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Abstract: This paper analyses a simple epsilon-greedy exploration approach to train models with Deep Q-Learning algorithm to involve
randomness that helps prevail the agent over conforming to a single solution. This allows the agent to explore different solutions for a
problem even after finding a solution. This helps the agent find the global optimum solution without being stuck in a local optimum. A
simple block environment is built and used to assess the agent’s ability to reach the destination, block A to reach block B. The model
is trained repeatedly by feeding the game image and rewarding it based on the decisions made. The weights of the Neural Network of
the Reinforcement Learning model are then adjusted by training the model after every iteration to improve the result. Furthermore, two
different environments from the Gym library in Python is used to corroborate the results obtained. Here we have used TensorFlow to
build and implement the model on the GPU for better and accelerated computation.
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1. Introduction
Neural Networks are the basis of Deep Learning that

allows computers to learn without being programmed to
perform a specific task [1]. This allows machines to display
somewhat similar to what is considered as intelligent behav-
ior. With this technique computers need not be programmed
for every specific task but can rather be allowed to learn and
perform them in a way that is not limited to the input [2].
This is similar to our biological brain that functions with the
interconnection of various neural networks each designed
for different tasks like hearing or seeing. A model like
this, but limited, can be achieved through weighted nodes
that corresponds to a function and yields an output when
given an input [3]. These weights are constantly updated
as the computer learns, or in simpler terms can change the
output to match that of the given training dataset. Artificial
neural networks are systems motivated by the distributed,
massively parallel computation in the brain that enables
it to be so successful at complex control and recognition
or classification tasks [4]. This dynamic capacity of the
networks to adapt and change to provide the desired output
for any input, related to the ones it has been trained on, has
revolutionized the world by automating almost everything
from manufacturing to marketing.

Though this seems too simple for something that is said
to almost replicate the human brain, the most complicated
thing known, it does not entirely mimic the functionalities
of a biological brain. The human mind is a cluster of

billions of neurons each transmitting information or signals
at the speed of 80 to 120 meters per second. In addition
to this the brain processes millions of signals in the form
of information simultaneously computing a huge amount of
data in a fraction of a second [5].

While it may seem nearly impossible to have so much
computational power, at least for the next few years, it
is possible for computers to learn and probably master a
specific task. This is done through various types of learning.

1) Supervised Learning: where the computer is provided
with both the inputs and the outputs for the training dataset
and can tweak the weights until the output of the networks
resembles the expected output. This is usually achieved
through a loss or cost function which essentially dictates
how different the output of the network is from the expected
output. The weights are then adjusted to reduces this value.

2) Un-supervised Learning: where the computer is pro-
vided with the training data alone with no outputs. The
computer then extracts features from each data and groups
them together based on learnt similarities. This closely re-
sembles real world scenarios where most data are unlabeled,
and we usually match them with things that look similar to
it. For example, all apples were initially grouped together
as they look and taste similar and were then labelled as
apples.
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3) Reinforcement Learning: where the computer learns
based on the outcome of its action. This is probably the
most human-like learning technique as humans usually learn
better from having known their outcome. When a person
performs an action, he/she is punished or rewarded. Rein-
forcement learning uses this method to make the computer
learn. The computer is provided with a dataset and is then
asked to provide an output. This is then compared with the
desired output, and if it is similar the computer is rewarded,
meaning the weights are not changed much, and if not, it is
punished, meaning the weights are changed to better learn
and predict correctly for the next data [6].

Although Supervised and Un-supervised learning are
the most common algorithms, Reinforcement learning has
unexplored potential to be the most applicable solution for
most real-world problems. This learning is entirely based on
the computer’s ability to retry the given scenario repeatedly
and correcting it each time until an optimal solution is
obtained. This resembles closely to the way humans learn,
the trial-and-error method. We explore various ways to
solve a given problem, each time correcting ourselves from
our mistakes, and try to find the best solution. This is
exactly how reinforcement learning works, except since the
computer does not understand the concept of mistake, we
add the concept of reward [7]. Rewards are used to correct
and adjust the weights of the network so as to refrain from
making the same mistake.

In this paper, we will look at how reinforcement learning
with epsilon-greedy exploration can be used to help the
model learn more effectively for 3 distinctive environments.
The block environment allows the agent, block A, to move
around in its environment to find and reach the position
of block B. In doing so, the agent tends to make mistakes
like hitting the walls or not making it to the goal by being
stuck in a perpetual loop. Here the reward system helps the
agent learn and correct its mistakes and help achieve the
goal. To corroborate this result, we have implemented the
same approach for Mountain-Car environment and Acrobot
environment from the Gym library.

2. RelatedWork
This section discusses important work in the literature

that is related to our work.

A. Q-Learning
Q-Learning is a form of model free algorithm which

does not use transition probability distribution to solve the
problem and instead works based on trial-and-error method
in a reward-based system. It is a type of Reinforcement
learning that helps correct the actions of the model after
each mistake. This is done by accessing how different the
output produced by the model is to the expected output. This
is then used to compute Equation 2-A and the Q-values of
each action in the model is then changed accordingly based
on its value [8].

Q(s, a) = r(s, a) + y ∗ (max)aQ(s
′

, a) (1)

Here, the algorithm maintains a Q-Table whose values
are constantly updated after every iteration. This table is
used to predict the next move in the environment based
on adjusting its Q-value as time proceeds. Initially this
table will be filled with random values for each parameter
which dictates the nature of the environment, say position
or distance from goal, which will then be updated based
upon the result of the action, or the reward. The reward
will determine how these values will be changed, as if it
yields a low value, the value in turn will be low and vice-
versa. These values are updated after every episode and the
discount help determine how impactful each Q-value is for
the future Q-value. If the future action is not fruitful, then
the previous action will be changed at the rate of the value
of discount and so on. This loops back to the first step thus
changing the Q-values of the actions of all the steps taken
before, using the formula, that has led to this result.

As the agent moves in the environment, the Q-values
are constantly updated after every set of steps throughout
the learning stage. When the model succeeds for the first
time, the Q-values of the actions of the path that lead to
this success will be updated. In this case it is increased
since the action with the highest Q-value is always taken for
every step. These values are then optimized in the coming
iterations so that the agent is more inclined to choose the
path that yields success. These values are perfected as the
training sessions progress over time.

The Q-values in the Q-table are updated using the Bell-
man Equation that falls under Markov Decision Process that
incorporates randomness in the decision making [9]. This
usually means the agent’s decisions are not wholly respon-
sible for success, and there exists some randomness that
governs the environment. This paper represents a stochastic
model which incorporates the presence of random actions
to allow exploration. This means the present decisions are
responsible for the future results along with the presence of
a certain level of randomness [10].

B. Markov Decision Process
Markov Decision Process (MDP) provides a framework

for the decision-making situations where the outcome is
determined by both the agent’s decision and randomness. It
is a discrete-time stochastic control process for sequential
decision making when the outcomes are uncertain. In an
MDP, there exists a set of environment ‘E’, agent ‘X’, a
set of states ‘S’, a set of actions ‘A’, and a set of rewards
‘R’. For each step, the agent can perform ‘A’ number of
actions with each action returning a reward ‘r’ from a set
of rewards ‘R’. This makes the process of receiving reward
an arbitrary function ‘f’ that maps state-action pairs with
Equation 2-B.
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Figure 1. SARS Process

f (S t, At) = Rt+1 (2)

This forms a trajectory of a sequential process where
the agent in state ‘s0’ performs an action ‘a0’, resulting in
a new state ‘s1’ for which it is presented with reward ‘r1’.

As shown in Figure 1, choosing an action in a state
generates a reward and determines the state at the next
decision epoch through a transition probability function.
These strategies are prescriptions of which action to choose
under any eventuality at every future decision [11].

C. BELLMAN EQUATION
While having a reward system to help the agent learn

seems preliminary, the bellman equation provides a dynamic
programming method to determine the value of each action
‘a’ in a state ‘s’ as the maximum possible reward of the
current state plus the value of the next state. This value,
thus considering the impact of the action in the current state
to that of the future state, determines the value of each
action, or a node in deep neural networks, thus changing
the transition probability.

V(s) = (max)a(R(s, a) + γ
∑

s′
P(s, a, s

′

) ∗ V(s
′

)) (3)

In Equation 2-C, ‘V(s)’ denotes the value of the action,
‘R(s,a)’ is the reward for the action a taken in state ‘s’,
‘V(s‘)’ is the value of the future state and ‘P(s,a,s‘)’ is the
probability that the action a taken in state ‘s’ leads to the
state ‘s‘’.

This equation determines the value of the state based
on the max value of all the actions, the sum of the reward
for taking the action, and the product of the discount
value and the future state weighted by the probability
of the agent choosing the state. The Bellman equation
connects the value at any time-step to the expected value

at the subsequent time-steps, thus valuing the element of
exploration. It connects the uncertainty at any time-step to
the expected uncertainties at subsequent time-steps, thereby
extending the potential exploratory benefit of a policy
beyond individual time-steps [9].

Algorithm 1 Implementation of Bellman Equation

Ensure: Dt = random batch f rom memory
Ensure: S c = present states
Ensure: S n = new states

Qc ← Prediction(S c)
Qn ← Prediction(S n)
X ← x
Y ← y
for i ∈ Dt do

qn ← reward + discount ∗ max(Qn, i)
Qc, i, action← qn
Xi ← S c, i
Yi ← Qc, i

end for
return X, Y

In this paper, we have implemented the bellman equation
for a deep Q-network to process the Q-values to determine
the action to be taken by the agent. Algorithm 1 shows the
pseudo code of the implementation of Bellman equation to
correct the weights using reward obtained for the current
state and the future actions. With this the data is generated
for the model to train on after each episode.

D. Deep Q-Learning
Deep Q-Learning uses a Neural Network instead of a Q-

table to help calculate the Q-values for taking an action in
the environment. Here, we train a Neural Network and use
weights to estimate the Q-values of each action in every
step. These weights are then updated depending on the
reward for each action. Notice that here we do not update
the Q-values themselves, but instead we correct the weights
that are used to calculate them. This means that they are
versatile and do not use a Q-table to store all the values, thus
requiring very less memory. Once learnt, these weights can
then be used to calculate the Q-values by predicting using
the parameters and can thus help the model to perform the
most appropriate action [3]. It need not be trained for every
possible dataset but can instead be scaled to be applied for
different situations.

E. Epsilon- Greedy exploration
In this paper, the agent can explore random actions

before conforming to a single solution through epsilon-
greedy method. This invokes a certain level of randomness
to help the agent learn better and faster and refrain from
being stuck in a local minimum. Without randomness,
one cannot explore all the available options as the agent
naturally conforms to a single solution after attaining it
once [9]. If one is to be stuck to the regular regime, or
in this case one single solution, the agent may not explore
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other solutions, one of which may be the most optimal
solution for the problem. This is the same case with the
agent in any environment. When the agent reaches the goal
state for the first time, it is rewarded. This then results to
the correction of the weights which will then result in the
agent reaching the goal through the same path. This means
the agent will eventually settle to this path without having
explored other options or paths. This solution may be the
local optimum, thus preventing the model from yielding
the global optimum result. But, with the introduction of
certain level of randomness, the agent, even after having
found a solution, will continue to look for other solutions.
In epsilon-greedy method, the agent will perform random
actions if it satisfies a certain condition [12].

The value of epsilon determines the probability with
which the agent performs a random action. As shown in
Algorithm 2, if a random number generated between 0 and
1 is lower than the value of epsilon, the agent can take
random actions and if not, the action taken by the agent is
determined by the model.

Algorithm 2 Epsilon-Greedy function

Ensure: x = random number
if x < epsilon then

action← Random
else

action← Prediction
end if

In this paper, the value of epsilon starts at 1 and slowly
decreases as the number of training episode increases. This,
however, is also not a constant decrease, but exponential.
The value of epsilon decreases with the help of a logarith-
mic function. The logarithmic value of part of the episodes
for which the agent can explore, is used to determine a
probability with which the agent can explore. The value
of epsilon determines this probability, thus not allowing
the agent to take random actions regularly, but only when
the probability allows in certain steps and in a controlled
manner.

n∏
1

∈= 0.01 (4)

Algorithm 3 Exponential decrease function

Ensure: n = number o f Episodes
t ← 0.8
Ed(n, t)← 10 ∗ (log(0.01)/(n ∗ t))
ϵ ← ϵ ∗ Ed(n, t)

Algorithm 3 implements the exponential function pro-
posed in Equation 2-E. Here, we allow the agent to try
random actions with a probability of 0.01 or greater for 80%
of the number of episodes. If the random number generated

is less than the value of ϵ (epsilon), the agent then takes a
random of the 4 available actions. If not, the action resulted
from the prediction of the Neural Network determines move
to be taken by the agent.

3. Literature Survey
There are several works like the survey done by K.

Arulkumaran; et al., [13] or Li, Yuxi [14] that describe
and analyse the working of deep reinforcement learning.
The work of Zhou; et al., [15] implements and analyses
strategies for a sensor node optimised by Reinforcement
Leaning in a model of Markov Decision Process. The work
of Fan; et al., [16] shows the theoretical analysis from
both algorithmic and statistical perspectives of Deep Q-
Learning. It shows the agent’s performance in a simple
deep reinforcement learning model. This idea was later
developed and applied for Atari games in the work of Mnih,
Volodymyr; et al., [17]. It shows the agent’s potential to
explore to some extent with the use of Bellman equation.
With this the agent is allowed for minimal exploration until
its first solution.

The Epsilon-Greed Action Selection was then intro-
duced to allow the agent to continue exploration despite
having found the solution in the work of Michael Wunder; et
al., [12]. It shows how the epsilon-greedy exploration yields
higher-than-Nash outcomes. The work of Bell-Thomas;
et al., [18] shows the application of variation Bayesian
Inference in a Double Deep Q-Network. It shows the value
of epsilon decrease over time and uses that to train the
agent with exploration. In the work of Azizzadenesheli; et
al., [19], performance comparison is made by employing
epsilon-greedy, Boltzmann Exploration and Thomson Sam-
pling for exploration/exploitation.

In this paper, the agent can explore random actions with
epsilon-greedy action selection with an addition of level of
decrease in the probability of selecting randomness over
training epochs. Like the work of Hester; et al., [20], we
have used a Deep Q-Network model with a certain level
of randomness to allow the agent to actively explore. With
the help of discussions on Deep Reinforcement Learning
and epsilon-greedy by Harrison [21], we have incorporated
the use of a logarithmic function and allowed the value of
epsilon to decrease exponential until a certain fraction of the
training session. This determines how the value of epsilon
deteriorates over each step and thus alters the probability
with which the agent can explore. The agent’s ability to
actively explore is thus not pre-determined or fixed but
controlled by a randomly generated number with a variable
probability. This provides a simple solution that incorporate
chaotic randomness while still maintaining the rigidity of
the prediction made by the model. The model is fed directly
with the game image, similar to the work of Tai; et al.,
[22], where the raw sensor information is used to build the
exploration strategy.
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Figure 2. Block Environment

4. Methodology
Here, we show the implementation of our approach in

Deep Reinforcement Learning in 3 distinct models.

A. Block Environment
In this environment, TensorFlow is used to implement

the Deep Q-learning model to train our agent, in this case
the red block, to reach the goal, blue block. As shown in
Figure 2, we have implemented a 10 by 10 sized window
using cv2 library for rendering the environment. Each actor,
block A and B, will occupy a single pixel in the window.
The model is then trained to help block A move towards
and reach block B. This setup is an example of a multi-
agent model where both the agents, are free to move. But,
unlike an ensemble model, only block A here is free to
take actions, the position of block B is randomized after
every game [23]. This further increases the complexity,
demanding more exploration from the agent before settling
for a single solution.

Figure 3 shows the architecture of the simple Convo-
lution Neural Network (CNN) model used in this project,
consisting of several layers stacked up sequentially. The
first layer is the Convolutional layer that takes as input the
NumPy array that consists the window of size 10 by 10 by
3, where the 3rd layer of 3 values is the RGB value of each
pixel. The next layer is the ‘MaxPooling’ layer to extract
only the useful information from the array thus improving
the efficiency and reducing the complexity of the model.
This is then Flattened in the next layer from 3 dimensions
to a single flat array for making the calculations a lot easier.
This is followed by a Dense layer consisting of 64 nodes
and then the output layer consisting of 4 nodes or outputs. A
few test runs were made with different number of nodes and
found 64 to be a balance between time and performance.

Figure 3. Model Layers

Figure 4. Mountain-car Game Environment

The 4 output nodes are the possible actions that the agent
can perform, move up, down, left, or right. The index of the
node that holds the highest value will then be considered
as the suitable action required to be performed by the agent
to reach its goal. A CNN is used here as the image of the
game environment as whole is fed as the input.

The model iterates through the networks many times and
updates the weights through Bellman equation for updating
the Q-values with the help of the reward or punishment
obtained from the moves made by the agent. This is done
with the help of Algorithm 1. The training of the model
is determined by the Episodes for which the agent will be
trained. Each episode contains a specific number of steps for
which the agent will be active. Here, the agent is allowed
to take as many numbers of steps as it takes to reach the
goal for each episode, and then the game will be reset.

The dataset is divided into batches, each of size 64, to
help accelerate training. The number of episodes is fixed to
25000, and each time the game resets, the Q-values, actions,
rewards, and states, are updated and the model is trained
by setting the updated Q-values as outputs. The model is
trained for 5 epochs for each episode.

B. Mountain-Car Environment
In this environment, a car starts from downhill and must

reach the top of the mountain, as shown in Figure 4. The
car uses momentum by moving front and back, to launch
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Figure 5. Acrobot Game Environment

off to the goal

This is exported from an existing open-sourced library
called Gym by OpenAI in Python. OpenAI provides sev-
eral environments and toolkit for reinforcement learning
research [24]. A mountain-car environment is chosen here
to better explain the advantages of allowing the agent to
explore. A clear contrast between the local minimum and
global minimum can be visualized in this environment.

The model is run for 5 epochs an episode for 2500
number of episodes with the same level of exploration. The
same model is also trained without allowing the agent to
actively explore to show the contrast.

C. Acrobot Environment
Here, a two-link pendulum swings freely, as shown in

Figure 5. The goal is to wing the end-effector at a height
at least the length of one link above the base [25]. This is
exported from Gym in Python and is the work of R Sutton;
et al., [25] and A Geramifard; et al., [26].

The model is run for 5 epochs an episode for 1000
episodes with the same level of controlled exploration. The
same model is also trained without allowing the agent to
actively explore to show the difference in performance.

In all three environments, a memory table is used to
help collect data for training the model with. The model
is trained using randomly selected batch of data of size 64
from the memory table. The initial few steps are randomized
to generate values for the memory table to initialize the
weights. Then the training begins, where each parameter of
the bellman equation is calculated and used to update the
Qvalues. This is then used to train and correct the weights
of the model.

During each step, a random value is calculated. This
value is weighed against an epsilon value that deteriorates
over every iteration. As shown in Algorithm 2, epsilon-
greedy exploration is implemented which sets the probabil-

Figure 6. Block Environment with Obstacles

ity with which the agent is allowed to explore different paths
that allows it to eventually find the most optimal solution,
instead of being stuck in a single solution. This exploration
decreases eventually as the epsilon value deteriorates which
helps the agent settle for the global optimum solution at
the end of the training session. This is done with the
help of an exponential decrease function as implemented
in Algorithm 3.

This model represents a stochastic model having a
random probability for every move and thus having improb-
able prediction which in turn allows room for exploration.
Stochastic models take account for random chaos in the
environment that participates along with the decisions of
the agent to affect the final outcomes.

5. Result
A. Result of Block Environment

The model was executed on Google cloud using a single
12GB Nvidia Tesla T4 GPU. The model was run repeatedly
for 25000 episodes. The results show the agent reaching
the goal taking anywhere between 5-20 seconds for each
episode. Two models were run, one allowing the agent
to make random choices occasionally and the other with
no randomness. Another environment with obstacles, to
hinder the agent from reaching its goal, was also added for
comparison. Then 10 test data were presented to compare
how well the model performed. Figure 7 shows the results
and demonstrates how quickly the agent reached the goal on
an average for all the test data. As metrics for comparison,
we have plotted the results against time.

With identical training and testing, the results from Ta-
ble I provide an acute representation of how a certain level
of randomness can allow the agent to explore for finding
different solutions for a problem, thus when provided with
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Figure 7. Total time taken to reach the goal during test run in Block Environment

Method Time Taken in seconds Performance Ratio
No Randomness 9.21 1.0

Randomness 8.5 1.08
Controlled Exploration (ours) 8.23 1.12

Randomness + Hinderance (our method) 14.16 0.65

TABLE I. Block Environment Results

an unknown test data, it can perform slightly better than
when trained without randomness.

The element of randomness to some extent helped
refrain the agent from conforming to a single solution
and yielded almost 12% improvement in performance.
Moreover, the controlled form of exploration improves the
performance by over 3%. This is because when the agent
performs a random action, it traverses through a path it has
never been before. This eventually leads to multiple ways
of solving the given problem. The agent can now solve
a single problem in multiple ways and can thus find the
most optimal solution in each scenario by accessing all the
available options. Thus, the agent will not be stuck without
options when one path is blocked. This also allows the
agent to gain more knowledge about the environment, thus
increasing awareness when any change is incorporated in it.
This is the reason why the agent trained with the allowances
of random action in a controlled way was able to react and
reach the goal quickly for the given test data. However,
there is still more research required to help resolve certain
constraints that would further improve the performance of

the agent.

Moreover, it was also found that when the border was
removed for the agent to better explore different options
without having to hit the end of the screen, it found different
ways to approach the goal. Though not having explored the
feature of having no boundaries, the agent soon figured it
out when performing random actions. It used the border to
its benefit by going over one side and emerging from the
other to reach the goal faster. This demonstrates how the
agent explores various paths of solution before settling for
the most optimal one.

Another set of training was done with the model having
random obstacles (white blocks) to block the path of the
agent from reaching its goal, as shown in Figure 6. Here,
the agent cannot stick to its original solution as the path
may be blocked. The agent soon realized the obstacle must
be evaded and managed to find different solutions. Though
it took more steps, the agent managed to approach its
goal through different paths. Having run the model through
various obstacles, it was found that the agent has learnt
various unprecedented tricks to finish the game efficiently.
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Figure 8. Total time taken to reach the goal during test run in Mountain-Car Environment

Method Time Taken in seconds Performance Ratio
No Randomness 0.0187 1.0

Randomness 0.017 1.1
Controlled Exploration (ours) 0.0166 1.13

TABLE II. Mountain-Car Game Results

For example, when presented with an environment that
refrained the agent from moving to the other half of the
screen, the agent moved to the end of the screen to appear
from the other side and arrive at the goal much faster than
anticipated.

Another observation made during the implementation of
this project was the setting of right value as reward given
to the agent for each action. The right reward value seemed
to play a significant role in how quickly the model reaches
an optimal solution. It also plays a role in how intense the
calculations are by determining how large the difference
between the obtained output and expected output is. This
reduces the weights used to calculate the outputs, which in
turn reduces the complexity of the calculations involved.
If the rewards were too low, the changes in the Qvalues
become insignificant which reduces the value of any move
made by the agent. On the other hand, if the rewards were
too high, the difference seems too great, and the calculations
intensify. Thus, having the right value for rewards is an
excellent way to help the agent learn quickly and efficiently.

One finding during the training session is that, when
the agent can explore, it performed random actions despite
being close to the goal. Though random actions have ben-
efits when it comes to exploration, this in certain instances
delayed the agent from finishing the game.

B. Result of Mountain-Car Environment
The above result is clearly supported by the Mountain-

Car environment, where a single agent is required to use
the momentum efficiently and reach the goal. The model
was trained with and without the inclusion of randomness
and the results in Figure 8 were obtained.

As we can see from Table II, the model, when trained
with randomness performed better by reaching the goal
quicker than when trained without randomness. It can be
found that the agent in the model trained with randomness
reached the goal 1.13 times faster than the agent in the
model trained without randomness. This means there was a
performance boost of 13% when the concept of exploration
was incorporated into the model. Moreover, controlled
exploration yields over 2% increase in performance.

This difference seen in the performance of the model is
largely due to the model being stuck at a local minimum.
With the agent being allowed to explore with an exponen-
tially decreasing probability, the model will have enough
room to make random moves even after a solution, thus
increasing the chances of finding the global minimum. This
shows how the model trained with randomness was able to
perform better, by not being stuck at the local minimum
and reaching the global minimum.

http:// journals.uob.edu.bh



Int. J. Com. Dig. Sys. 11, No.1, 541-551 (Jan-2022) 549

Figure 9. Total time taken to reach the goal during test run in Acrobot Environment

Method Time Taken in seconds Performance Ratio
No Randomness 0.00853 1.0

Randomness 0.00822 1.038
Controlled Exploration (ours) 0.00813 1.044

TABLE III. Acrobot Game Results

Also, one thing to keep in mind is that since the agent
will explore more in this approach, the initial success
rate will be minimum compared to when trained without
randomness. This is because the agent will not settle for
the initial path and will continue to learn until the epsilon
value deteriorates completely. Thus, this is an expensive
method and requires a greater number of epochs to find the
solution.

C. Result of Acrobot Environment
The result of this environment also supports the claim

that the model indeed performs better when the agent can
actively explore.

From the results obtained in Figure 9 and Table III,
the model, when trained with randomness, performs 1.044
times better than when trained without randomness. Simply
allowing the agent to explore yields at least 4-5% better
performance. Our controlled form of exploration yields an
improvement of over 0.5

It can be noted that the final few epochs did not yet
yield a perfect result. This is because the number of training
epochs were not sufficient, and the agent required more
training to explore the environment. This same trend can
be observed with the Mountain-Car environment as even
in the last few episodes, the model still showed some
spikes in time. Despite this, the model performed better

than when trained without exploration. As the exploration
increases, the number of training episodes required to run
for optimizing the model will also increase. When allowing
to explore, the agent will try and make random moves to
better understand the environment. So, the model will not
be optimized correctly with less training, thus affecting the
performance. Future work is to be conducted to understand
the correlation between the exploration rate and number
of training episodes to find the right balance that is also
efficient in terms of computation.

While many existing Reinforcement Learning models
fail to incorporate randomness while training the agent, with
the obtained results, it is confident to say that allowing
the agent to explore could be advantageous for most en-
vironment. This increases the agent’s learning range, thus
allowing the agent to have a complete understanding of the
entire surrounding. If the whole environment is explored
by the agent, any small change to the environment will
not require the model to be completely retrained again.
As observed, the model will itself adapt to the changes
depending on how well it has explored and how significant
the changes are to the environment.

Though exploration is necessary for the agent to find
multiple solutions, this could sometime hinder the learning
process. While the bellman equation ensures the learning
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of the model, it is important for the agent to perform these
actions so as to improve the model. If the agent can perform
random actions without a controlling metric, the agent will
never conform to any solution, thus invalidating the learning
of the entire model. To balance learning from both the
model and the random actions in the environment, we
have shown the implementation of the exponential decrease
function for the value of epsilon. This offered a controlled
approach for training the model while incorporating a
certain level of randomness.

6. Conclusion and FutureWork
Deep reinforcement learning is a method of learning that

resembles closest to that of a human being. It is a model-
free form of learning that does not require a collection of
data consisting of all possible states but instead allows the
computer to form its own data to learn from by making
mistakes and adjusting the weights to correct them. This
reward-based learning offers an independent approach to
training a model without having to rely on data.

With Reinforcement learning’s wide range of applica-
tions such as industry automation or autonomous vehicle,
with a controlled allowance of exploration, the agent is
sure to reduce the error. This method, to be more effective,
requires a form of randomness to help the agent explore
different paths for a single problem. Finding different solu-
tions not only helps the agent to not be stuck in the local
minimum, but also to adapt to different scenarios quickly.
With the result obtained from the tests it is evident that
controlled randomness to some extent will allow the agent
to explore better and in turn perform better with the unseen
data.

Although this can help the agent learn more about the
environment, it is an expensive method of learning. Since
it will not conform to a single solution, it requires many
iterations to learn effectively. We managed to provide a
controlled way of exploration which allowed the agent to
perform random action only till a certain point. However,
this again restricts the agent if the training session is less.
Therefore, more research on this topic is required to produce
greater results in a smaller number of training episodes.

One other point to note is that while allowing the agent
to explore with a certain probability, one must also try to
base it on the position of the agent. For example, if the agent
is right next to the goal, it becomes pointless to perform a
random action. This posed a great problem in the initial
stages of training when the probability was high. Allowing
the agent to explore in a controlled and sensible way will
further help the agent learn effectively. Future work in this
aspect will investigate the performance drop due to this
factor and will provide an improved approach.
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