
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Aug-2022)

https://dx.doi.org/10.12785/ijcds/120157

The Automation of Java Smart Card Using Negative Testing

Amena Bataineh1, Mohammad Alshraideh2, Amjad Hudaib3 and Fadi Wedyan4

1Department of Computer Science, King Abdullah II for Information Technology, The University of Jordan, Amman 11942, JORDAN
2Department of Computer Science, King Abdullah II for Information Technology, The University of Jordan, Amman 11942, JORDAN

3Department of Computer Information System, King Abdullah II for Information Technology, The University of Jordan, Amman 11942,
JORDAN

4Department of Software Engineering The Hashemite University Zarqa, 13315 Jordan

Received 22 Jan. 2021, Revised 15 Jul. 2022, Accepted 23 Jul. 2022, Published 6 Aug. 2022

Abstract: Negative Testing verifies the behavior of the system under test by providing invalid inputs. In this research, we applied the
boundary values analysis technique on Java Smart Card Applications. This type of application is deployed in highly essential areas
around us to support access, identity, payment and other services. We applied the Negative testing approach which does not only aim
to show any potential defect that could cause a risky impact on the exhaustion of the application on the whole but can be instrumental
in determining the conditions under which the application can crash. Negative Testing is evaluated on Six Smart Java Programs, and
the results show that the presented approach can reveal faults and unexpected behavior in these programs.

Keywords: Software Testing, Negative Testing, Java Card, Applets.

1. INTRODUCTION
Software testing is a vital, yet costly phase in software

development that aims at producing more reliable systems
[1], [2]. Studies show that testing cost, which is typically
measured by time and project budget, might exceed half
of the developed project cost. Testing approaches aim at
maximizing the number of revealed faults while minimizing
the cost [3]. Many software testing approaches have been
proposed. Testing approaches can be classified according to
various criteria. The first, Positive Testing (PT) approach,
works when inserting valid data. The second is Negative
Testing (NT), which works when inserting invalid data for
parameters. Negative Testing is a fundamental approach in
our daily lives like Automated Teller Machine (ATM) card,
and in space. The end-users will face disastrous problems,
especially when the users insert the wrong password in
ATM more than 3 times. Maybe an unauthorized user
or authorized user, but the authorized user (he or she)
forgot the password. In that case, we need to apply the
NT approach to avoid system corruption and measure the
behavior of the system under testing when we insert invalid
inputs for parameters that are defined in each applet or
application. Negative Testing (NT) is performed to ensure
that the product under test does not fail when an unexpected
input is given. The purpose of negative testing is to verify
the application response during unintentional inputs. There

are characteristics of negative testing like determining the
errors which cause big failures, finding the weakness of the
application and exploiting it, and showing data corruption
or security breaches [4].

Java Smart Card (JSC) is a card that has a main
application as a platform and one applet or more, which
is a small application to introduce a specific service. Plat-
form and applets are burned on the chip of the card to
become embedded within a system. The embedded applets
can communicate with each other. There exists some con-
straint in java applications to keep security to prevent any
unauthorized user from accessing, so we need to test the
applications before deploying them, so there is a native
code that is in the libraries of the applets that provide
cryptography services. The goal of the testing is to check
if the system works as expected or not.

We noticed, there is no testing for JSC programs using
NT. So as mentioned earlier, software testing aims to
design test cases that reveal as many faults as possible
to improve the quality of the software and to increase the
reliability of the software product. Also, manually testing
for software system requires a huge effort, consumes time,
and is costly [2], [5], [6], [7], [8]. A solution to these
requirements was to automate the process of testing by a
proposed heuristic tool. Automatic negative software testing

E-mail address:amoonbat@hotmail.com,mshridah@ ju.edu. jo, ahudaib@ ju.edu. jo, f adi.wedyan@hu.edu. jo

https:// journal.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/120157
https://journal.uob.edu.bh

708 Amena Bataineh, et al.: The Automation of Java Smart Card Using Negative Testing

significantly reduces cost, time, and increases confidence in
the products. There are some benefits to automatic NT taken
from [9] discover variant methods to make the application
crash and solve it easily; how can the system deal with
bad data? prevent the system from crashing, improve the
quality of the application, improve test coverage, find the
weak points in applications. For the previous reasons, we
applied an automated NT approach on six (JSC) applets
using boundary analysis technique and branch coverage
for all parameters, which included predicates, and different
data types. The applets are MinMax, MidValue, AllTrue,
QuadEq, NumDay, and Calculator. The results show that
the presented approach can reveal faults and unexpected
behavior in these programs, and consume time and effort.
Also, we noticed in nested IF statements, the tool needed
more time. The rest of this paper is organized as follows.
Section 2 presents related work. Section 3 describes the
details of the proposed approach. Section 4 presents the
experiment setup. In section 5, the results of the experiment
are given. Finally, conclusions and future work are outlined
in Section 6.

2. RELATED WORK
According to Weelden etl. in [10] tested a Java Card

applet, in a black-box setting, based on a formal specifica-
tion of its required behavior. They demonstrate their testing
methodology by applying it to a simple electronic purse ap-
plication as a case study. They have presented an approach
to automate the testing of Java Card applets using the test
tool GAST. The test case derivation is based on a State
Chart specification of the applet under test. As we know,
most of the testing for any application is done by one ap-
proach of testing called Positive Testing (PT), but Semwezi
[4] described Negative Testing (NT) definitions and its tech-
niques. The Author propose a unit testing extension frame-
work for negative testing called NegTest, which is used to
test different open-source libraries of different complexities
and the type and number of discovered failures documented.
NegTest is developed in the Ruby programming language as
an expansion to the MiniTest unit testing framework, which
is the standard testing framework included in the Ruby
system. The expansion is developed based on the Negation
Testing principle. Eight JSC programs were tested using two
methodologies, the first one was introduced by Manaseer
et al [11], [12] when they used Genetic Algorithm (GA)
to generate test data automatically to test JSC application.
They applied GA to get the least possible test data to
achieve the branch coverage criterion. The experimental
results are measured by three parameters: the number of
test data generation, execution time, and percentage of
branch coverage depending on population size, which is
considered in this study as follows (30, 50, 70, 90, 110).
They applied GA to eight JSC programs, and the size of the
programs ranges from (59) to (4,277) lines. The conclusion
from their experiment was it had the monotone decreasing
between the average number of generations and population
size, but the relationship between execution time and the
average number of generations had monotone increasing.

The experiment covers 99% of branch coverage. The second
one was by Allawi et al. [13] when they proposed a new
technique to test the JSC application called Greedy Particle
Swarm Optimization (GPSO), which is a combination of
Greedy algorithm and Particle Swarm Optimization (PSO)
algorithm. GPSO guarantees effectiveness and closes to
get an optimal solution for generating the least possible
number of the test data. They applied GPSO on eight applets
and observed that it is better than GA in terms of the
average number of iterations, execution time, and coverage
percentage. To satisfy the goal of the experiment, covering
all branches in the program under test, they implemented
the program using Netbeans IDE 8.0.2. Kübler et al. [?]
presented an approach to achieve negative test cases for
test automation framework, and they used the framework-
based CAST tool approach as a test environment to integrate
the selection and generation of negative test cases. They
consider the generation of negative test cases using model-
implemented fault injection for the virtual model of the
Production System (PS) as a suitable approach for the
automated verification and validation of the reliability of
a PS. Martin and Bousquet [14] described the method used
in the verification process for Java Card applets and its
application on a case study. This methodology is based on
automatic test generation. They apply their methodology to
the well-known type of smart card application called Purse.
The Purse’s applet provides the most common functions to
the end-user such as debit, credit, and balance. They provide
only a very few parts of their case study. These parts consist
of the diagrams concerned by the Purse credit function. The
experimental result obtained with their case study indicates
that their methodology could fulfil industrial requirements
for applet behaviour verification. Karhu, et al. [7] presented
a survey by interviewing the employees who are working
in product-oriented software development from different
types of companies, customized systems development, and
testing service providers to identify factors that affect the
state of testing automation from their positions. They have
observed the benefits of testing automation include quality
improvement through better test coverage, and that more
testing can be done in less time. a framework was proposed
by Petrova-Antonova, et al. [15], they called it Testing as
a Service Software Architecture(TASSA) to support the
testing, validation and verification of both functional and
non-functional behaviour of web service compositions at
design time. It consists of a set of tools that can be
used together with existing development environments of
service-based applications. They focus on two of TASSA
tools, namely Fault Injection tool and Isolation tool that
respectively provide functionality for negative testing and
unit testing of web service compositions described with
Business Process Execution Language (BPEL). Villalobos-
Arias, etal. [16] presented the Model-Based Testing Process
for Java Applications (MBT4J), which can automatically
generate and execute test cases for Java applications. The
platform automates model building, test case generation,
and test execution stages and allows to generate up to
2,438 test cases, detects up to 289 defects, and achieves up

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 707-714 (Aug-2022) 709

to 83There is a comparison between traditional and agile
testing models where Dhir and Kumar [17] proposed a
model for automated agile testing. The experimental work
has also been represented in testing a web application. The
proposed agile testing model worked with the production
team in a planned and organized manner to deliver the
products in the sprint. The authors found out that the results
through agile testing are better than traditional testing.

3. THE PROPOSED RESEARCH METHODOLOGY
This section explains the detailed steps of how applying

negative automation testing by automatically generating test
data for Java Card applications to achieve branch coverage.
By using the NT approach, we verify the system behavior
with inputs values to the conditions, indices, and indicators
outside the specified or valid range of the predicates in
addition to input values outside the domain of the predicates
data types (e.g., int, double, string, . . .) and input values
with different data types of the predicated data type.

To apply the NT approach using our proposed tool,
we used branch coverage criteria. Because our experiments
depend on a false branch for every predicate. So the research
is introducing a tool to verify this approach. To the best
of our knowledge, this approach is considered the first to
use NT to test Java Card applets. Java Card applets are
used in vital areas in our lives, observing the execution of
the applets. The goal is to validate whether they behave
as intended and identify malfunctioning or not, which is
an essential process that must be considered. There are
two main steps in the test data generation process. In
the first step, test data is generated randomly through the
tool, and redundant data is removed. Also, we added the
domain boundaries for each variable manually. Test data is
generated on the predicates data type for each variable of
the program associated. Here, we want to draw attention,
we increased the number of iterations to investigate all cases
in a random generation. The proposed algorithm is shown
in Figure 1

Where, overflow occurs when an arithmetic operation
attempts to create a numeric value that is outside of the
range that can be represented with a given number of
digits – either higher than the maximum or lower than the
minimum re-presentable value.

False branch c3 is any value that makes the condition
of the branch False.

The algorithm starts by creating a pool of random test
cases, these test cases have to cover all false branches. The
tester provides the program under test (applet) to the tool, an
applet is classified depending on the false branch for every
conditional statement. Then it analyzes each parameter to
get the parameter data type. After that, the tool goes to
the library to determine the maximum (max overflow) and
minimum (minimum overflow) value for the branch data
type parameter(s). Then the tool generates invalid data types
(e.g., String data type instead of integer or float). Also, the

Figure 1. The proposed algorithm for negative testing

Figure 2. The concept of proposed tool

tool generates value to make the false branch. Finally, the
tool validates the behavior of the program for each input.
Figure 2 shows the concept of the tool. The following
example explains the algorithm:

A. Calculator:
This program works to calculate the output by applying

any one of the arithmetic operations between two numbers.

We have applied negative testing on this program before
getting the results of the summation, the subtraction, the
multiplication, and the division operations. The calculator
program has three parameters: num1, num2, and op. We
tested if the range of the two numbers is greater than
the maximum size or less than the minimum size of data
type. Then tested if the values are different data types like

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

710 Amena Bataineh, et al.: The Automation of Java Smart Card Using Negative Testing

Figure 3. Applet Java programs

String, Character, and Boolean for both numbers, and tested
if the operation is any symbol except the four arithmetic
operations (+, -, *, /). We executed the NT ten times. Each
time has ten iterations. In each iteration, there is a random
method to generate two integer numbers. Before applying
any operation, the NT approach will work to decide if these
numbers are Numeric data or not. If it is Numeric, then the
tester should investigate whether the numbers are in the
size range of data type or not. We generated numbers in
the rang [-40000 40000] in two cases integer and floating-
point data type, but the operation was inserted manually
by the tester. We applied the NT when the operands are
Numeric and in the range, but the operation is a division
and the denominator is zero, then the error message will
appear because this is not allowed in mathematics laws.
We applied the negative testing on Numeric values and
other data type like Character, String, Boolean for operands.
Then we found the average execution time for different data
types was less than Numeric data types. We also applied
the NT approach to the operations. The tester inserts any
symbol except the arithmetic operations like (?!,@,.. etc).
Figure 3 below explain the results of negative testing. Here,
the shown figures are the screenshot from the results which
appear from different test cases.

In some cases like the following program not always we
can generate all test cases to apply NT, so NT can be applied
in a branch in line 6 where i=10, but to apply NT in the
nested if statement in line 8 where i¡ 15 if statement in line 6
must be true, so for line 8 only we can generate test case to
false the branch on line 8 but if we apply the choices of test
cases then it not reach line 8, and the same with the branch

Figure 4. Information about each applet

on line 10, to reach line 10, if statements on line 6 and line
8 must be true, so we can generate test case only to false the
branch on line 10. In this research, the NT applied to Six test
Java smart programs that have been selected as benchmarks.
Each program has unique characteristics to investigate the
performance of NT as an approach of software testing to
test Java Smart Card applets. These programs are briefly
presented in Figure 4

Finally, each program has a set of parameters, which
are tested in the NT approach. We will mention these
parameters in detail to explain how to program works?

B. Minimax
This program works to find the minimum and maximum

values from the array’s values. In our experiment, the size
of the array equals 5, the first element in the array is called
’ password ’. To apply for the program and get the target,
there is one condition which is the value of the first element
(password) should be equal to 100. When we applied the
negative testing for this program, we take the first element
which does not equal 100, but when we need to test ’idx’
variables which are denoted to the address of the value in
an array, the ’ pass’ variable should be equal to 100 because
the condition statements are nested.

C. Middle Value (Mid)
This program works to find the middle value between

three integer values. In this program, the parameters X,
Y, and Z are defined as short integer data types, and it
was generated randomly with range [-50000 50000]. We
executed the program to apply NT ten times. Each time, the
program generates three values in ten iterations randomly.
When we applied NT for the Numeric data type, some
iterations give the middle value, but others give an error
message because some values are out of range. Applying
the NT on Character data type, the middle value cannot be
obtained because there is a different data type. We noticed
that the elapsed time, [12], [5] to test a Numeric data type
ten times is more than to test a Character data type.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 707-714 (Aug-2022) 711

D. AllTrue
This program works to determine if all values in a

logical array are true [5]. Here we applied NT to test this
program when the values are greater than the maximum or
less than the minimum size of data type, when inserting
different data types for parameters like a Character data
type, and when the counter exceeds the length of the array.
So, we generated values for ’X’ parameter randomly. Then
we checked if it is greater than zero or not. Depending on
the answer, we filled the location of the array with true or
false. Then when we set the values of ’X’ for each address
until we reached an address beyond the length of the array.
In this case, we needed to apply the NT approach to prevent
the program from any failure. After that, we calculated the
number of the locations which have a true value and decided
if the array is all true or not. We set the length of the array
in our experiment to 4. We applied the negative testing ten
times and all attempts gave an error message except four
iterations which gave true values to all arrays. The execution
time for Numeric data type testing is more than Character
data type.

E. Quadratic Equation (QuadEq)
This program works to find the roots of a quadratic

equation and determine if there is one root, two roots,
or no root (imaginary number). The quadratic equation
needs three variables (a, b, and c) to find a root. Then we
should calculate the discrimination to distinguish between
the equation which has one root, two roots, or no root
(imaginary number). We applied NT by values out of data
type range and with different data types such as Character
data type. We noticed the execution time to find the solution
for quadratic equation in Character data type is less than
Numeric data type.

F. Number Of Days (NumDay)
This program works to calculate the number of days

between two dates in the same year. NumDay program
needs five variables to be able to determine the two dates at
the same year: day1,month1,day2,month2, and year. There
are some previous conditions for each parameter which we
generated randomly like day1 and day2 must be between 1
and 31, month1 and month2 must be between 1 and 12, and
year must be between 1 and 10000. In February, the number
of the days is 28 and often 29. That depends on the year
if it is a leap year or not. We can determine that by some
rules like if the remainder from dividing the year on 4 is
zero. Month1 must be less than or equal to month2, if they
are equal, day2 must be greater than day1 to calculate the
number of days. When we applied the NT in our program
in the Numeric data type case, we generated random values
between [-10 40] for days, [-5 20] for months, and [-50
20000] for the year, but in different data types like the
Character, we generated a random capital letter from A to
Z. We noticed the execution time of the Numeric data type
was greater than the Character data type. After applying the
NT, sometimes we got the number of days if the generated

Figure 5. Average Execution Time for Numeric and Character Data
Type for All Programs

random number is in the range. Other times, we got an error
message, which means some entered data was invalid.

4. EXPERIMENTAL RESULTS
The experimental results for each program under test

were illustrated in this section. depending on some criteria
to be measured like average required execution time when
applying the negative testing was used on Numeric data type
and Character data type, number of needed negative test
cases to cover all negative situations, and average number of
the required iterations to execute the target of the program.
Table I below shows the results. The average execution
time for the Numeric data type is higher than the Character
data type in all programs because, in an invalid Numeric
data type, there is a probability to get the target of the
program. Forcing the application to execute more condition
statements to test the parameters until ensuring whether the
settings of the parameters to investigate all conditions to
reach the mark or not. While in Character data type, from
the first test, the behavior of the program will arrive to end
the execution, because the parameter is not Numeric.

Figure 5 illustrates the difference between them. Also,
in MiniMax and AllTrue programs, we have observed that
the average number of iterations to get the target of the
programs is higher than other programs because we are
forced to execute the MiniMax plan more than 10 times
to get the first iteration which investigates the target of
the program. When we increase the range of random data
generation, we noticed that the number of iterations to get
the target increased. Figure 6 shows the average number of
repetitions that are needed for each program.

In NumDays program, the number of needed negative
test cases for applying NT is higher than residual programs
because it has more parameters and more if-statements. Fig-
ure 7 illustrates the difference between several negative test
cases needed to use negative testing for each application.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

712 Amena Bataineh, et al.: The Automation of Java Smart Card Using Negative Testing

TABLE I. Experimental Results for All Programs

P. Name A verage Execution Time(sec) Average Number of Iterations Number of Negative Test Cases
Numeric data Character data

MinMax 4 117 0.0001715 0.0014096
Mid Value 2 48 0.0002174 0.0038848

AllTrue 2 50 0.0000245 0.0001855
QuadEq 4 4 0.0004167 0.0023744
NumDay 8 10 0.0002508 0.0002758

Calculator 4 2 0.0001163 0.0004155

Figure 6. Average Number of Required Iteration to Get a Target for
All Programs

Figure 7. Number of Negative Test Cases for Each Applet

In summary, in Numeric data type, the behaviour of
the program goes towards the target if all conditions were
investigated, but in Character data type, from the first test,
the error message will appear because it is a different data
type, so there is no need for more time.

5. CONCLUSION AND FUTURE WORK
We applied the boundary values analysis technique to

test Java Smart Card Applications in a negative testing
approach. This type of application is deployed in highly
essential areas around us to support access, identity, pay-
ment and other services

We have noticed the average execution time for the
Numeric data type are higher than the Character data type
in all programs. Because of the invalid Numeric data type,
there is a probability to get the target of the program. We
have also got the average number of iterations in the case of
Numeric data only because the Character data type cannot
investigate the objective of each original program. In the
NumDays application, the number of needed negative test
cases for applying negative testing is higher than residual
programs because it has more parameters and more if-
statements.

The central aspect of the future work in this paper
is to make a real-world simulation of the automation NT
approach on an actual Java Smart Card and other types of
programs. Also, testing Java Card programs using different
test coverage criteria such as path coverage to distinguish
which is the most appropriate test coverage criterion for
testing Java Smart Cards. In addition to Applied Negative
Testing into Object-oriented and Compound data types.

References
[1] B. D.J. and W. A., “High volume software testing using genetic

algorithms,” In Proceedings of the 38th Annual Hawaii International
Conference on System Sciences IEEE, pp. 318–328, 2005.

[2] M. B. Alshraideh M, Bottaci L, “Using program data-state scarcity
to guide automatic test data generation,” Software Quality Journal,
vol. 18, pp. 109–144, 2010.

[3] B. B., “Software testing technique,” Book 2nd ed., 1990.

[4] B. J., “https://dev.to/rfornal/negative-testing-4k55,” 2022.

[5] A. M., “A complete automation of unit testing for javascript pro-
grams,” Journal of Computer Science, 2008.

[6] Guru, “Automated vs. manual testing,” Accessed online [4.12.2021]
available at https://www.guru99.com/difference-automated-vs-
manual-testing.html.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 707-714 (Aug-2022) 713

[7] T. O. Karhu K., Repo T. and S. K., “Empirical observations on
software testing automation,” International Conference, pp. 201–
209, 2009.

[8] A. N. T. L. A. M., “Maintenance-oriented classifications of efsm
transitions,” Journal of Software, vol. 11, pp. 64–79, 2016.

[9] Guru, “Negative testing,” Accessed online [4.12.2019]available
at,https://www.guru99.com/negative-testing.html.

[10] F. L. K. P. Weelden A., Oostdijk M. and T. J., “On-the-fly formal
testing of a smart card applet,” In IFIP International Information
Security Conference, pp. 565–576, 2005.

[11] A. M. H. N. Manaseer S., Manasir W. and A. O., “Automatic test
data generation for java card applications using genetic algorithm,”
Journal of Software Engineering and Applications, vol. 8, 2015.

[12] A.-S. S. Alshraideh M., Mahafzah BA., “A multiple-population ge-
netic algorithm for branch coverage test data generation,” Software
Quality Journal, vol. 19, pp. 489–513, 2011.

[13] A. M. W. Allawi H.M. and A. M., “A greedy particle swarm
optimization (gpso) for testing real-world smart card applications,”
International Journal on Software Tools for Technology Transfer,
vol. 6, pp. 1–12, 2018.

[14] M. H. and B. L., “Automatic test generation for java card applets,”
International Java Card Workshop, pp. 121–136, 2000.

[15] M. I. Petrova-Antonova D., Ilieva S. and M. D, “Towards automation
design time testing of web service compositions,” 6, pp. 61–70,
2012.

[16] M. A. Villalobos-Arias L., Quesada-López C. and J. M., Interna-
tional Conference on Software Process Improvement, pp. 165–174,
2018.

[17] D. S. and K. D., “Automation softwaretestingon web-
basedapplication,” Software Engineering, pp. 691–698, 2019.

Amena Bataineh is an instructor in Dar
Al-arqam school since 2011, licensed ICDL
examiner and trainer . She got her master de-
gree in computer science from the university
of Jordan in 2019. In addition to bachelor
of computer science from the university of
alyarmouk, Jordan in 2007. Here research
interest is software testing fields especially
in negative testing .

Mohammad Alshraideh is a Professor
of Software Engineering in the Department
of Computer Science at the University of
Jordan, Jordan. He got his PhD in Software
Engineering (Testing) from the University
of Hull (UK) in 2007. He has 15 years of
experience in the IT industry before moving
to academics. His IT experiences include the
design and development of software systems
and management of software development

projects. He worked in different administrative positions (Head
Director Assistant for Computer Technology at the Hospital of
the University Human Resource Director at the University of
Jordan, Registrar General at the University of Jordan), and Dean
of Graduate school. He was granted several academic projects.
He has published more than thirty papers in his research areas.
He participated in many workshops, seminars, and conferences
in the field of software engineering, and computing. His research
interests are Software Testing, Computational Intelligence, Data
Mining, Digital Humanity.

Amjad Hudaib is a Prof. of software en-
gineering at the Department of Computer
Information Systems (CIS), University of
Jordan. He received his Ph.D. in Computer
Science from University of Pisa, Italy in
2003. He earned his MSc. and BSc. In Com-
puter Science from University of Jordan in
2000 and Mutah University in 1991; respec-
tively. Prof. Hudaib was the Dean of King
Abdallah II School of Information Technol-

ogy During (Sept. 2018- Sept 2020). He was the Chairman of
the Department of Computer Information Systems during (2017-
2018), (2004– 2008). He has acted as the Director of Accreditation
and Quality Assurance Center at the University of Jordan (2009-
2014). Also, he acted as an Assistant Dean for Labs Affairs
(2003-2004). His teaching and research interests cover a broad
range of computing and business subjects including software
engineering, project management, software testing, architectural
design, data mining, optimization algorithms, and artificial in-
telligence techniques. Prof. Hudaib published more than eighty
numerous international peer reviewed articles in scientific journals
and conferences including several number of case studies. Also, he
co-authored the official text books used for Ministry of Education
for grades seven to twelve (Tawjihi). As for scientific and graduate
studies, he supervised (and currently supervising) more than 70
Master and PhD Students and more than 60 bachelor graduation
projects at The University of Jordan and other universities. Also,
he was editor and reviewer in several well reputed international
conferences and journals.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

714 Amena Bataineh, et al.: The Automation of Java Smart Card Using Negative Testing

Fadi Wedyan is an Associate Professor
in the Department of Software Engineer-
ing at the Hashemite University, Jordan. He
completed his PhD in computer science at
Colorado State University (2011). He re-
ceived his Master in computer science from
Colorado State University (2008). He also
holds a Masters in Computer Science from

Al-albayt University, Jordan (1999). His re-
search interests include Evolutionary soft-

ware testing, search-based software engineering, software quality
metrics, and software design. His interests also include AI applica-
tions mainly planning and scheduling, and classification. He is also
interested in mobile computing and the design and development
of smartphone applications for health care, educational, and social
uses.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

	INTRODUCTION
	RELATED WORK
	THE PROPOSED RESEARCH METHODOLOGY
	Calculator:
	Minimax
	Middle Value (Mid)
	AllTrue
	Quadratic Equation (QuadEq)
	Number Of Days (NumDay)

	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE WORK
	References
	Biographies
	Amena Bataineh
	 Mohammad Alshraideh
	Amjad Hudaib
	Fadi Wedyan

