
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Mar-2022)

https://dx.doi.org/10.12785/ijcds/1101101

Fault Tolerance Directed by Service Level Agreement in Cloud
Computing Environments

Samir Setaouti1, Djamel Amar Bensaber2, Reda Adjoudj1 and Mohammed Rebbah3

1Evolutionary Engineering & Distributed Information Systems Laboratory (EEDIS), Computer Science Department,
Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria

2LabRI-SBA Laboratory, Ecole Superieure en Informatique, Sidi Bel Abbes, Algeria
3Computer Science Department, Mustapha Stambouli University of Mascara, Mascara, Algeria

Received 5 Jul. 2021, Revised 4 Feb. 2022, Accepted 9 Mar. 2022, Published 31 Mar. 2022

Abstract: The Cloud Computing environments are susceptible to frequent failures as a result of their dynamic and unstable nature.
Failures have a significant effect on cloud performance and on the benefits that customers and providers expect. Therefore, fault
tolerance is necessary to mitigate the impact of failures and preventing revenue losses due to service level agreements (SLA) violation
penalties. In this paper, we propose a fault tolerance directed by the SLA contracts established between cloud providers and customers.
The proposed fault tolerance includes two phases, the first is based on the use of idles VMs according to selection strategies. The
second phase is based on both advanced operation of degradation of quality of service and on VMs selection strategies. The advanced
operation of degradation consists of beneficial combinations of VMs deallocation and allocation between customers leading to avoid
SLA violation penalties. According to the experimental results, our proposed fault tolerance decreases by more than 10% the rate of
considered SLA violations compared to existing approaches.

Keywords: Cloud Computing, Service Level Agreement, Fault Tolerance, SLA Violation, performance, Availability.

1. Introduction
According to the U.S. National Institute of Standards

and Technology (NIST) definition [1]: “Cloud computing is
a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (for
example servers, networks, storage, services, and applica-
tions) that can be quickly provisioned and released with
least management effort or service provider interaction“.
The cloud resources are delivered to customers as a service
in three main categories: infrastructure as a service (IaaS),
platform as a service (PaaS) and software as a service
(SaaS) [2]. The relations between Cloud providers and
customers are managed by a clear Service Level Agreement
(SLA). The SLA is defined as a contract that describes the
negotiated service, the quality of service (QoS), the QoS
metrics, the price and arrangements in cases of violations.

The cloud computing, as a fast evolving technology,
is increasingly getting used to host many business or
enterprise applications. However, these environments are
known for their highly distributed and heterogeneous nature.
Consequently, several types of faults may occur in the cloud
environment leading to service unavailability and perfor-
mance degradation [3] [4]. Availability and performance
of cloud services are essential for maintaining customer’s

confidence and preventing revenue losses due to service
level agreement violation penalties [5] [6]. To make cloud
computing viable for both customers and providers, faults
should be handled effectively by fault tolerance mecha-
nisms.

Fault tolerance (FT) refers to a system’s ability to
continue performing its expected operation despite faults. In
other words, FT is related to reliability, successful operation,
and absence of breakdowns [7]. In the cloud computing
system, fault tolerance awareness has been identified as
one of the main issues to ensure reliability, robustness and
availability of important services as well as running of
applications [8].

In [9], we proposed a basic fault tolerance model that
uses a random quality of service degradation. In this work,
we go further by proposing a new fault tolerance directed
by the SLA contracts established between cloud providers
and customers. The proposed fault tolerance includes two
phases, the first is based on the use of idles VMs according
to selection strategies. The second phase is based on both
advanced operation of degradation of quality of service
and on VMs selection strategies. The advanced operation
of degradation consists of beneficial combinations of VMs

E-mail address: samir.setaouti@univ-sba.dz, setao.samir@gmail.com, d.amarbensaber@esi-sba.dz, reda.adjoudj@univ-sba.dz,
rebbahmed@univ-mascara.dz http:// journals.uob.edu.bh

1246 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

deallocation and allocation between customers leading to
avoid SLA violations penalties. The execution of the two
FT phases depends on their efficiency in avoiding SLA vi-
olations. This efficiency is evaluated by a specific function.

This paper makes the following contributions:

• The design of a generic SLA representation model
that can be applied to different types of platforms.
This model defines the type of resources requested,
the margin of degradation accepted and the different
regular and irregular states of customers that use the
platform resources.

• The proposal of a faults tolerance directed by the
SLA contracts to avoid SLA violations penalties. The
proposed FT provides three techniques: Faults Toler-
ance with the strategy Max Available (FT-MA), Faults
tolerance with the strategy High Capacity (FT-HC) and
Faults Tolerance with the strategy Low Capacity (FT-
LC).

• Implementation of experimentation to evaluate the
effectiveness of our proposed model compared to other
existing approaches.

This paper is divided into 5 sections. Section 2 presents
related work, followed by the proposed model in section 3,
in which we present a generic SLA representation model,
the platform model and the proposed fault tolerance. Section
4 shows the experimental setup and the results. Section 5
concludes the paper with a conclusion and future research
directions.

2. RELATED WORKS
For the various systems and platforms, the fault toler-

ance operation ensures a certain level of service in case of
failure. This section is divided into two parts, the first part
deals with the SLA and the second one discusses work re-
alized on fault tolerance in cloud computing environments.

A. Service Level Agreement
A Service Level Agreement is defined by Wieder et

al. [10] as a formal negotiated agreement between the
service provider (SP) and the customer. Its goal is to
establish a common understanding about QoS, priorities
and responsibilities. SLAs can cover many aspects of the
customer-SP relationship, including service performance,
customer service, billing, and service provisioning.

Several works about SLA have emerged with the appear-
ance of service oriented architectures (SOA) whose purpose
is to ensure the QoS of Web services [10]. WSLA [11] is
a framework composed of three sections: the parties, the
service definitions and the obligations. WSLA offers the
possibility of enriching the directory of performance criteria
by creating new metrics. Slang [12] is a language for the
SLA description, it is modeled in UML. In An SLA, Slang
defines the responsibilities of customers and suppliers and

the mutual responsibilities to determine the obligations of
each party. WSOL [13] is a specification based on XML,
which allows offering web services with different levels of
services via functional constraints, constraints of QoS, price
and access rights.

The rSLA [14] is a framework for managing Ser-
vice Level Agreements in Cloud environments, it contains
three components: the rSLA language to formally represent
SLAs, the rSLA Service, which interprets the SLAs and im-
plements the behavior specified in them, and a set of Xlets-
lightweight, dynamically bound adapters to monitoring and
controlling interfaces. In [15], Kouki et al propose a solution
for managing SLA Cloud Service Contracts for Models
(IaaS, PaaS, SaaS) where they introduces the Cloud Service
Level Agreement (CSLA) as a new SLA language directly
integrating some features dealing with QoS uncertainty and
Cloud fluctuation.

CSLAM [16] is a Cloud SLA management framework
based on WSLA which provides both SLA negotiation lan-
guage and management framework. CSLAM also manages
the SLA aware inter-cloud service provision. In [2] Labidi
et al., propose CSLAOnto A Comprehensive Ontological
SLA Model in Cloud Computing, whose objectives are
: Improving the SLA representation and facilitating its
Understanding, Providing an automated means of SLA
monitoring for the client, Informing the supplier of the QoS
degradation by notification.

B. Faults Tolerance
Fault tolerance in Cloud Computing platforms is a

critical issue. Several works with different mechanisms and
objectives have been proposed in this area. Uesheng Tan
[17] describes a replication solution for VM FT, exclusively
managed by the cloud provider. It proposes to improve
efficiency by using passive VM replicas (with very few
resources), which become active when a failure is detected.
A mechanism is introduced to transfer/initialize the state of
VM. In [18], a method of VM placement based on adaptive
selection of fault tolerant strategy for cloud applications
is proposed. The proposed method consists of two phases.
The best evaluation function value of VM placement based
on every fault-tolerant strategy is determined in the first
phase. In the second phase, the VM placement plan is solved
according to the solution of the first phase. Amoon.M [19]
propose an adaptive framework for reliable cloud computing
environments (AFRCE), it consists of two algorithms: the
first for selecting VMs that meets customers needs and
can carry out their requests. The second algorithm to
select the fault tolerance technique, either replication or
checkpoint-restart. In case of replication, AFRCE adjust the
number of replicas by calculating the values of VMs. The
value of a VM is a function of its failure probability and
the profit of its use. If checkpoint-restart is selected, the
checkpoint frequency is also adjusted with respect to the
failure probability.

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1247

The authors in [20], focus on improving the reliability
and availability in the IaaS model of cloud computing, they
propose a new topology aware VM replica placement ap-
proach. The approach places the replicas of virtual machines
on the optimal candidate servers according to a calculated
weight. The weight is calculated for each PM depending
on its distance from the VM and its current temperature. A
low value of a PM’s weight indicates its appropriateness for
hosting a replica of a VM. In [21] Zhou et al. propose an
approach to cloud service reliability enhancement via virtual
machine placement optimization. The proposed approach is
composed of three phases; each one is elaborated by an
algorithm. Based on the network topology, the algorithm of
the first phase selects a suitable set of VM hosting servers
from a potentially large set of candidate host servers. The
second algorithm determines an optimal strategy to place
the primary and backup VMs on the selected host servers.
The last phase concerns the recovery strategy decision; a
heuristic is used to address the task-to-VM reassignment
optimization problem, which is formulated as finding a
maximum weight matching in bipartite graphs. Dailbag et
al. [22] present an approach for providing high availability
to the requests of cloud’s customers based on a failover
faults tolerance strategy for cloud computing, using inte-
grated check-pointing algorithms.

Alain Tchana et al [23] propose a fault tolerance method
in which both the Cloud customers and providers will col-
laboratively share their responsibilities in order to provide
the required fault tolerance. According to Tchana, appli-
cation faults can be detected and repaired at the customer
level. But the Virtual Machine (VM) and hardware faults
can be detected & repaired at the Cloud provider level.
The recovery/restoration of the applications running on the
refurbished VMs can be requested and performed at the
customer level. Checkpointing technique is used to create
restore points for the recovered VMs. VFT [24] is a virtual-
ization and fault tolerance technique proposed to reduce the
service time and to increase the system availability. It uses
a cloud manager (CM) module and a decision maker (DM)
to manage the virtualization, load balancing and to handle
the faults. In [25], Bashir et al. propose an optimized fault
approach in real-time cloud computing IaaS environment
where a model is designed to tolerate faults based on the
reliability of each compute node (VM) and can be replaced
if it’s performance is not optimal.

Attallah et al. [26] introduce a new proactive load
balancing fault tolerance algorithm to maximize the cloud
computing reliability and availability. The proposed algo-
rithm handles the VMs CPU faults by monitoring the CPU
utilization. A load balancing operation based on migration
strategy is launched in case of high CPU utilization. In
[27], an adaptive fault tolerance framework in the cloud
computing is developed. The major objective is to mini-
mize application failure rates and completion times. The
developed framework combines the proactive and reactive
approaches; VM migration and replication are used by

the proactive approach to avoid the predicted application’s
faults, whereas the retry is adopted in the reactive approach
to decrease the application execution failure in the cloud.

The works in [28], [29] and [30] deal with the different
services level objective described in the SLA. In[28] ,
proposed spot instance scheme that users can decide a
minimum cost according to SLA agreement between users
and instances in Amazon’s EC2. The scheme is based on
a probabilistic model for the optimization of cost, perfor-
mance and improved the reliability of services by changing
dynamically conditions to satisfy user requirements. Yi
et al [29] introduced the spot instances of the Amazon
EC2 to offer fewer resource costs in exchange for reduced
reliability. Based on the actual price history of EC2 spot
instances, authors compared several adaptive checkpointing
schemes in terms of monetary costs and the improvement
of job completion time. In [30] to avoid delays in task
completion, a price history based check-pointing scheme
based on SLA is proposed. This is achieved by reducing
the number of checkpoints and improving the performance
of the tasks. Total cost and number of checkpoints are effec-
tively reduced in this scheme. A coordinator component in
this scheme supports and manages the SLA between users
and instances. The checkpoints are taken in two places. One
at the raising edge where the price exceeds the threshold
and the other is taken at the failure time foreseen by the
average failure time and failure possibility.

A comparison of the related works is presented in Table
I .

3. PROPOSED MODEL
In this section, first, we present a generic SLA model for

representing customer’s requests. Second, we describe the
platform model and finally, we present the proposed fault
tolerance.

The Table II presents the description of the symbols
used.

A. SLA Generic Model
In this paper, we model the customer request based on

the SLA contract as the following form:
Req(#Res, Ti, d) such as :

• 0 < #Res <= Max#Res

• Ti ∈ S T ,such ST is the set of the resources types
provided by the platform.

• 0 < d <= MaxD

The requested resource can be material such as com-
puting nodes in a computing grid, VMs of an IaaS cloud
platform, software, web services. . . etc.

http:// journals.uob.edu.bh

1248 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

TABLE I. FAULT TOLERANCE APPROACHES COMPARISON

FT model Policies Parameters /
Metrics

SLA
parameters

SLA
representation

Service
Credit

Minimization

Implemented
Environment

Self Adaption FT Place
[18]

Reactive Reliability No No No Cloud
simulator

Adaptive framework for
reliable cloud comput-
ing environments [19]

Reactive Reliability
Availability

No No No Cloud
simulator

Topology-aware Virtual
Machine Replication FT
[20]

Reactive Reliability
Availability

No No No Cloud
simulator

Cloud Reliability En-
hancement via Virtual
Machine Placement [21]

Reactive Reliability No No No Cloud
simulator

Failover Strategies for
Cloud using Integrated
Checkpointing [22]

Reactive Availability No No No Cloud
simulator

A virtualization and FT
for cloud computing
(VFT) [24]

Reactive Availability
Service Time

No No No Cloud
simulator

Optimising FT in Real-
time IaaS Environment
[25]

Reactive Reliability No No No Cloud
simulator

Proactive load balancing
FT [26]

Proactive Reliability
Availability

No No No Physical
Cloud

New Adaptive FT
Framework in Cloud
[27]

Proactive/
Reactive

Reliability No No No Cloud
simulator

Efficient Checkpointing
Scheme Using Price
History of Spot
Instances [30]

Reactive Completion Time
Monetory Cost

Yes No No Cloud
simulator

Proposed FT : FT Di-
rected By SLA in Cloud

Reactive Availability
Performance

Yes Yes Yes Cloud
simulator

TABLE II. Symbols Used

Symbols Description
#Res The number of resources requested by the customer

Max#Res The maximum number of available resources
Ti Resource of type i
Ci Resource of class i

#ResCi The number of the resource from the class Ci assigned to the customer
MaxCi The maximum accepted number of the resource of class Ci
MinCi The minimum accepted number of the resource of class Ci
#VMs The number of requested VMs by the customer.

d The degradation margin accepted in the requested resources
MaxD The maximum degradation in the resources permitted by the provider.
T.PV Time spent by the customer in the level of potential violation.
T.RV Time spent by the customer in the level of recorded violation.
RT Potential violation resolution deadline

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1249

The resources are distinguished into different type due
to their characteristics which can be the hardware’s perfor-
mances such as the frequency of CPU, the memory size,
the network bandwidth,...etc, or it could be the type of the
SaaS or PaaS service provided by the platforms.

Concerning the degradation, there are two categories.
Firstly, the quantity degradation, it’s defined by a reduction
in the number of resources provided compared to that
requested. The second category of degradation, concerns the
performances such as the CPU, the memory, the response
time of a service, etc. The degradation margin can be
specified according to several levels or thresholds.

Based on both the types of resources and the degradation
margin specified by the customer, we classify the resources
as follows:
C1,C2,C3, ...Cm+2

• C1: Resources that match the customer’s choice. It
contains the resources of type Ti.

• Ci(2 <= i <= m + 1) : Resources with an accepted
degradation margin(the degradation <= d). In other
words, these classes contain the types of resources with
an accepted degradation margin. Such that: m is the
levels or thresholds number of the degradation margin.

• Cm+2: Resources with a capacity below the accepted
margin. This class corresponds to all resource types
which have a capacity below the accepted margin.

Depending on the resource classes provided to the customer
according to the parameters specified in the SLA model,
the customer can be in two states:

1) RS: is the regular state that defines the levels from L1
to Lk , such as :

• a) L1 : the highest level of quality, the customer
receives all his resources from the requested type
(from class C1) : #ResC1 = #Res.

• b) [L2,Lk]: the interval of degraded QoS accepted
levels and Lk is the minimum level of accepted QoS
: #ResC1 + #ResC2 + . . . + #ResCm+1 = #Res , such
as : MinCi <= ResCi <= MaxCi.

2) IS: is the irregular state that contains the levels of
Potential Violation (PV) and Recorded Violation (RV),
such as:

• a) PV: this is the level of the Potential Violation
(Lk+1). The QoS is below the accepted minimum
level. The time spent by the customer in this state
must not exceed the resolution time (RT).

• b) RV: if the potential violation is not resolved
within the RT delay, the customer ends up in the

level Lk+2 that represents the status of the violation
recorded (considered) involving penalties.

The cloud provider seeks to maximize his profit, firstly,
by avoiding the recorded SLA violation involving penalties.
Secondly, by minimizing the time spent by the customer in
irregular states to reduce the rate of penalties. Therefore,
for each customer, the objective function is formulated as
follow:
Min(T) = T.PV+T.RV
Under the constraints:

• #Res =
∑m+1

i=1 ResCi

◦ The number of resources requested must be equal
to the total number of resources allocated to the
customer from the class C1 and the classes with an
accepted degradation margin.

• ∀i ∈ [1,m + 1],MinCi <= ResCi <= MaxCi

◦ The minimum and maximum number of resources
allowed from each class must be considered when
allocating resources to customers.

• T.PV <= RT

◦ In case of potential violation, it must be resolved
before the RT deadline to avoid the consideration of
the violation and consequently revenue losses due to
penalties.

B. Platform Model
As shown in the figure 1, the platform model adopted

provides M different types of resources which are classified
in N categories; each category is intended for a well-defined
use. The customer can thus choose the type of resources that
meet his needs.

Figure 1. Platform Model

http:// journals.uob.edu.bh

1250 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

In our work, we focus on Cloud computing IaaS infras-
tructure that provides a set of VMs to customers. Known
Cloud providers such as: Amazon EC2 [31], Micosoft
Azure [32] use this model where they propose to their
customers different types of instances optimized for differ-
ent use case. Instance types are different combinations of
CPU, memory, storage, and network capacity that give the
flexibility to choose the appropriate resources.

C. Fault Tolerance Parameters
In this work, we focus on ensuring the availability and

performance stability of the provided instances (VMs):

1) The Availability: High Availability (HA) in cloud com-
puting services is some of the hot challenges. The
availability of a system at time ‘t’ is referred to as
the probability that the system is up and functional
correctly at that instance in time [33] [34]. In IaaS
cloud computing infrastructure, unavailability can af-
fect a limited number of VMs or the entire system
where the service is completely unavailable for a
period of time. Most of the cases, the unavailability is
caused by physical faults that mainly occur in hardware
resources, such as faults in CPUs, in memory, in
storage, failure of power etc. [35].

2) Performance: the decrease in performance of VMs
affects their capacities. Generally it’s due to the re-
source consolidation [36]. For example, it occurs when
a VM cannot get the requested amount of MIPS.
This can occur when multiple VMs sharing the same
host require higher CPU performance that cannot be
provided due to VM consolidation [37]. Furthermore,
the IaaS clouds platforms to their complex nature
are prone to performance anomalies due to various
reasons such as resource contentions, software bugs,
or hardware failures [35] [38].

Cloud service providers are required to explain how
the availability and performance are measured, as well
as refunds in case of SLA violations. Amazon EC2 and
Microsoft Azure define the downtime as the total of the
accumulated minutes in which the service was in a state of
unavailability. A service credit is reimbursed to customers
according to the monthly uptime percentage [39] [40].

D. Proposed Faults Tolerance
When failures affect a customer’s VMs and cause

potential violations, fault tolerance operation is initiated
to tolerate the occurred faults and resolve the potential
violation as quickly as possible before being recorded. The
flow chart presented in figure 2, explains the functioning of
the fault tolerance. It is held in two phases:

1) Phase 01 : FT using available free (idle) VMs

• When faults affect the cloud computing platform and
cause SLA potential violations, a recovery operation

is automatically initiated by restarting the failed
VMs. Recovered VMs are added to the list of
available VMs. This recovery operation is performed
continuously. The available free VMs are VMs that
are not assigned to customers and which are in the
idle state.

• Immediately after launching the VMs recovery,we
evaluate for the customer in potential violation
(level PV), the possibility of fault tolerance for
its recovery in a regular state level by using the
function Check In RS() (Algorithm 1).The func-
tion Chech in RS() evaluates the efficiency of this
1st FT phase by checking the possibility of fault
tolerance to resolve the potential violation according
to a level in the regular state, starting with the
higher level L1 until the last accepted level LK . It
compares the number of failed VMs that can be
replaced by available free VMs of different classes
Ci taking into consideration the maximum number
of VMs allowed in each class (MaxCi). The function
Check in RS() returns the resolution level index
possible L RS, if no resolution is possible for the
potential violation by the fault tolerance, it returns
the value 0.

• If the evaluation of the possibility to recover the
customer in a regular state level by the FT proves
to be positive, the customer is put in the level L RS
returned by the function Check in RS() using the
function Put In RS() (Described in Algorithm 2).
The function Put In RS() replaces the customer’s
failed VMs by assigning new VMs based on the
L RS level. VMs are selected according to three dif-
ferent strategies (MA : Max Available, HC : Higher
Capacity and LC : Lower Capacity) (Described in
the next part) from the different classes Ci, such that
i is including between 1 and L RS and respecting
the MaxCi in the allocation of VMs. The content
of the customer’s failed VMs is restored in the new
assigned VMs based on saved image.

2) Phase 2 : FT using released VMs

• If the violation is not resolved by the first phase of
fault tolerance, the second phase is lunched. It uses
the VMs released (deallocated) by the degradation
of a number of selected customers from the regular
state levels.

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1251

Figure 2. Flow Chart ” Fault Tolerance ”

Algorithm 1 : Check In RS ()
Data: Cust Id, AvailableVmsC1List, AvailableVmsCkList, AssignedVMsList.
Result: L RS
ValidV Ms← AssignedV MsList.nb, i← 1 , L RS ← 0 , Cont ← true
while (i <= K AND Cont = true) do

if ((ValidV Ms + MaxcCi) < #V Ms) then
if (AvailableVmsCiList.nb <= MaxCi) then

ValidV Ms← ValidV Ms + AvailableV MsList.nb
else

ValidV Ms← ValidV Ms + MaxCi
end

else
if (AvailableV MsCiList.nb >= MaxCi OR (ValidV Ms + AvailbaleV MsList.nb)>= #V Ms) then

L RS ← i, Cont ← f alse
Break

end
end
i← i + 1

end
return L RS

http:// journals.uob.edu.bh

1252 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

Algorithm 2 : Put In RS()
Data: Cust Id, L RS, AvailableVmsC1List, AvailableVmsCKList, AssignedVmsC1List, AssignedVmsCKList
Result: AssignedVmsList
i← 1
while (AssignedVmsList.nb < #Vms AND i <= L RS) do

while (AvailableVmsCiList.nb , 0 AND AssignedVmsCiList.nb < MaxCi) do
S electVm(AvailableVmsCiList)

Allocate Vm to Customer Cust Id
AssignedVmsList.add(Vm)
AssignedVmsCiList.add(Vm)
AvailableVmsCiList.remove(Vm)
if (AssignedVmsList.nb = #Vms) then

Break
end

end
i← i + 1

end
return AssignedVmsList

Algorithm 3 : CheckWR In RS ()
Data: Cust Id, AvailableVmsC1List, AvailableVmsCKList, AssignedVmsC1List, AssignedVmsCKList
Result: L RS
L RS ← 0 , i← 2 , ValidV Ms← AssignedV MsList.nb , Cont ← true
while (i <= k AND Cont = true) do

if (ValidV Ms + MaxCi < #V Ms) then
if ((AvailableVmsCiList.nb + PotentialReleasedV MsList.nb) <= MaxCi) then

ValidV Ms← ValidV Ms + AvailableVmsCiList.nb + PotentialReleasedV MsList.nb
else

ValidV Ms← ValidV Ms + MaxCi
end

else
if ((AvailableVmsCiList.nb+PotentialReleasedV MsList.nb)>= MaxCi OR (ValidV Ms+AvailableVmsCiList.nb+

PotentialReleasedV MsList.nb)>= #V Ms) then
L RS ← i
Cont ← f alse
Break

end
end
i← i + 1

end
return L RS

Algorithm 4 : Release()
Data: Cust Id, AssignedVMsCiList, L init , L dg
Result: AvailableVMsList
i← L init
if (Check In RS (Cust Id) = true) then

while (i >= L dg) do
while (AssignedV MsCiList.nb > MinCi) do

AssignedV MsCiList.remove(V M)
ReleasedV MsList.add(V M)

end
i← i − 1

end
Put In RS (Cust Id)

end
return AvailableV MsList

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1253

Algorithm 5 : SelectVm()
Data: AvailableVMsList, Strategy
Result: SelectedVm
if (S trategy = MA) then

Select Vm of Type Tj where AvailableVmsCiTjList.nb is Max
Vm← S electedVm;

end
if (S trategy = HC) then

Select Vm of Type Tj where Tj is the Higher capacity Available Type Belonging to the class Ci
Vm← S electedVm;

end
if (S trategy = LC) then

Select Vm of Type Tj where Tj is the Lower capacity Available Type Belonging to the class Ci
Vm← S electedVm;

end
return S electedVm

• Firstly, we evaluate using the function
CheckWR In RS() (Described in Algorithm
3) the efficiency to proceed the second phase of
fault tolerance to resolve the potential violation.
The function CheckWR In RS() checks for
the possibility of fault tolerance that leads to a
potential violation resolution, starting with the
second level of regular state until the last accepted
level. It search a possible VMs reallocation by
comparing if the available VMs and those which
can be released by degrading a set of targeted
customers (PotentialReleasedVMsList), makes it
possible to replace the failed VMs. The function
CheckWR In RS() returns the level of possible
resolution L RS.

• If the evaluation realized by the function
CheckDW In RS() is positive, we proceed
to releasing the VMs of the classes searched by
the degradation of targeted customers from the
regular state levels. The degradation operation is
elaborated using the function Release() (Described
in Algorithm 4). The function Release() performs
degradations of the targeted customers specified in
CustTargetedList, one by one from their current
levels L init to the new levels of the specified
regular state L new. The VMs are deallocated from
the customers respecting the minimum assigned
number from each class. The customers concerned
by the release of VMs, pass temporarily to the
potential violation level, waiting the allocation of
their new VMs using the function Put In RS()
to regain a regular state level. The content of the
VMs deallocated from the customers concerned by
the degradation are migrated to their new assigned
VMs. The released VMs are added to the list of
available VMs AvailableVmsList.

• After the release of the VMs by the function Re-
lease(), the customer is put in the level returned by
the function CheckWR In RS() using the function

Put In RS(), which replaces the customer failed
VMs by VMs from the list AvailableVMsList, which
contains the available free VMs, as well as those
recently released. Finally, the content of the cus-
tomer’s failed VMs is restored in the new assigned
VMs based on saved image.

Throughout this process, the VMs recovery operation is
performed in the background and the recovered VMs are
added to the available VM list.

In case of the potential SLA violation is not resolved
using the second phase and the time RT is not expired, the
process is resumed from the beginning to avoid recording
the violation. If the resolution time has expired, the fault
tolerance process is restarted to minimize the time spent by
the customer in the state of recorded SLA violation.

To select the type of available VMs that will be assigned
to the customer among the types belonging to a class Ci,
we use the function SelectVm() (Described in Algorithm
5). This function defines three different strategies for the
VMs selection:

• Max Available (MA): The VMs selected first are those
of the most available type compared to other types in
the same class

• Higher Capacity (HC): VMs with the higher capacities
compared to the others VMs belonging to the same
class are selected first.

• Lower Capacity (LC): VMs with the lower capacities
compared to the others VMs belonging to the same
class are selected in first.

4. PERFORMANCE EVALUATION
To verify the effectiveness of our proposed model, we

have conducted the following experiments. First, we have
evaluated and compared the results of the proposed fault-
tolerance by adopting three VMs selection strategies (MA,
HC, and LC):

http:// journals.uob.edu.bh

1254 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

• FT-MA: Faults Tolerance technique with the strategy
Max Available VMs.

• FT-HC: Faults Tolerance technique with the strategy
Higher Capacity VMs.

• FT-LC: Faults Tolerance technique with the strategy
Lower Capacity VMs.

Second, we have compared our model to the following
techniques:

• No FT: no fault tolerance techniques are used.

• AFRCE [19]: The framework is adaptive. It consists of
two algorithms. The first for selecting VMs that meet
customers’ needs and can carry out their requests and
the second algorithm for selecting the replication or
checkpoint-restart fault tolerance technique. In the case
of replication, AFRCE adjusts the number of replicas
by calculating the values of VMs. The value of a VM
is a function of both its probability of failure and the
benefit of its use. If checkpoint-restart is selected, the
checkpoint frequency is also adjusted with respect to
the failure probability [19].

To compare the techniques proposed with the AFRCE
technique, we consider all the VMs with an accepted
degradation margin, that they satisfy the customer’s needs.
The price cost used is the same as that of Amazon EC2
[41].

A. Performance metrics
As an endeavor to evaluate the efficiency of the proposed

techniques, we have used these metrics:

• The Rate of recorded Violations (RV): this metric
is the ratio between the numbers of the recorded
SLA violations compared to the full number of the
customer’s SLA contracts.

%RV =
#RecordedS LAviolations

#S LAcontracts
(1)

Our main objective is to maximize the rate of poten-
tial violations resolved and therefore, minimizing the
number of violations considered involving penalties
(#Recorded Violations).

• Quality of Resolution: this metric concerns the rate of
customers in the highest regular state level %Cust L1:

%Cust L1 =
#CustomersInL1
#AllCustomers

(2)

• Violation Resolution Time (VRT):It represents the
time needed to tolerate the faults to avoid having
recorded violations (RV). Optimizing this metric min-
imizes the time spent by the customers in the state of

potential violation (PV).

VRT =
n∑

i=1

VRTCi (3)

Such as:
VRTCi : violation resolution time for the customer i.
n: number of potential violations resolved.

B. Experiment setup
The platform targeted in our work is a generic Cloud

Computing environment (IaaS infrastructure). To approve
the performance of our proposed model and study its effi-
ciency, we have resorted to simulation. We have chosen the
CloudSim toolkit [42] as a simulation platform. It provides
a generalized and extensible simulation framework that en-
ables seamless modeling, simulation, and experimentation
of emerging Cloud computing infrastructures and applica-
tion services. An extra package was created to support the
fault-tolerance techniques. The created package provides a
set of classes that permit simulating the VMs failure, the
fault tolerance techniques as well as the detection of the
potential violations and recorded violations.

In our experiments, we have generated a cloud of 10000
virtual machines that are connected with fast Ethernet
technology (100Mb/s). The Virtual machines are provided
by 500 Hosts contained in a set of data centers. The size of
each host’s RAM range from 16 to 64 GB and the storage
is 1TB. The frequency of the host’s processors is given in
MIPS and is assumed to range from 3000 to 10000 MIPS.
The virtual machines are classified into three categories:
general use, optimized calculation, and optimized storage.
For each category, there are five models: nano, micro,
small, medium, and large, which provide in all 15 types
of VMs. The number of customer’s requests is fixed at
300. Each request expresses the type and the number of
VMs required by the customer, as well as the degradation
margin accepted. All the experiments are conducted using
a random workload.

As an example, Req(10, T5 :General Use Large,
10%) expresses the request of a customer for 10 VMs of
type T5 (General Use Large) with an accepted degrada-
tion of 10%. This also indicates that in case of a failure,
the customer’s failed VMs can be replaced with VMs of
the following types:

• T4 : General Use Medium.

• T14 : Optimized Storage Medium.

• T15 : Optimized Storage Large.

To perform experiments, we have adopted a check-
pointing based on the probability of VM failures. This
probability is obtained from the VMs failures history. The
checkpointing interval is shortened in case of the high
probability of VM failures. Otherwise, it is prolonged in
case of a low probability. The interval is calculated as

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1255

follows:
INTi = T (t j,V Mi) × (1 − PF(V Mi)) such as:

• INTi: The checkpointing interval for the VM i.

• T (t j,V Mi):The execution time of the task j on the VM
i.

• PF(V Mi): Failure probability of the VM i.

The check-pointing files are stored in the available free
VMs candidate to replace the failed VMs. This significantly
reduces the restoring time. The candidate VMs are selected
according to the VMs types accepted by the customer.

C. Experiment Results
1) Impact of degradation margin

To study the impact of the degradation margin %d,
experiments are carried out with a degradation margin of
10% and then 20%. The rate of available free VMs is set at
10% and that of recovered VMs at 05%. The rate of failed
VMs varies from 10% to 50%.

Figure 3 shows the comparison between the three pro-
posed fault-tolerance techniques (FT-MA, FT-LC, and FT-
HC). The recorded violation rate %RV gradually increases
with that of failed VMs. The results show that FT-MA
minimizes the %RV with %5 compared to FT-LC and FT-
HC. This is explained by the variation made by FT-MA
in the selection of the available free VMs. Each time, FT-
MA selects the most available types of VMs unlike FT-
LC and FT-HC, which select the VMs of lowest (FT-LC)
or highest (FT-HC) capacities. This makes VMs of these
types unavailable for direct replacement of failed VMs or
by the combination of deallocation and reallocation of VMs
between customers to resolve potential violations detected.

In figure 3 (a), we observe that the increase in degrada-
tion margin %d from 10% to 20% reduces the %RV by an
average value of 5% for FT-MA and 03% for FT-LC and
FT-HC. The increase in the degradation margin %d extends
the list of VM types accepted by the customer that improves
the probability of replacing failed VMs, either directly from
the list of available free VMs or by the combinations of
deallocation and reallocation so that we can avoid recorded
violations.

Concerning the rate of customers in level L1 %Cust L1
presented in figure 3 (b), FT-MA provides the best rates
comparing with FT-LC and FT-HC. These rates are im-
proved with a value between 2% and 3% by increasing
the degradation margin %d to 20%. The improvement is
noted for the rates of failed VMs that range from 10% to
30% due to the increase in the deallocation of VMs from
the same customers. Therefore, we minimize the number
of customers degraded from L1 to resolve the potential
violations.

2) Impact of Available Free VMs

This experiment is carried out with a rate of free VMs
of 10% and then 20%. The degradation margin is set at
10% and that of recovered VMs at 05%.

The results presented in figure 4 (a), demonstrate that
FT-MA provides better %RV compared to FT-LC and FT-
HC. The increase in the rate of free VMs allows an average
reduction of 07% in %RV for FT-MA and 05% for FT-
LC and FT-HC. The reduction in %RV is explained by the
increase in the availability of VMs for direct replacement of
failed VMs, as well as by the improvement in the possible
number of customers’ degradations by the combination of
deallocation and reallocation of VMs.

In figure 4 (b), with the increase in the rate of failed
VMs, we notice at the beginning of the experiment (rate
of failed VMs from 10% to 30%) an improvement in
%Cust L1 that ranges from 03% to 05%. This improve-
ment is caused by the availability of more free VMs to
replace failed VMs without the need to degrade customers
from level L1. The improvement in %Cust L1 decreases as
the rate of failed VMs increases in which more customers
are degraded from L1 to allow replacing a large number of
failed VMs.

3) Comparison with existing techniques

In the previous experiments, we demonstrate that FT-MA
provides the best results compared to FT-LC and FT-HC.
In this part, we compare FT-MA with existing techniques.

Figure 5 presents the effect of the degradation margin
factor in the comparison between the proposed technique
FT-MA with AFRCE and No-FT. In this experiment, the
rate of available free VMs is set at 10% and that of
recovered VMs at 05%. Figure 5 (a) illustrates that FT-
MA produces the best results that avoid more than half of
violations recorded by No-FT when no FT mechanism is
in place, as well as it reduces by more than 10% the %RV
obtained compared to AFRCE. This is explained by the fact
that AFRCE uses the available free VMs that satisfies the
customers’ needs to elaborate replication or check-pointing
to the valuables VMs. However, with the increase in the
rate of failed VMs, it becomes extremely difficult to find
VMs according to the customer’s needs. On the other hand,
our proposed technique uses the customer’s degradation by
developing combinations of deallocation and reallocation of
VMs between the customers so as to replace the failed VMs
with other VMs according to the customer’s needs.

The increase of the degradation margin %d to 20%
minimizes the %RV for FT-MA by 5% and for AFRCE by an
average value of 2%. For FT-MA, the minimization is due to
the expansion of the list of VMs accepted by the customers
with other classes of VMs, as well as by the improvement of
the possibility of customer’s degradations seeking to replace
failed VMs. On the other hand, for AFRCE, it is only due to
the expansion of the list of VMs that satisfied the customer’s
needs.

http:// journals.uob.edu.bh

1256 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

Figure 3. Impact of degradation margin

Figure 4. Impact of Available free VMs

Figure 5. Comparison Results 01

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1257

Figure 6. Comparison Results 02

Figure 5 (b) presents the rate of customers in level
L1. The proposed FT-MA technique provides better results
compared to AFRCE. This is due to the functioning of
the FT-MA technique which seeks in the first phase of FT
to recover the customer in the level L1 by replacing the
failed VMs from class C1 before moving to other classes
of VMs accepted. For No-FT, we cannot discuss the results
of customers in the level L1 since the customers are either
in the L1 level or in the recorded violation level.

In figure 6 (a), increasing the rate of available free
VMs to 20% enables AFRCE to find more VMs that
satisfy customer requests. This diminished the %RV by
04% compared to the same experimentation with a rate of
free VMs of 10%. Our proposed FT-MA technique produces
minimized %RV of 15% on average compared to AFRCE.

The rates of customers in the level L1 presented in
Figure 6 (b) demonstrate an improvement for FT-MA by
a value between 03% and 05% as explained in the section
impact of available free VMs. For AFRCE, the improvement
is between 02% to 03%. It is due to the availability of
more VMs of class C1 in the list of VMs that satisfy the
customer’s needs.

Figure 7 illustrates the time required to perform the
FT-MA and AFRCE techniques. At the beginning of the
experiment, AFRCE necessitates more time compared to
FT-MA. This is explained by the number of replication
performed when more than one VMs are available in the list
of VMs that meets the customer’s needs. On the other hand,
FT-MA, benefits from the available free VMs to develop
the FT by the 1st phase which corresponds to the direct
replacing of the failed VMs.

With the increase in the rate of failed VMs, the time
required by FT-MA exceeds that of AFRCE. This is due
to the number of potential violations resolved by FT-MA
which is higher than that of AFRCE.

Figure 7. Execution Time

5. CONCLUSION
In this paper, we propose a fault tolerance directed by

the SLA contracts in the cloud computing environments.
The proposed model provides three fault tolerance tech-
niques: FT-MA, FT-HC and FT-LC. These techniques take
into consideration the parameters described in a generic
SLA model to ensure availability and performance that lead
to avoid SLA violation penalties. To verify the effectiveness
of our proposed fault tolerance, experiments were conducted
using CloudSim. The three FT techniques were evaluated
using three metrics: rate of considered SLA violations,
rate of customer in the highest level and time. The FT-
MA technique provides performance superiority compared
to FT-HC, FT-LC and to related work in terms of considered
SLA violations and rate of customers in the highest level.

In the future work, heuristic algorithms can be incorpo-
rated to improve the VMs assignment, and we will endeavor
to consider more SLA parameters.

http:// journals.uob.edu.bh

1258 Samir Setaouti, et al.: Fault Tolerance Directed by Service Level Agreement in

References
[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud

computing recommendations of the national institute of standards
and technology.” Gaithersburg, MD, USA, Tech. Rep., 2011.

[2] T. Labidi, A. Mtibaa, and H. Brabra, “CSLAOnto: A
comprehensive ontological SLA model in cloud computing,”
vol. 5, no. 3, pp. 179–193. [Online]. Available:
https://doi.org/10.1007/s13740-016-0070-7

[3] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M. Haghparast,
“A survey of fault tolerance architecture in cloud computing,” J.
Netw. Comput. Appl., vol. 61, no. C, p. 81–92, feb 2016. [Online].
Available: https://doi.org/10.1016/j.jnca.2015.10.004

[4] Z. Amin, H. Singh, and N. Sethi, “Review on fault tolerance
techniques in cloud computing,” International Journal of Computer
Applications, vol. 116, no. 18, pp. 11–17, April 2015.

[5] J. A. Jamilson Dantas, Rubens Matos and P. Maciel, “Eucalyptus-
based private clouds: availability modeling and comparison to the
cost of a public cloud,” Computing, vol. 97, p. 1121–1140, 2015.

[6] S. Son, G. Jung, and S. C. Jun, “An SLA-based cloud computing
that facilitates resource allocation in the distributed data centers of
a cloud provider,” vol. 64, no. 2, pp. 606–637. [Online]. Available:
https://doi.org/10.1007/s11227-012-0861-z

[7] E. Dubrova et al., “Fault tolerant design: An introduction,” De-
partment of Microelectronics and Information Technology, Royal
Institute of Technology, Stockholm, Sweden, pp. 22–3, 2008.

[8] S. M. Abdulhamid, M. S. Abd Latiff, S. H. H. Madni,
and M. Abdullahi, “Fault tolerance aware scheduling technique
for cloud computing environment using dynamic clustering
algorithm,” vol. 29, no. 1, pp. 279–293. [Online]. Available:
https://doi.org/10.1007/s00521-016-2448-8

[9] S. Setaouti, D. A. Bensaber, R. Adjoudj, and M. Rebbah, “Fault
tolerance model based on service delivery quality levels in cloud
computing,” in 2017 International Conference on Mathematics and
Information Technology (ICMIT), 2017, pp. 84–91.

[10] T. W. Y. R. Wieder P, Butler Joe M, “Service level
agreements for cloud computing.” Springer, New York. Library
of Congress Control Number:2011939783, ISBN 978-1-4614-1613-
5, e-ISBN 978-1-4614-1614-2., 2011. [Online]. Available:
https://doi.org/10.1007/978-1-4614-1614-2

[11] A. Keller and H. Ludwig, “The WSLA framework: Specifying and
monitoring service level agreements for web services,” vol. 11,
no. 1, pp. 57–81. [Online]. Available: https://doi.org/10.1023/A:
1022445108617

[12] J. S. D.D. Lamanna and W. Emmerich., “Slang a language for
defining service level agreements.” The Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems, pages 100–106,
20O3., 2003.

[13] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma, “Man-
agement applications of the web service offerings language (wsol),”
Inf. Syst., vol. 30, no. 7, p. 564–586, nov 2005.

[14] M. Mohamed, O. Anya, S. Tata, N. Mandagere, N. Baracaldo,
and H. Ludwig, “rsla: An approach for managing service
level agreements in cloud environments,” International Journal of

Cooperative Information Systems, vol. 26, no. 02, p. 1742003, 2017.
[Online]. Available: https://doi.org/10.1142/S0218843017420035

[15] Y. Kouki. and T. Ledoux., “Csla: A language for improving cloud sla
management,” in Proceedings of the 2nd International Conference
on Cloud Computing and Services Science - CLOSER,, INSTICC.
SciTePress, 2012, pp. 586–591.

[16] M. Torkashvan and H. Haghighi, “Cslam: A framework for cloud
service level agreement management based on wsla,” in 6th
International Symposium on Telecommunications (IST), 2012, pp.
577–585.

[17] D. L. Uesheng Tan and J. Wang., “Cc-vit: Virtualization intrusion
tolerance based on cloud computing,” in 2nd International Confer-
ence on Information Engineering and Computer Science (ICIECS),
pp. 1–6, Wuhan, China, 2010.

[18] X. Chen and J.-H. Jiang, “A method of virtual machine placement
for fault-tolerant cloud applications,” Intelligent Automation & Soft
Computing, vol. 22, no. 4, pp. 587–597, 2016. [Online]. Available:
https://doi.org/10.1080/10798587.2016.1152775

[19] M. Amoon, “Adaptive framework for reliable cloud computing
environment,” IEEE Access, vol. 4, pp. 9469–9478, 2016. [Online].
Available: https://doi.org/10.1109/ACCESS.2016.2623633

[20] P. Kumari and P. Kaur, “Topology-aware virtual machine replication
for fault tolerance in cloud computing systems,” p. 193 – 206, 1 Jan.
2020.

[21] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang,
M. R. Lyu, and R. Buyya, “Cloud service reliability enhancement
via virtual machine placement optimization,” IEEE Transactions on
Services Computing, vol. 10, no. 6, pp. 902–913, 2017. [Online].
Available: https://doi.org/10.1109/TSC.2016.2519898

[22] D. Singh, J. Singh, and A. Chhabra, “High availability of clouds:
Failover strategies for cloud computing using integrated checkpoint-
ing algorithms,” in 2012 International Conference on Communica-
tion Systems and Network Technologies, 2012, pp. 698–703.

[23] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud com-
puting fault tolerance,” 2012 International Conference on Computer,
Information and Telecommunication Systems (CITS), pp. 1–6, 2012.

[24] P. Das and P. M. Khilar, “Vft: A virtualization and fault tolerance
approach for cloud computing,” in 2013 IEEE Conference on
Information Communication Technologies, 2013, pp. 473–478.

[25] B. Mohammed, M. Kiran, I.-U. Awan, and K. M. Maiyama, “Op-
timising fault tolerance in real-time cloud computing iaas envi-
ronment,” in 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud), 2016, pp. 363–370.

[26] S. M. Attallah, M. B. Fayek, S. M. Nassar, and E. E.
Hemayed, “Proactive load balancing fault tolerance algorithm
in cloud computing,” Concurrency and Computation: Practice and
Experience, vol. 33, no. 10, p. e6172, 2021, e6172 CPE-19-1199.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpe.6172

[27] A. Rawat, R. Sushil, A. Agarwal, A. Sikander, and R. S.
Bhadoria, “A new adaptive fault tolerant framework in the cloud,”
IETE Journal of Research, pp. 1–13, 2021. [Online]. Available:
https://doi.org/10.1080/03772063.2021.1907231

http:// journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1245-1259 (Mar-2022) 1259

[28] K. D. Y. S. Andrzejak, A., “Decision model for cloud computing un-
der sla constraints,” In: Proceedings Of the 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, p. 257–266, 2010.

[29] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot
Instances via Checkpointing in the Amazon Elastic Compute
Cloud,” Mar. 2010, this paper was submitted to IEEE Cloud 2010.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00464222

[30] D. Jung, S. Chin, K. Chung, H. Yu, and J. Gil, “An efficient
checkpointing scheme using price history of spot instances in
cloud computing environment,” in Network and Parallel Computing,
E. Altman and W. Shi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 185–200.

[31] https://aws.amazon.com/ec2/instance-types/?nc1=h ls.

[32] https://docs.microsoft.com/en-us/azure/virtual-machines/sizes.

[33] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, “Reliability
and high availability in cloud computing environments: a
reference roadmap,” vol. 8, no. 1, p. 20. [Online]. Available:
https://doi.org/10.1186/s13673-018-0143-8

[34] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud,” J.
Netw. Comput. Appl., vol. 60, no. C, p. 54–67, jan 2016. [Online].
Available: https://doi.org/10.1016/j.jnca.2015.11.014

[35] P. Kumari and P. Kaur, “A survey of fault tolerance in
cloud computing,” Journal of King Saud University - Computer
and Information Sciences, vol. 33, no. 10, pp. 1159–1176, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1319157818306438

[36] A. Corradi, M. Fanelli, and L. Foschini, “Vm consolidation: A
real case based on openstack cloud,” Future Generation Computer
Systems, vol. 32, pp. 118–127, 2014, special Issue on Exploiting
Semantic Technologies with Particularization on Linked Data
over Grid and Cloud Architectures. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X12001082

[37] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 13, pp. 1397–1420, 2012. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1867

[38] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud
systems,” in Proceedings of the 9th International Conference on
Autonomic Computing, ser. ICAC ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 191–200.

[39] https://aws.amazon.com/compute/sla/?nc1=h ls.

[40] https://www.azure.cn/en-us/support/sla/virtual-machines/.

[41] https://aws.amazon.com/ec2/pricing/.

[42] http://www.cloudbus.org/cloudsim/.

Samir Setaouti Received his Engineer De-
gree in computer science from the University
of Mustapha Stambouli of Mascara, Alge-
ria in 2010. Got the Magister degree in
computer science from The University of
Sciences and Technology of Oran, Algeria
in 2015. Actually, he is a Ph.D. student
in the University of Djillali Liabes Of Sidi
Bel Abbes, Algeria. His research interests
include Cloud Computing, Fault Tolerance

and Distributed Computing.

Djamel Amar Bensaber is an Associate
Professor, at the High School of computer
science of Sidi Bel Abbes, Algeria. He is
currently Head of Research Team ’Data and
Software Engineering’ at the LabRI Labora-
tory. His research interests include Informa-
tion Systems (Business Informatics), Soft-
ware Engineering, Big data; Linked open
data, Ontology, Semantic Computing, Fault
Tolerance and Distributed Systems.

Reda Adjoudj is a Full Professor in Com-
puter Science, at Computer Science Depart-
ment, University of Sidi Bel-abbes, Algeria.
In 2014, Reda Adjoudj obtained his HDR
& in 2006 he received Ph.D in computer
science from Djillali Liabes University, Sidi
Bel Abbes, and also he earned Magister
from the same university in 2002, and his
Engineer degree from the same university in
2000. His major area of research is biomet-

rics, pattern recognition, image processing, paradigms of artificial
intelligence and fault tolerance. He is a member of the EEDIS
Laboratory, Computer Science Department, University of Sidi Bel-
abbes.

Mohammed Rebbah obtained his MSC
in computer science from the University of
Sciences and Technology of Oran (USTO),
Algeria. After that he received his PhD in
computer science in 2015, in USTO, Alge-
ria. Actually, he is an Assistant Professor
in Computer Sciences Department at the
University of Mascara, Algeria. His research
interests are in grid computing, cloud com-
puting and distributed data mining.

http:// journals.uob.edu.bh

