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Abstract: There are various categories of tumors found in the human brain at different localities, each owning its features or 

characteristics (i.e. Sizes, shapes, and contrast) at different intervals of time. The intervention of medical images (especially brain 

MRI images) greatly assists in the identification and categorization of these tumors. Delicate analysis and precise segmentation of 

these lesions are crucial for the proper diagnosis of this life-threatening disease. A lot of time and effort is required to perform this 

task manually, which may also be error prone. A plethora of work has been done in the near past, for the automation of this task by 

employing image processing, machine and deep learning-based methods. Due to high performance, deep learning-based methods 

have diverted the focus of the research community towards neural networks and their variants. In our study, we have employed 

generative deep learning-based encoder and decoder structure for the multi-class semantic segmentation of brain tumors. The 

proposed architecture is trained over a publically available BRATS-2015 multi-modality brain MRI image dataset. To reduce the 

computational cost, the largest-shortest bounding box has been extracted, which removes unused background area. The anticipated 

architecture has out-performed state-of-the-art semantic segmentation UNet architecture, while achieved a DICE score of 86.45%.   
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1. INTRODUCTION  

Brain cancer is the most prevalent forms of cancer that 
causes many deaths, worldwide [1]. These tumors are 
caused by the superfluous growth of brain tissues that 
turned into different forms of brain abnormalities (i.e. 
benign and malignant tumors). These tumors are further 
characterized into primary and secondary brain tumors 
based on their location of origination i.e. tumors that 
originate in the brain are known as primary tumors, while 
others are known as secondary tumors. Gliomas and 
lymphomas are the two most ubiquitous categories of 
primary brain tumors, while 80% of malignant brain 
tumors are caused by gliomas [2]. Based on the severity, 
gliomas tumors are classified into two categories i.e. Low-
Grade Gliomas (LGG) and High-Grade Gliomas (HGG) 
[3].  

To inspect the progression of the disease, medical 
images of different modalities play a vital role. For the 
diagnosis of tumors like brain tumor, MRI is the most 
widely used and considered to be a standard imaging 
modality [4], due to its ability to depict different 
categories of tissue contrast and various structures of 
interest [5]. Utilization of a single MRI sequence for the 
delineation and complete dissection of tumors into their 
subregions is not enough; therefore different MRI 
sequences are being combined, which includes 1) T2-
weighted MRI (T2) 2) T2-weighted MRI with fluid-
attenuated inversion recovery (T2FLAIR), 3) T1-weighted 
MRI (T1) and 4) T1-weighted MRI with contrast 

enhancement (T1c) [5]. All of these MRI sequences have 
their consequences over image features i.e. T1-weighted 
sequence is mostly being employed for the structural 
assessment of tumor; the boundary of the lesion could be 
more prominently visualized in T1c images, edema region 
(i.e. area around the tumor) is more evident in T2 
weighted MRI, while T2FLAIR assists in detaching 
edema from cerebrospinal fluid (CSF) [5]. 

Manual segmentation of brain tumors (i.e. by 
radiologists) is a laborious and time-consuming task as it 
requires slice-by-slice delineation followed by 
segmentation procedure, which needs a high level of 
operator’s expertise to avoid subjective results [6]. The 
variations in features of brain tumors (i.e. shape, size, and 
localization) among different patients make the 
segmentation process more challenging. To tackle these 
issues, automated AI-based brain tumor segmentation is a 
promising solution that assists in saving expert medical 
practitioners time, while providing precise and 
reproducible semantic segmentation results [7], which 
also supports physicians in proficient diagnosis, treatment, 
and surgical planning’s. A general ML pipeline to 
perform classification and segmentation tasks 
automatically has been depicted in Fig 1.  

     Numerous AI-based approaches have been introduced 
in past years to automate the whole task of brain tumor 
segmentation and diagnosis, which includes traditional 
machine learning-based approaches and advanced deep 
learning or artificial neural networks-based approaches 
[8]. The traditional ML-based methods achieved notable 
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performance in segmentation and classification tasks; 
however major limitation in conventional ML approaches 
is that they are specific to the training dataset (i.e. give 
efficient results over dataset related to training examples), 
these algorithms are not easily generalizable [8], while 
handcrafted features need to be extracted manually for the 
training of these algorithms. However, a plethora of new 
studies published in the last few years have exploited 
different categories of ANN architectures i.e. 
convolutional neural networks, fully connected networks, 
LSTM based networks, and auto-encoders, etc. In contrast 
to traditional ML-based methods, modern CNNs are not 
dependent on a limited number of hand-crafted features; 
instead, they could automatically extract a large number 
of complex (i.e. high level and low level) features. 
Numerous recent studies have demonstrated the 
exceptional performance of deep CNNs in automated 
brain tumor segmentation tasks using BRATS datasets [9-
11]. It has been observed that most of the recent studies 
have utilized discriminative deep learning-based methods 
to perform this task [11]. 

 

 

 

 

 

 

Figure 1. General Machine Learning Pipeline 

    In this study, we have proposed a generative deep 
learning-based encoder-decoder architecture for 
automated detection of brain lesions.  The proposed 
architecture has outperformed state-of-the-art semantic 
segmentation U-Net architecture and has achieved 
significant performance. 

    The rest of the article is structured as follows: in section 

2 related studies have been described, the description of 

the dataset that has been utilized in our study has been 

given in section 2.1, the proposed methodology and 

algorithm is mentioned in section 3, the detail of training 

hyperparameters has been given in section 4, while 

conclusion and future work is written in Section 6. 

2. LITERATURE REVIEW 

Numerous machine learning and deep learning-based 
methods have been exploited by different participants of 
BraTS-2012 to BraTS-2019 to get more and more precise 
predictions [12]. In our study, we have assessed the merits 
and demerits of some of these studies. 

In BraTS 2012 & 2013, the majority of the proposed 
techniques are based upon statistical ML-based classifier, 
which includes: Markov Random Field (MRF), Random 
Forest (RF), and logistic regression [13] i.e. in one of the 
top-ranked technique in BraTS-2012 [14], the author has 

utilized random field regularization integrated with 
random forest classifier to perform automated 
segmentation of brain tumor and has achieved a Dice 
score of 0.59 and 0.73 over edema and tumor region. The 
top scorer of BraTS-2013 [14-16] has exploited a 
sequence of concatenated RF classifiers. In their proposed 
approach, a sequence of feature images is first generated 
from MR images, which are then fed to RF for the 
generation of probability maps. The extracted probability 
maps are then fed to succeeding RF, while to refine the 
resultant labels binary morphological processing is 
applied. The proposed approach has achieved a Dice score 
of 0.88 over the complete tumor, 0.76 over the core, and 
0.55 over the enhanced tumor. The author has utilized a 
statistical classifier-based approach i.e. random forest; 
however, utilization of deep learning-based approaches 
could significantly improve the performance of the 
proposed technique. 

In BraTS-2014, several researchers have employed 
deep CNNs in addition to Random Forest-based 
techniques for the semantic segmentation of brain tumor 
i.e. one of the top scorer [15-17] of BraTS-2014 has 
exploited a 3D CNN (i.e. consisted upon 3 convolutional 
layers) trained over 3D patches extracted from the 
provided multimodal brain MRI imagining dataset. The 
output layer of the proposed network incorporates 6-
convolutional filters corresponding to 6 tumor classes to 
be predicted, while from the final prediction largest 
connected component is selected for false positives 
reduction. Similarly, another top scorer of this challenge 
[17,18] has adapted a 2D-CNN trained upon 19*19 2D-
patches extracted from multi-model brain MRI imaging 
dataset. Images of the dataset are first down-sampled (i.e. 
before feeding into the network) using nearest-neighbor 
interpolation. The proposed methodology has achieved a 
dice score of 69.0±24.9, 73.6±25.6, and 83.7±9.4 over 
enhanced, core, and complete tumors respectively. The 
authors in these studies have utilized, patch-based 
approaches that need extra computation for patch 
extraction and reassembling, however utilization of 
generative deep learning-based models could assist in 
tackling this problem. 

In BraTS challenge 2015 [13] most of the proposed 
techniques are based upon CNN. The study that has 
achieved top performance in this challenge has proposed a 
two-pathway patch-based Input Cascade CNN trained 
over dataset provided by BRATs-2013. The proposed 
architecture focused upon both local and contextual 
features by employing two parallel CNNs. The features 
extracted from the two parallel systems are then 
concatenated and passed to the fully connected layer. The 
proposed architecture has accomplished a DICE score of 
0.73, 0.79, and 0.88 over enhanced, essential and whole 
tumors respectively.  

Like BraTS-2015, the center of attention for most of 
the researchers who have participated in BraTS-2016 [19] 
is deep CNNs. One of the top scorers of this challenge has 

 



presented an 11-layered 3D-CNN namely Deep Medic 
[9,10] for the patch-based classification of image pixels 
(i.e. to perform semantic segmentation). The proposed 
network incorporates two parallel CNNs, each dealing 
with patches of different scales, while also having residual 
connections between convolutional layers. The final 
feature maps extracted from two pathways are 
concatenated for further processing. The proposed 
approach has achieved a DICE score of 0.72, 0.76, and 
0.89 over enhancing tumor, core, and whole tumor over 
dataset provided by BraTS-2015. Similarly, another 
participant [20] has utilized 3D-UNet architecture trained 
over a dataset provided by BraTS-2016 to perform 
automated segmentation of brain tumors. Each input 
volume is first normalized before feeding into the 
network, while to deal with the class imbalance problem, 
loss function (i.e. cross-entropy) is weighted by utilizing 
class distribution. The proposed approach has achieved 
significant DICE scores for Core and Whole tumors (i.e. 
0.76 and 0.89), while achieved comparatively poor results 
overactive class tumors (i.e. 0.37).  

In BraTS-2017, out of 50 participating teams, authors 
of 42 different studies have exploited deep CNNs for 
automation of brain tumor segmentation. The 
performance of these models mainly relies upon the 
choice of the loss function (i.e. DICE loss, weighted 
cross-entropy, etc) [12]. In addition to these, the selection 
of appropriate hyper-parameters i.e. regularization 
technique, training optimizer, and the learning rate is 
challenging, while greatly impacts the performance of 
deep models. Moreover, to improve the predictive 
performance of segmentation models, ensemble learning 
is a preferable alternative and is being utilized in recent 
studies i.e. the winner of BraTS-2017 [4] has presented an 
ensemble of multiple models and architecture (EMMA) 
(i.e. including U-Net, two variations of DeepMedic model 
and two different fully convolutional networks). The 
proposed ensemble is trained over a dataset provided by 
BraTS-2017, while the final predictions of the proposed 
ensemble are obtained by averaging predictions of all 
models. The proposed architecture has achieved the 
complete finest performance in a challenge founded on 
Hausdorff distance and DICE score i.e. achieved DICE 
score of 0.75, 0.82, and 0.90 over attractive, core and 
entire tumor respectively.  

Similar to the previous year challenges, CNNs have 
outperformed other ML-based techniques in BraTS-2018, 
while up to 50 diverse proposed techniques were CNN 
based [12] i.e. the participant [7] who has achieved the 
best performance in BraTS-2018 has proposed an 
encoder-decoder deep CNN for semantic segmentation of 
brain tumors. The encoder of the proposed architecture is 
comparatively larger than the decoder, while a virtual 
auto-encoder (VAE) branch has also been embedded in 
the proposed model to regularize the encoder part, due to 
the scarcity of training data. Dropout, L2-Normalization, 
and data augmentation are applied to avoid the model’s 
over-fitting. The proposed approach has achieved a final 

DICE score of 0.82, 0.86, and 0.91 over enhancing, core 
and whole tumors respectively, by using an ensemble of 
10 proposed models.  

In BraTS-2019, an author who has achieved the best 
performance in semantic segmentation of brain tumors 
using a dataset provided by BraTS-2019 has utilized a 
cascade of UNet architecture [21]. The author has 
presented a two-stage deep architecture i.e. in the first 
stage a simple encoder-decoder CNN has been utilized, 
where the decoder part is comparatively shallower than 
the encoder part, while in the second stage, the output of 
the primary stage is concatenated with the raw input 
images and fed to the second architecture. The second 
model incorporates one encoder and two decoders i.e. one 
used deconvolution while the other has utilized tri-linear 
interpolation for up-sampling. The second decoder has 
only been utilized in the training process to regularize the 
encoder. Data augmentation has also been applied to 
avoid over fitting, while the finest presentation in terms of 
DICE scores achieved by the proposed model is 0.887, 
0.832, and 0.836 over the whole, enhancing and core 
tumors respectively by employing an ensemble of 12 
proposed models. 

3. PROPOSED METHODOLOGY 

The proposed methodology relies upon three major 
steps, which include 1) Dataset preprocessing, 2) training 
of the proposed model, and 3) evaluation of the proposed 
model by testing over unseen data, as described below. 

A. BRATS Dataset  

   In our study, we have utilized a dataset provided by the 

BraTS-2015 challenge, which mainly incorporates two 

categories of brain lesions (i.e. LGG and HGG). This 

dataset encompasses images of the BraTS-2012 and 

BraTS-2013 dataset together with cases of Cancer 

Imaging Archive (TCIA) collected for BeaTS-2014. A 

total of 54 LGG and 220 HGG cases are incorporated by 

the training dataset. Moreover, images of all 4-modalities 

(i.e. T1, T2, T1c, and FLAIR) and their corresponding 

masks are included in each case (Fig 2). The extent of 

each 3D image in the dataset is 155*240*240. Each voxel 

consists of 5 categories of tumors as mentioned in Table 

1. 

 TABLE I. CATEGORIES OF TUMORS  

Class Numerical Representation 

4 Edema 

3 Enhancing core 

2 Necrotic cystic 

1 Enhancing 

0 Normal and Background with Noise 

 

The test dataset provided by the challenge 

encompasses 110 cases of mixed grades (i.e. HGG and 

LGG) [22]. The four distinct imaging modalities provided 

in the dataset endow with a different set of features that 

assists in finding tumor area and category of the tumor. 



 
 

 

 

 

 

 

 

 

 

 
 
 

Figure 2: Sample images of BRATS-2015 dataset 

B. Preprocessing 

For the enhancement of input images, image 
preprocessing is a crucial task. It plays an important role 
in improving automated segmentation results. Various 
preprocessing techniques are there i.e. described in [23].  
In our study, we have employed four different 
preprocessing techniques on input data before feeding 
them to the network i.e. described in Table 2. 

TABLE II. PREPROCESSING TECHNIQUES  

Preprocessing Description 

Pixel’s intensity 

normalization 

The pixel intensity ranges of input images do not lie in 

the standard range of 0-255. To make all the input 

images in the same intensity range, min-max 

normalization has been employed (i.e. to normalize 

pixels value in the range of [0,1])  

2D slicing 3D images in .mha format have been provided in the 

challenge dataset. During preprocessing stage we have 
converted these 3D images into 2D NumPy arrays i.e. 

each 3D image of size 155*240*240 is altered into 155 

NumPy arrays of sizes 240*240 each. 

Concatenation As four imaging modalities (i.e. T1, T2, T1c, and 

FLAIR) are available corresponding to each image, we 

have concatenated the corresponding slices i.e. images 

of size 4*240*240 are created. 

Cropping To reduce computational complexity and to make the 

training process faster, we have the computer the 

largest-shortest bounding box i.e. to crop the 

background pixels. The resultant images are of size (). 

 

C. Model’s Architecture 

In our study, we have proposed encoder and decoder 

CNN structure for the semantic dissection of brain 

tumors. Our proposed architecture is inspired by the 

state-of-the-art deep semantic segmentation architectures 

i.e. U-Net [24]. Both encoder-decoder parts of the 

proposed model incorporate 4 sub-blocks, in which a 

combination of rectified linear unit (ReLU), pooling, and 

convolutional layers have been embedded. Motivated 

from the U-Net structure, skip acquaintances have been 

embedded amongst encoder and decoder parts of the 

proposed network. Moreover, residual connections are 

added in the encoder part of the network to avoid 

degradation issues [25]. Fig 3 depicts the structure of the 

proposed encoder-decoder CNN.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. Proposed Deep Model Architecture 

a) Encoder 
 

As we have already discussed, the input dataset 

consists of brain MRI slices of size 240*240 of four 

different imaging modalities. Before feeding these 

images to the network slices of all 4 modalities are 

concatenated i.e. resulting in images of size 4*240*240. 

To reduce the memory and computational cost, the 

unnecessary background is cropped out from input 

images i.e. resultant images of size 4*176*144 are fed to 

the network. The encoder part of the network extracts 

complex features from input images i.e. by employing 

pair of frequent convolutional layers surveyed by batch 

stabilization and pooling layers. Each block of 

convolutional (3*3) and pooling layers (2*2) 

downsamples the extent of the input image into half, 

while the number of convolutional filters doubles up in 

each subsequent encoder block. To tackle with 

degradation issue, residual connections are embedded 

between pooling layers of subsequent blocks.  
 

b) Decoder 

 

The decoder of the proposed network is counter to the 

encoder or contracting path. Similar to the contracting 

path, the decoder also incorporates 4 blocks. The task of 

each decoder block is to up-sample the input features 

maps (i.e. by employing up-convolution) and to reduce 

the sum of input networks in half. Moreover, feature 

maps of expanding path blocks are concatenated with 

corresponding feature maps of encoder blocks using skip 

connections. The network outputs 4 feature maps of size 

176*144 corresponding to each abnormal class (i.e. 

edema, core, ornamental, and cystic), while during 

testing of model final predictions are obtained by taking 

class with the highest probability i.e. by employing 

argmax function. 

The detailed conformation of the anticipated network 

is depicted in Table 3. 

 

 



TABLE III. CONFIGURATION OF PROPOSED MODEL  

Encoder Input Output  Size 

Input Input  4*176*144 

Input Conv1+ReLU

1 

2 64*176*144 

Conv1+ 

ReLU1 

Pooling1  64*88*72 

Pooling1 Pooling1_1  64*44*36 

Pooling1 Conv2+ 

ReLU2 

2 128*88*72 

Conv2+ 

ReLU2 

Pooling2  128*44*36 

Pooling2 Pooling2_2  128*22*18 

Pooling1_1,P

ooling2 

Merge1  192*44*36 

Merge1 Conv3+ 

ReLU3 

2 256*44*36 

Conv3+ 

ReLU3 

Pooling3  256*22*18 

Pooling3 Pooling3_3  256*11*8 

Pooling2_2,P

ooling3 

Merge2  384*22*18 

Merge2 Conv4 

+ReLU4 

2 512*22*18 

Conv4 

+ReLU4 

Drop4  512*22*18 

Conv4 

+ReLU4 

Pooling4  512*11*9 

Pooling3_3,P

ooling4 

Merge3  768*11*9 

Merge3 Conv5 

+ReLU5 

2 512*11*9 

Conv5 

+ReLU5 

Drop5  512*11*9 

Decoder Drop5 Upsamp1+Co

nv6+ ReLU6 

 512*22*18 

(Upsamp1+C

onv6+ 

ReLU6)(Drop

4) 

Merge6  1024*22*18 

Merge6 Conv6 

+ReLU6 

2 512*22*18 

Conv6 

+ReLU6 

Upsamp2+Co

nv7+ ReLU7 

 256*44*36 

(Upsamp2+C

onv7+ 

ReLU7)(Con

v3) 

Merge7  512*44*36 

Merge7 Conv7 2 256*44*36 

+ReLU7 

Conv7 

+ReLU7 

Upsamp3+Co

nv8+ ReLU8 

 128*88*72 

(Upsamp3+C

onv8+ 

ReLU8) 

(Conv2) 

Merge8  256*88*72 

Merge8 Conv8 

+ReLU8 

2 128*88*72 

Conv8 

+ReLU8 

Upsamp4+Co

nv9+ ReLU9 

 64*176*144 

(Upsamp4+C

onv9+ 

ReLU9) 

(Conv1) 

Merge9  128*176*144 

Merge9 Conv9 

+ReLU9 

 64*176*144 

Conv9 

+ReLU9 

Conv10  4*176*144 

 

4. EXPERIMENTS AND RESULTS 

In the experimental phase of our study, we have 
compared the performance of our proposed modified 
UNet architecture with state-of-the-art UNet architecture 
for the semantic segmentation of brain tumors using MRI 
images. The detailed description of tuned parameters 
together with the training and testing dataset description is 
mentioned below. 

The proposed deep architecture is implemented in 
Tensorflow on NVIDIA GeForce RTX 2080 Ti GPU with 
11GB memory size. Near about 48 hours are required to 
train the whole model over 20 epochs on training data, 
while near about 0.5ms are required to test an image over 
the trained model. We have trained the proposed model 
over the HGG tumor images provided in the dataset. 
Dataset is split into three parts i.e. 70%, 20%, and 10% for 
training validation and testing dataset. The detail of 
several examples in each split is provided in Table 4. 

We have performed multiple experiments with 
different hyper-parameters to achieve the best 
performance results, while the final set of tuned 
parameters are mentioned below. The initial learning rate 
is set to 0.001, which is reduced after every 4 epochs by a 
factor of 0.9 if validation loss does not reduce. Adam 
optimizer has been utilized for updating network weights, 
while the Binary Cross-Entropy loss function has been 
employed during network training. Batch size provided to 
the model during training has also an impact on the 
performance of deep models. A mini-batch size of 20 has 
been used in our study.  

 

 



 
 

TABLE IV. DATASET SPLITTING PROPORTION  

 

Results are evaluated for the whole tumor 

region, as required by the BRATS-2015 challenge. For 

the evaluation of similarity score over test data, DICE 

score, sensitivity, and specificity metrics have been 

calculated as mentioned in Table 5. The formulae for the 

calculation of these metrics have been mentioned below: 
 

A. DICE Coefficient 
 

Dice Coefficient is used to measure the 

similarity between two samples.  

 

 

𝐷𝐼𝐶𝐸 =  
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
    (1) 

 

or   

 

  𝐷𝐼𝐶𝐸 =  
2(𝑋∩𝑌)

(𝑋∪𝑌)
     (2) 

 

B. Sensitivity & Specificity 

 

Sensitivity is a measure to determine the true 

positives. Specificity is a measure to determine the true 

negatives. 

In medical tests, sensitivity mainly focuses on 

finding the people who are suffering from the disease, 

while specificity mainly focuses on measuring the people 

who do not have the disease. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (3) 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (4) 

 

In our study, we have tested both state-of-the-art 

UNet and our proposed modified deep architectures over 

the above-mentioned parameters, while results depict that 

our proposed architecture has outperformed UNet. We 

have also compared the testing results of our proposed 

model with several top-performing studies of BraTS-

2015 as depicted in the table 5. The prediction results of 

our proposed network are depicted in Fig 4. 

 

 

 

 

TABLE IV.  RESULT OF THE WHOLE TUMOR OVER TESTED 

DATASET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Proposed Network a) Ground-Truth b) Prediction 

Dataset Split No of Slices 

Training 70% 23871 

Validation 20% 6820 

Testing 10% 3409 

Author Dataset Model DICE Sensitivity Specificity 

[21] Test 

Split of 

BRaTS-

2015 

training 
Data 

Modified 

UNET 

(Propose

d 

Architect
ure) 

86.45% 0.8078 0.9978 

[22] Test 

Split of 

BRaTS-

2015 

training 

Data  

UNET 82.01 0.7697 0.998 

[24] BRaTS-

2015 

training 
data 

Random 

Forest 

84.% --- --- 

[25] BRaTS-

2015 

testing 

Data 

Stacked 

Denoisin

g 

Autoenco

der 

81.41% --- --- 

[26] BRaTS-

2015 

testing 

Data 

Random 

Forest 

80.% --- --- 

[27] BRaTS-
2015 

testing 

Data 

Feed 
Forward 

Neural 

Network 

73.15% --- --- 

 

 



5. CONCLUSION AND FUTURE WORK 

Traditionally most of the automated discriminative 
models proposed for the automated brain tumor 
segmentation are based on statistical machine learning-
based methods (i.e. RF). The intervention of deep 
learning-based methods has significantly improved the 
performance of this task. In our study, we have presented 
an efficient deep learning-based semantic segmentation 
model that has achieved comparable performance over a 
multi-modality BRATS-2015 brain MRI imaging dataset. 
The results of the proposed architecture depict the impact 
of residual connections over the performance of semantic 
segmentation of tumors. The computational cost of the 
proposed methodology is reduced by removing an extra 
background region from the images. Our proposed deep 
model has outperformed state-of-the-art UNet architecture 
and several other deep learning and machine learning-
based techniques (i.e. depicted in Table 5), while achieved 
a DICE score of 86.45%. As future work, we have 
planned to employ several preprocessing techniques on 
input images to enhance the quality of features.  
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