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Abstract: Convolutional neural network is now widely used in computer vision and deep learning applications. The most compute-
intensive layer in convolutional neural networks is the convolutional layer, which should be accelerated in hardware. This paper aims
to develop an efficient hardware-software co-design framework for machine learning applications on the PYNQ-Z2 board. To achieve
this goal, we develop hardware implementations of convolutional IP core and use them as Python overlays. Experiments show that
the hardware implementations of the convolutional IP core outperform their software implementations by factors of up to 9 times.
Furthermore, we make use of the designed convolutional IP core as hardware accelerator in the handwritten digit recognition application
with MNIST dataset. Thanks to the use of the hardware accelerator for the convolutional layers, the execution performance of the
convolutional neural network has been improved by a factor of 6.2 times.
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1. Introduction
In recent years, convolutional neural networks (CNN)

have become very popular in deep learning area. CNNs
combine advantages of the convolutional filtering operations
and the traditional artificial neural networks in both feature
extraction and classification. It has been used in a variety
of applications requiring high accuracy, such as image
classification [1], [2], speech recognition [3], or self-driving
cars [4]. Since the applications of CNNs is now becoming
more complex, the number of layers and computational
operations in the CNN architectures are rapidly increasing,
thereby requiring a large amount of computing resources
and memory storage.

To overcome this problem, many researchers have pro-
posed various architectures and techniques to accelerate
the inference of CNNs. With respect to hardware im-
plementations, three hardware platforms can be used as
CNN accelerators: graphic processing units (GPU) [5],
application-specific integrated circuits (ASICs) [6], and
field programmable gate arrays (FPGAs) [7], [8]. Among
these platforms, FPGA has revealed itself as the high-
performance and low-cost embedded device very suitable
for the hardware prototyping of convolutional accelerators.
Recently, new FPGA hardware solutions have been intro-
duced, allowing for an efficient hardware and software co-
design framework for the deep learning applications. The
PYNQ [9] is an open-source project from Xilinx that makes

it easier to develop FPGA based deep learning applications,
in which designers can efficiently combine the benefits of
programmable logic and microprocessors using the Python
language and libraries.

The typical architecture of CNNs often comprises of
many layers. The three common types of layers are con-
volutional layer, subsampling layer and fully-connected
layer. The most compute-intensive layer in CNN is the
convolutional layer. Therefore, to accelerate the inference
of CNNs, the convolutional layer should be deployed in
hardware.

In this work, we aim to develop an efficient hardware-
software co-design framework for machine learning appli-
cations on the PYNQ board. To achieve this goal, we will
implement the convolutional layer in the programmable
logic of the FPGA hardware while keeping the other layers
of the network executed in the software microprocessor
for flexibility. The Xilinx ZYNQ SoC based PYNQ-Z2
device [10] is used in this work. The scientific contributions
of this paper are the followings:

• We design and implement in VHDL (Very High
Speed Integrated Circuits Hardware Description Lan-
guage) a 2D convolutional intellectual property (IP)
core fully synthesizable for FPGA.
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• The designed 2D convolutional IP core is then used
as a hardware accelerator to accelerate the inference
of a convolutional neural network for the handwritten
digit recognition application with the MNIST dataset
on the PYNQ-Z2 FPGA board.

The remaining of this paper is organized as follows.
Section 2 presents the background of the paper. Section 3
shows the architectual design and hardware implementation
of the proposed 2D convolution IP core targeting for Xilinx
PYNQ FPGA, followed by the evaluation of the designed
IP core on the Xilinx PYNQ-Z2 device. The application of
the designed IP core in convolutional neural network for
the handwritten digit recognition is presented in detail in
Section 4. In Section 5, we summarize our work and sketch
out future research directions.

2. Background
A. Convolutional Neural Networks

The convolutional neural network is a commonly used
deep learning model for image processing and computer
vision. By combining feature extraction and classification,
CNN can offer very high accuracy recognition results. A
typical architecture of CNN, the LeNet network adopted
from [11], is shown in Figure 1. CNN consists of three main
types of layers: convolutional layers, subsampling layers
and fully-connected layers.

The convolutional layer performs the two-dimensional
(2D) convolution between the input data and the kernel, then
an activation function is applied to the convoluted result to
produce a feature map. The kernel size is normally 3x3
or 5x5 elements. A ReLu (rectified linear unit) activation
function is often used in CNNs. There are often many
kernels used in each convolutional layer of the CNN to
produce many feature maps in order to extract different
types of features from the input data.

The subsampling layer performs the reduction of the
spatial size of feature maps from its previous convolutional
layer. It is useful to extract the dominant features which
are rotational and positional invariant, thereby maintaining
the effectiveness of the training process of the model. The
subsampling layer is also useful to reduce the computa-
tional complexity of the network. There are two types of
subsampling operations: max-pooling and average-pooling,
for which the max-pooling is preferable as it performs better
than the average-pooling. The commonly used subsampling
operation is the 2x2 max-pooling.

There are multiple pairs of convolutional and sub-
sampling layers concatenating in a convolutional neural
network. For example, the network in Figure 1 has two
convolutional layers and two subsampling layers to perform
the feature extraction for the input data.

Once the feature extraction is done, the output of the
subsampling layer is flattened into a single vector of values
and fed into the fully-connected layer. The fully-connected

layer performs the classification task to produce a label
indicating the correct category of the input image. In the
example in Figure 1, three fully-connected layers are used.

Among all the layers of the network, the most compute-
intensive layer is the convolutional layer. In this work,
the convolutional layer will be implemented on the pro-
grammable logic of the FPGA so as to accelerate the
inference performance of the whole convolutional neural
network. The description of the 2D convolution operation
is presented in the next subsection.

B. The 2D convolution operation
The convolution operation is, by far, known as the most

commonly used and high compute-intensive operation in
both image processing [12], [13] and artificial intelligence
applications like convolutional neural networks [6], [11].
Given an M×N input image I and an S×S kernel W, the 2D
convolution output image F of size M×N is computed by
Equation (1), as follows:

F(m, n) =
S−1∑
i=0

S−1∑
j=0

W[i, j] · I[m − i, n − j] (1)

Figure 2 shows an illustrated view of the 2D convolution
computation, in which the image size is 5x5 pixels and the
kernel size is 3x3 elements. To compute the convolution
for each pixel, a sliding window of size SxS is utilized
for extracting the right neighboring pixels necessary for the
convolution computation of the computed pixel at hand. In
general, a 2D convolution with an S×S kernel requires S×S
multiply-accumulate (MAC) operations for each sample;
thereby, the number of MAC operations is M×N×S×S for
the whole image.

C. The PYNQ-Z2 FPGA
The PYNQ-Z2 board is a Xilinx ZYNQ SoC device

based on a dual-core ARM Cortex-A9 processor integrated
with a FPGA fabric [14]. The functional block diagram
of the Xilinx ZYNQ SoC is shown in Figure 3. The
dual-core ARM Cortex-A9 processor is referred to as the
Processing System (PS), and the FPGA fabric is referred to
as Programmable Logic (PL). The PS subsystem includes
a number of dedicated peripherals (including memory con-
trollers and other peripheral interfaces) and can be extended
with additional customized hardware IP cores in the PL
overlay.

Overlays, or hardware libraries, are programmable
FPGA designs that extend the user applications from the
PS subsytem of the ZYNQ device into the PL subsystem.
Overlays can be used to accelerate a software application,
or to customize the hardware platform for a particular
application. In addition, the most advantage feature of the
PYNQ-Z2 board is that it provides a Python interface to
allow overlays in the PL to be controlled from Python
programs running in the PS, making FPGAs easier to use
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Figure 1. The Lenet convolutional neural network architecture

Figure 2. An illustration of the 2D convolution operation

Figure 3. Functional block diagram of Xilinx ZYNQ SoC

with most of the computer vision and machine learning
applications. Figure 4 presents the design flow which is
applied in this work for the implementation of CNN models
on the PYNQ-Z2 board.

D. Data representation for FPGA implementation
One challenge for efficient hardware implementations

of image processing and machine learning applications on
FPGA is to choose the suitable data format for real number
operands and operations. Both fixed-point and floating-point
number formats, as well as the logarithmic number system,

Figure 4. The design flow for CNN on PYNQ-Z2

can be used for the hardware realization on FPGA, as
reported in [15], [16], [17], [18], [19], [20]. The logarithmic
number system, in which a real number is represented as a
fixed-point logarithm, was developed [15] and applied for
adaptive signal processing algorithms [16]. Floating-point
number format gives more accurate computed results [17],
[18], [19], while fixed-point number format brings much
better computation performance with respect to execution
time and hardware resources.

Recently, it is shown that the low-precision fixed-point
number format is sufficient for the training and computation
of deep learning neural network models [20], with little to
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Figure 5. Functional block diagram of the 2D convolution IP core

Figure 6. Block diagram of the 2D convolution module

no degradation in the classification accuracy. To perform
the arithmetic computations in the designed 2D convolution
core, we employ the VHDL fixed-point package designed
by David Bishop [21] and use the fixed-point signed number
format Q1.7 with 8-bit operands in this work.

3. Design and Implementation of 2D Convolution Core on
FPGA
In this section, we present the design and implemen-

tation of 2D convolution IP core targeting for the Xilinx
FPGAs. For the design and hardware implementation of the
targeted IP core, we utilize the Vivado Design Suite 2018.3
WebPack Edition from Xilinx and we implement the design
on the PYNQ-Z2 FPGA board.

In this work, we will investigate three different hardware
implementations of the 2D convolution core that correspond
to the image sizes of 32x32, 64x64 and 128x128 pixels. The
kernel size is fixed at 3x3 elements. We then generate three
different Python overlays corresponding to the three chosen
hardware implementations of the designed IP core.

Figure 5 briefly presents the general block diagram of
the designed IP core. The IP core consists of three modules:
an input buffer module, a 2D convolution module and an
output buffer module. The three modules are fully pipelined
to increase the execution performance and data throughput.

Figure 7. Block diagram of the muladdtree3x3 submodule

A. Input buffer and Output buffer modules
The input- and output-buffer modules are designed to

support the communication between the IP core and the
host processing system. The input buffer module is used to
store all the incoming image pixels before sending them to
the convolution module. Similarly, the output buffer module
will store all the computed results and notify the host
processing system about the readiness of the convolution
computation via the result rdy signal.

B. Convolution module
The 2D convolution module – the heart of the IP core –

includes two submodules: a line buffer and a muladdtree3x3
submodule, as shown in Figure 6.

The line buffer reads the input image line I(m, n) to
extract the nine neighboring image pixels (including the
convolved pixel at hand) necessary for the convolutional
computation of each input image pixel. The nine out-
put pixels of the line buffer are denoted as xmyn, where
m, n = 0, 1, 2. After some overhead clock cycles, the line
buffer continuously provides the nine image pixels for the
convolutional computation at every clock cycle.

The muladdtree3x3 submodule performs the convolution
between the kernel and the nine neighboring image pixels;
this computation is a dot-product between the weight vector
and the output vector of the line buffer. For implementing
this dot-product, we use a mul-add tree architecture to
increase the computing speed. Figure 7 gives details about
the architecture of the muladdtree3x3 submodule. The mul-
add tree architecture is fully pipelined using a series of
registers (DFF), thereby providing the convolved result for
each input pixel at every clock cycle.

C. Synthesis result of the 2D convolution core
The IP core architecture is implemented in VHDL.

Table I presents the synthesis results of the 2D convolutional
IP core for three different implementations corresponding
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TABLE I. Synthesis result of 2D convolutional IP core

Resource Available Resource Utilization
32x32 64x64 128x128

LUT 53200 1463 3517 11766
LUTRAM 17400 570 2218 8786
FF 106400 486 559 795

LUT: Look-Up Table; FF: Flip-Flop

to three input image sizes of 32x32 pixels, 64x64 pixels
and 128x128 pixels. As shown in Table I, all the three
implementations are successfully fitted on the chosen Xilinx
PYNQ-Z2 FPGA board; the hardware resources increase
with the size of the input image.

D. Packaging convolution IP core as a Python overlay on
the PYNQ-Z2 board
Once the 2D convolution core has successfully been

synthesized and verified, we export the design into an user
IP core using the Xilinx Vivado software tool [22] (the free
WebPack edition). For simplifying the software control, we
employ an Advanced eXtensible Interface (AXI) Lite to
carry out the data communication between the IP core and
the ZYNQ-7 host processing system.

Figure 8 shows the block design view of the whole
system, in which the 2D convolution core (conv2D 0) is
connected with ZYNQ-7 processing system via the AXI
interconnect and is under the common reset control of the
processor system reset block.

We then run the bit stream generation and export the
system to a Python overlay that can be loaded and executed
on the PYNQ-Z2 development board. The exported overlay
consists of two main parts: the bitstream file (.bit) that
contains the hardware design and the project block diagram
Tcl file (.tcl). The Tcl is used by PYNQ to automati-
cally identify the ZYNQ system configuration, IP including
versions, interrupts, resets, and other control signals [14].
As we investigate three hardware implementations of the
convolution IP core, we then generate three different Python
overlays corresponding to the three hardware implementa-
tions of IP cores with input image sizes of 32x32 pixels,
64x64 pixels and 128x128 pixels. The kernel size for all
three implementations is fixed at the size of 3-by-3.

E. Evaluation of the 2D convolution IP core
In this subsection, we present the performance eval-

uation of the designed IP core. We evaluate both the
theoretical peak performance and the practical sustained
performance of the designed IP core. The peak performance
can be determined via simulations with the assumption that
the data transfers between the IP core and external memory
will cause no delay. On the other hand, the sustained
performance provides a more realistic figure of merit for the
whole system since it takes into account the data transfers
between the IP core and memory.

TABLE II. Peak performance of 2D convolution IP core

Specification Implementation
32x32 64x64 128x128

Number of pixels 1024 4096 16384
Execution cycles 1034 4106 16394
Overhead cycles 10 10 10
Execution time [µs] 10.34 41.06 163.94
Frames per second 96759 24358 6100

Note: Measurements are carried out at a clock frequency of 100MHz.

TABLE III. Performance evaluation of 2D convolution IP core

Measurement Implementation
32x32 64x64 128x128

HW execution time (s) 0.033 0.124 0.487
SW execution time (s) 0.260 1.061 4.364
Speed-up (times) 7.8 8.6 9.0

Table II reports the peak performance of the designed IP
core. Since all the computing modules are fully pipelined,
the IP core is expected to provide the computed result
at every clock cycle. The execution cycles for the three
implementations are 1034, 4106 and 16394 clock cycles,
respectively, with the same overhead latency of 10 clock
cycles each. We configure a working clock frequency of
100MHz for the IP core. The corresponding execution
times measured in µs are then reported. The maximal
frame rates at a clock frequency of 100MHz of the three
implementations are 96759, 24358 and 6100 frames per
second for the image sizes of 32x32, 64x64 and 128x128,
respectively.

Table III presents the performance comparison between
the hardware implementations of the 2D convolutional IP
core and their pure software implementations in Python
running on the same PYNQ-Z2 board. Figure 9 illustrates
the performance speedups of the hardware implementations
over the software ones. The sustained performances of
the hardware implementations are worse than their corre-
sponding peak performances; the performance degradation
is due to the data transfer between the IP core and the
external memory. However, the hardware implementations
outperform their software counterparts by the factors of 7.8,
8.6 and 9.0 times, respectively.

4. ConvolutionalNeuralNetworkApplication forHand-
written Digit Recognition on PYNQ-Z2
We make use of the designed convolution IP core

in a practical application, that is: the handwritten digit
recognition with the MNIST dataset [11], [23]. In this
application, we train a convolutional neural network to carry
out the classification problem on the SoC PYNQ-Z2 device.
A hardware-software co-design approach is exploited in
this work. Specifically, the forward inference of the trained
convolutional neural network model is executed on the
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Figure 8. Block design view of the ZYNQ7 system with 2D convolution IP core via AXI

Figure 9. Performance comparison among various implementations
of the 2D convolution IP core

chosen FPGA device as follows:

• The convolutional operation will be executed on the
Programmable Logic of the PYNQ-Z2 device; the
designed 2D convolutional IP core is loaded as a
Python overlay and is executed as a Python function.

• The other operations of the network (i.e., ReLu
activation function, max-pooling, flattening, fully-
connected layers) will be executed on the Processing
System of the PYNQ-Z2 device based on the ARM
Cortex-A9 processor.

The MNIST dataset is used for training and testing the
network. The dataset has a training set of 60.000 samples
and a test set of 10.000 samples. There are 10 different
handwritten digits ranging from 0 to 9 in the dataset. Each
digit is normalized and centered in a gray-level image with
size 28x28. For the sake of convenience, the samples are
extended to 32x32 with background pixels.

A. CNN configuration and model training
The chosen architecture of the CNN for handwritten

digit recognition is shown in Table IV. There are eight
layers in the network. The first layer is a convolutional
layer having 16 kernel maps, followed by a max-pooling
layer for dimensional reduction. The third and fourth layers
are another pair of convolutional and max-pooling layers
having 36 kernel maps. All convolutional layers use the
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Figure 10. Convolutional neural network model training after 20
epochs, with a test accuracy of 99.04%

kernel size of 3x3 and the ReLu activation function, while
all max-pooling layers use the window size of 2x2.

After the convolution and max-pooling operations, all
the extracted features are flattened into a vector by the
flattening layer with a resulted feature vector of 1764 ele-
ments. These feature vector then become the inputs of three
consecutive fully-connected layers having 120, 84 and 10
neurons, respectively for performing the classification task.
The final fully-connected layer has the softmax activation
function while the other fully-connected layers use the ReLu
activation functions.

For training the convolutional neural network model, we
exploit the Google Colab [24]. The chosen convolutional
neural network is described with Python and the model
training is executed in Colab framework. Figure 10 illus-
trates the result of the training process. After 20 epochs,
the convolutional neural network gives the accuracies of
99.77% for training set and 99.04% for test set. These ac-
curacies are comparable with the accuracies of other related
models reported in [25] for handwritten digit recognition
applications. In [19], a deep neural network for handwritten
digit recognition with MNIST dataset was used, resulting
in an accuracy of 97.14% for the test set. Compared with
previous work in [19], this work offers a much higher
accuracy.

Once the training is done, all the parameters of the
trained network are saved to use in the execution of the
forward inference of the network on PYNQ-Z2 device.

B. Performance evaluation on PYNQ-Z2
The performance evaluation of the handwritten digit

recognition application is carried out on the PYNQ-Z2 de-
vice. Two implementations are performed on the device: i)
a pure software implementation that runs on the Processing
System of the device fully based on the ARM Cortex-
A9 processor; and ii) a hardware-software co-design im-

plementation with the 2D convolution IP core executed on
the Programmable Logic of the FPGA device while others
operations executed by the ARM Cortex-A9 processor. For
a better understanding of the performance of the entire
network, the execution time of each layer is also measured.

Table V reports the total execution time of two im-
plementations of the network. Thanks to the use of the
convolution IP core on FPGA fabric, the hardware-software
co-design implementation outperforms the pure software
implementation by a factor of 6.2 times.

Table V also reports the execution times of all layers,
which allow for an efficient performance profiling. The
convolution layers account for most of the computational
loads of the network: 98% and 95% of the total execution
times of the two implementations, respectively. Obviously,
the performance of the whole network can be further
improved when the execution of the convolutional layers
are speeduped.

5. Conclusions
In this paper, we have presented the design, imple-

mentation and evaluation of a 2D convolutional IP core
synthesizable for FPGAs. We have developed and gener-
ated hardware implementations of the IP core as Python
overlays, and carried out the performance evaluation on
the PYNQ-Z2 device. It has been shown that the hardware
implementations of the IP core outperform their software
implementations. Furthermore, we make use of the designed
convolutional IP core as hardware accelerator in the hand-
written digit recognition application, in which a hardware-
software co-design framework is deployed. Thanks to the
use of hardware accelerator for the convolutional layers, the
execution performance of the convolutional neural network
has been improved by a factor of 6.2 times. We believe that
the framework presented in this work will help to accelerate
the FPGA-based hardware implementations of the image
processing and deep learning applications.

To further increase the performance of the convolu-
tional neural network implementations, we will improve
the communication interface between the IP core and the
ARM-based processing system by employing an AXI-
Stream interface with direct memory access (DMA) control
mechanism. This will be our future work.
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