=
10

>=
5

Tkachenko et al. [23] 73% 61% 55% 36%
Saleh et al. [22] 76% 64% 50% 33%
Tardif et al. [24] 60% 52% 35% 21%
Nothman et al. [7] 70% 58% 48% 33%
Dakka & Cucerzan [20]
(Baseline)

30% 25% 16% 11%

Dakka & Cucerzan [20]
(Full Set)

38% 31% 19% 11%

Bhole et al. [12] 31% 26% 17% 10%
ClassifyWiki (Baseline) 53% 41% 29% 19%
ClassifyWiki (Final) 83% 67% 58% 40%

classifier from the best performing ones based on feature
contribution’s reports. In an incremental approach, we have
added the features with the best n-grams representation one
by one. We checked whether the newly added feature is
adding value or just increasing the dimensionality without
any gain (Section 6-D).

6. Experiments and Results
In this section, we introduce our baseline results, our ex-

perience with simulating lots of previous systems, features
contribution, and our incremental approach in combining
the features. Finally, we report the results of testing our
final ClassifyWiki’s implementation.

A. Previous Techniques
Although no previous system targeted a generic platform

to generate binary classifiers given tens of positive training
pages, we tried to simulate the behavior of each previ-
ous system’s feature set. Most of the systems approached
Wikipedia classification as a text classification task adopting
an SVM as the classification algorithm. We learned from
almost all of them that SVM is empirically the best one
to be used. We had many variables: different test/training
sets and different tagging guidelines which might lead to
unfair comparisons so we decided to unify the comparison
platform as follows:

• Train and test all systems using our dataset.

• Use the same SVM classification algorithm.

• Use the same module for negative data selection per
class.

• The only variable would be the feature set.

It worth mentioning here that as all previous systems
started with a set of classes in hand, there was no problem
in how to collect negative training data. Simply the training
data for other classes acted as negative for one class.
ClassifyWiki introduces the idea that the consumer should
only provide tens of positive training pages. Using our

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 753-762 (Feb-2022) 759

TABLE VI. Feature contribution f1-scores on our dev. set - Best 3
bolded.

Feature
Group

Best
Grams

>=
50

>=
25

>=
10

>=
5

Category Type Uni 52% 44% 37% 29%
Category Uni/Bi 60% 52% 43% 33%
Headers Uni 37% 31% 25% 16%
First Sent. Uni/Bi 57% 50% 39% 27%
ListPage Type Uni 13% 10% 8% 7%
List Page Uni/Bi 12% 10% 8% 7%
Disamb. Suffix Uni 7% 5% 6% 4%
Page Title Uni 13% 14% 11% 9%
Def. Sent. Uni 56% 50% 44% 31%
Def. Sent. Type Uni 55% 50% 43% 31%
Infobox Uni 56% 43% 41% 32%
Templates Uni 32% 21% 14% 8%
Context Uni 10% 8% 7% 5%
Page Text Uni/Bi 30% 22% 13% 9%

automated platform, we had an experiment with each of the
feature sets proposed by previous systems. All features were
added with different prefixes as each system advised after
tokenization, stemming, and normalization (lower casing
and numbers masking) as a bonus step from ClassifyWiki.
As we are interested in minimizing the number of training
instances needed, we reported the macro-averaged f1-score
of each system across different slices based on the number
of positive training instances (Table II). Table V summarizes
the scores of each slice using our test set (250 pages).

B. ClassifyWiki Baseline
To introduce our baseline, we just collected all the

features of the previous systems to be our feature set. Table
V illustrates our baseline results with the tag “ClassifyWiki
(Baseline)” on the test set (250 pages).

C. Feature Contribution
Table VI illustrates our efforts analyzing the contribution

of each feature. The table presents the features one by
one along with the best n-gram representation with macro-
averaged f1-scores for each slice based on the positive
training pages size on our development set. Simply, we
can find that the best performing features are the ones
that represent fine grained types like categories, infoboxes,
and definition sentences. Worth mentioning that category
n-grams performed better than category type. For instance,
railway station, power station, and radio station, 3 classes
in our dataset, all had the same type, station, when category
type feature was used.

D. Feature Selection
Table VII summarizes our set of experiments to combine

all features in an incremental approach starting from the
best performing ones based on Table VI. We report macro-
averaged f1-scores for each slice based on the positive
training data size over our development set (1250 pages).

TABLE VII. Features combinations f1-scores on our dev. set - Best
bolded.

Features >=
50

>=
25

>=
10

>=
5

1 Category + Infobox 65% 55% 46% 36%
2 1 + First Sent. 74% 59% 50% 37%
3 2 + Category Type 75% 62% 52% 38%
4 3 + Def. Sent. 76% 63% 53% 40%
5 4 + Def. Sent. Type 76% 65% 54% 41%
6 5 + Headers 77% 65% 55% 42%
7 6 + Templates 78% 66% 55% 42%
8 7 + Page Text 52% 40% 26% 17%
9 7 + Context 59% 50% 38% 25%
10 7 + Page Title 76% 65% 55% 43%
11 7 + List Page 78% 65% 54% 41%
12 7 + List Page Type 78% 66% 55% 42%
13 7 + Disamb. Suffix 78% 66% 55% 43%

TABLE VIII. Final results on our test set.

Metric >=
50

>=
25

>=
10

>=
5

Precision 96% 83% 71% 48%
Recall 74% 59% 55% 39%
F1-Score 83% 67% 58% 40%

The finally selected feature set for ClassifyWiki noted with
index 13. Degradation in numbers could be easily tracked
for features with lots of noisy terms like page text and
context features specially with small training sets.

The last step, the 13th one, grouped almost all of the
classes around the average band. We set the objective of
the system to have good results for any class not to tune
it for head classes, that is why we chose macro-average
scheme. Almost all of the classes had deep regressions in
steps eight and nine related to page text and contextual
features which added lots of noisy features. We need to
invest more efforts to leverage those features by picking
just the important terms out of them. We see that this is
acceptable when we target fine grained classes especially
with low sized input training set. Effective gains showed
up early in the curve in the second or the third steps
while minimal additions can be noticed at the right hand
side. The cause behind this observation is that, we started
integrating the best performing features at first as Table VI
suggested. Footballers (person > sports player > football),
disambiguation, and settlements (location > populated
place > settlement) could be considered showcases in the
way that the feature design boosted their f1-scores. Other
ones like actors (person > actor) sacrificed for the sake of
the whole framework. In the final step, the actors class is
not at its best score while ClassifyWiki average score was
getting better so we had to sacrifice some classes in order
to favor the whole system.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

760 Michel Gerguis, et al.: ClassifyWiki: An experimental study on building generic-type wikipedia classifiers

E. Final ClassifyWiki System
We report our final scores on the test set (250 pages) in

Table V using the tag “ClassifyWiki (Final)” and with more
details in Table VIII. Tables (V, VIII) report on the test set
while Tables (VI, VII) on the development set. Although
the test set is pretty smaller than the development one, the
results are in the same range.

Table IX summarizes final f1-scores for sample classes
on our development set. The level of granularity affects
the classification accuracy. The table shows that evaluation
scores of some very specific classes like schools, albums,
and movies were extremely high while they were low
for generic or complex classes like sports competitions,
companies, and singers. In the same logical group (i.e. pro-
fessions), ClassifyWiki was able to build a reliable classifier
for baseball players, a moderate one for politicians, and a
weak one for singers.

7. Conclusion
We implemented a framework to build classifiers given

any set of pages in any level of granularity possibly in
any size. The more the size of the input set, the better
the resulted classifier’s accuracy. We report 83% macro-
averaged f1-score using 50 positive training instances. We
tested our framework over more than 100 entity classes us-
ing our dataset based on schema.org. Although schema.org
was used to evaluate the framework over more than 100
classes, ClassifyWiki is not bounded by it nor Wikipedia
categorization system, as a schema matching task. In real
time, the input training data is left to the user whether to
follow the ontology or not as our output is not models for
some classes but a framework to build models. Classify-
Wiki does not learn some specific classes like all previous
systems but, theoretically, it can generate classifiers for any
entity class.

8. FutureWork
Bootstrapping techniques could be experimented to

boost our recall [7]. Some thoughts could be subject for
experimentation: 1) Number of bootstrapping rounds. 2)
Whether to use all features in the same round or one feature
per round 3) Selection of new data points for the next round
to be from positive, negative, border line, or confident ones.

ClassifyWiki’s method to select the negative training
instances, random sampling, could be enhanced. Although
it models the whole spectrum, it lacks modeling border
line cases. For instance, to model football players, the
representation of sister entity classes like basketball players
will not be that big. Adding more instances from sister types
in the same generic one as negative data could help.

For feature engineering, we can leverage hearst pat-
terns, definites, apposition and copula, common pronoun
to enable the gender discrimination, and the most frequent
“the XX” pattern [26], [4]. Hypernym discovery methods
could be helpful also [27], [28]. We did not experiment
with tables [29]. We need to invest more in contextual

TABLE IX. F1-Scores for sample entity classes over our test set
(250 articles).

Entity Class F1-Score
event > sports competition > football 1.00
location > architectural structure > infrastruc-
ture > road

1.00

organization > educational institution
> school

1.00

person > sports player > athletics 1.00
person > sports player > baseball 1.00
product > creative work > broadcast program
> tv series

1.00

product > creative work > game 1.00
product > creative work > movie 1.00
product > creative work > music > album 1.00
species 1.00
person 0.97
species > animal 0.97
person > sports player 0.94
location > populated place 0.92
location > populated place > settlement > vil-
lage

0.91

person > sports player > football 0.89
disambiguation 0.88
species > animal > insect 0.87
location > populated place > settlement 0.85
product > creative work > music 0.85
product 0.77
product > creative work 0.68
location > architectural structure > infrastruc-
ture > station

0.67

organization > educational institution 0.67
organization > group > band - troupe - chorus
- orchestra

0.67

organization > sports club > football 0.67
person > lawyer 0.67
organization 0.65
event 0.63
person > actor 0.57
product > creative work > book 0.55
product > creative work > music > song 0.55
location > architectural structure > building
> worship place

0.50

person > politician 0.50
product > creative work > book > novel 0.50
person > musician 0.43
species > plant 0.40
event > sports competition 0.33
organization > company 0.29
person > musician > singer 0.18

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 753-762 (Feb-2022) 761

features, especially by adding more hyperlinks [4] or using a
disambiguator [30]. By adding more hyperlinks, the context
could grow more and more enabling a better representation.

Some sort of comparisons could be tackled to test
ClassifyWiki against some knowledge bases like DBPedia
to assess its edge. Potential gains could be summarized in
better recall and classes which are not supported in the
knowledge base, user-defined classes.

As we experience ClassifyWiki’s potential, we would
like to formaly evaluate the whole experience in many
Wikipedia languages using language links [5], [21]. Col-
lecting a very small list of museums in English, could result
in a French or Chinese museum extractor.

Another potential direction is to plug ClassifyWiki in
different NLP tasks. We plan to automate the process of
building multilingual fine-grained NERs (museum, road,
church, footballer, guitarist) and user-defined ones (worship
place, sports-person, musician). The missing block is a
framework to generate many pages around this class. Then,
we can tag hyperlinks to produce NER training data.

In parallel, we plan to experiment with generic text clas-
sification, topic modeling, in any language. With samples of
few entity classes in the topic of interest, ClassifyWiki can
get thousands of pages to be mapped to many languages
through the language links acting as training data for topic
modeling, if sufficient, or after using them as seeds for
another round in the target language.

References
[1] J. Hoffart, D. Milchevski, and G. Weikum, “Aesthetics: analytics

with strings, things, and cats,” in Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge
Management, 2014, pp. 2018–2020.

[2] X. Ling and D. S. Weld, “Fine-grained entity recognition,” in
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[3] R. Sutoyo, C. Quix, and F. Kastrati, “Factrunner: A new system
for nlp-based information extraction from wikipedia,” in Interna-
tional Conference on Web Information Systems and Technologies.
Springer, 2013, pp. 225–240.

[4] F. Wu and D. S. Weld, “Open information extraction using
wikipedia,” in Proceedings of the 48th annual meeting of the
association for computational linguistics, 2010, pp. 118–127.

[5] F. Mahdisoltani, J. Biega, and F. Suchanek, “Yago3: A knowledge
base from multilingual wikipedias,” in 7th biennial conference on
innovative data systems research. CIDR Conference, 2014.

[6] V. Nastase and M. Strube, “Transforming wikipedia into a large
scale multilingual concept network,” Artificial Intelligence, vol. 194,
pp. 62–85, 2013.

[7] J. Nothman, J. R. Curran, and T. Murphy, “Transforming wikipedia
into named entity training data,” in Proceedings of the Australasian
Language Technology Association Workshop 2008, 2008, pp. 124–
132.

[8] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray,
G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig et al.,
“Quantitative analysis of culture using millions of digitized books,”
science, vol. 331, no. 6014, pp. 176–182, 2011.

[9] M. N. Gerguis, C. Salama, and M. W. El-Kharashi, “Wikitrends:
Unstructured wikipedia-based text analytics framework,” in In-
ternational Conference on Applications of Natural Language to
Information Systems. Springer, 2017, pp. 45–57.

[10] P. Wang, J. Hu, H.-J. Zeng, and Z. Chen, “Using wikipedia knowl-
edge to improve text classification,” Knowledge and Information
Systems, vol. 19, no. 3, pp. 265–281, 2009.

[11] M. N. Gerguis, C. Salama, and M. W. El-Kharashi, “Asu: An
experimental study on applying deep learning in twitter named entity
recognition.” in Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT), 2016, pp. 188–196.

[12] A. Bhole, B. Fortuna, M. Grobelnik, and D. Mladenic, “Extracting
named entities and relating them over time based on wikipedia,”
Informatica, vol. 31, no. 4, 2007.

[13] C. Bøhn and K. Nørvåg, “Extracting named entities and synonyms
from wikipedia,” in 2010 24th IEEE International Conference on
Advanced Information Networking and Applications. IEEE, 2010,
pp. 1300–1307.

[14] A. E. Richman and P. Schone, “Mining wiki resources for multi-
lingual named entity recognition,” in Proceedings of ACL-08: HLT,
2008, pp. 1–9.

[15] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyga-
niak, and S. Hellmann, “Dbpedia-a crystallization point for the web
of data,” Journal of web semantics, vol. 7, no. 3, pp. 154–165, 2009.

[16] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: a collaboratively created graph database for structuring
human knowledge,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, 2008, pp. 1247–
1250.

[17] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of
semantic knowledge,” in Proceedings of the 16th international
conference on World Wide Web, 2007, pp. 697–706.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large
ontology from wikipedia and wordnet,” Journal of Web Semantics,
vol. 6, no. 3, pp. 203–217, 2008.

[19] K. Torisawa et al., “Exploiting wikipedia as external knowledge
for named entity recognition,” in Proceedings of the 2007 joint
conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL),
2007, pp. 698–707.

[20] W. Dakka and S. Cucerzan, “Augmenting wikipedia with named en-
tity tags,” in Proceedings of the Third International Joint Conference
on Natural Language Processing: Volume-I, 2008.

[21] J. Zhou, B. Li, and Y. Tang, “Classifying articles in chinese
wikipedia with fine-grained named entity types,” Journal of Com-
puting Science and Engineering, vol. 8, no. 3, pp. 137–148, 2014.

[22] I. Saleh, K. Darwish, and A. Fahmy, “Classifying wikipedia articles
into ne’s using svm’s with threshold adjustment,” in Proceedings of
the 2010 Named Entities Workshop, 2010, pp. 85–92.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

762 Michel Gerguis, et al.: ClassifyWiki: An experimental study on building generic-type wikipedia classifiers

[23] M. Tkachenko, A. Ulanov, and A. Simanovsky, “Fine grained
classification of named entities in wikipedia,” HP Laboratories
Technical Report-HPL-2010-166, 2010.

[24] S. Tardif, J. R. Curran, and T. Murphy, “Improved text categorisation
for wikipedia named entities,” in Proceedings of the Australasian
Language Technology Association Workshop 2009, 2009, pp. 104–
108.

[25] S. Sekine, K. Sudo, and C. Nobata, “Extended named entity
hierarchy.” in LREC, 2002.

[26] P. Cimiano, S. Handschuh, and S. Staab, “Towards the self-
annotating web,” in Proceedings of the 13th international conference
on World Wide Web, 2004, pp. 462–471.

[27] S. P. Ponzetto and M. Strube, “Taxonomy induction based on a
collaboratively built knowledge repository,” Artificial Intelligence,
vol. 175, no. 9-10, pp. 1737–1756, 2011.

[28] A. Ritter, S. Soderland, and O. Etzioni, “What is this, anyway: Au-
tomatic hypernym discovery.” in AAAI Spring Symposium: Learning
by Reading and Learning to Read, 2009, pp. 88–93.

[29] C. S. Bhagavatula, T. Noraset, and D. Downey, “Methods for ex-
ploring and mining tables on wikipedia,” in Proceedings of the ACM
SIGKDD workshop on interactive data exploration and analytics,
2013, pp. 18–26.

[30] R. Mihalcea and A. Csomai, “Wikify! linking documents to encyclo-
pedic knowledge,” in Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, 2007,
pp. 233–242.

Michel Naim Gerguis Michel received his
B.Sc. and M.Sc. in computer engineering
from Ain Shams University (ASU), Cairo,
Egypt in 2012 and 2017 respectively. He
is a data and applied science manager in
Microsoft Egypt. His research internets and
experiences span natural language process-
ing, data analytics, social media, and knowl-
edge extraction. He is a fan of building
new production systems that deliver insights

based on textual big data. Currently, Michel leads Microsoft
Clarity data science team.

M. Watheq El-Kharashi M. Watheq El-
Kharashi received the Ph.D. degree in com-
puter engineering from the University of
Victoria, Victoria, BC, Canada, in 2002, and
the B.Sc. degree (first class honors) and the
M.Sc. degree in computer engineering from
Ain Shams University, Cairo, Egypt, in 1992
and 1996, respectively. He is a Professor in
the Department of Computer and Systems
Engineering, Ain Shams University, Cairo,

Egypt and an Adjunct Professor in the Department of Electrical
and Computer Engineering, University of Victoria, Victoria, BC,
Canada. His general research interests are in advanced system
architectures, especially Networks-on-Chip (NoC), Systems-on-
Chip (SoC), and secure hardware. He published about 100 papers
in refereed international journals and conferences and authored
two books and 6 book chapters.

Cherif Salama Cherif Salama received his
B.Sc. and M.Sc. degrees from the com-
puter and systems engineering department of
Ain Shams University (ASU) in 2001 and
2006 respectively. In 2010, he received his
Ph.D. degree in computer science from Rice
University, Houston, Texas. He worked as
assistant professor in the Computer and Sys-
tems Engineering Department of ASU and
as adjunct lecturer in the EELU, the MIU,

and the GUC. He served as unit head of the Computer Engineering
and Software Systems program at Ain Shams University (ASU).
He is currently an associate professor in the Computer Science
and Engineering Department at The American University in Cairo.
He was also the key person in the design and development of
the Verilog Preprocessor funded by Intel through the SRC. His
research interests and publications span a wide spectrum includ-
ing computer architecture, CAD, hardware description languages,
programming languages, parallel computing, and AI.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Related Work
	Data Set
	Rationale
	Data Set Building Process
	Entity Classes
	Data Set Analysis

	Feature Set
	Local Features
	Global Features
	Features Dominance

	ClassifyWiki Approach
	ClassifyWiki Modules
	Feature Contribution
	Feature Selection

	Experiments and Results
	Previous Techniques
	ClassifyWiki Baseline
	Feature Contribution
	Feature Selection
	Final ClassifyWiki System

	Conclusion
	Future Work
	References
	Biographies
	Michel Naim Gerguis
	M. Watheq El-Kharashi
	Cherif Salama

