
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Aug-2022)

https://dx.doi.org/10.12785/ijcds/120142

Distributed Memory based Architecture for Multiplier
S. Aruna Mastani1 and S. Kannappan2

1Department of Electronics and Communication Engineering, JNTUA College of Engineering, Anantapuramu, India
2Department of Electronics and Communication Engineering, GATES Institute of Technology, Gooty, India

1,2E-Mail address: aruna mastani.ece@jntua.ac.in, usk310587@gmail.com

Received 2 Apr.2021, Revised 18 Jul. 2022, Accepted 31 Jul. 2022, Published 6 Aug. 2022

Abstract: Novel multiplier architecture is proposed based on the concept of memory-based computing in contrast to logic computations,
thus making it efficient to implement both on Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Array
(FPGAs). Unlike the traditional approaches of using column bits compressors/ counters for partial product reduction, in this work, the
partial products are added using basic ’m-operand adders’ where m= 2, 3, 4, 5. This reduces the depth of pipelining that result in long
carry propagation. These adders are designed using only registers and small ROMs and optimized the performance w.r.t. area and delay.
The Partial product generator used is an AND gate-array for unsigned multiplier, and for signed multiplier radix-4 Booth encoding
is used. The architecture can be extended to ’N-bit multipliers’ by re-use of basic m-operand adder modules. The proposed unsigned
multiplier utilizes 15.52% less LUTs and 41.033% less delay compared to existing 16-bit multiplier [1]. The proposed 16-bit signed
multiplier has 36.17% less LUTs but 5.5% of more delay than that of existing 16-bit multiplier [2] respectively. After exhaustive
experimentation and analysis made by varying the bit-length and number of operands it’s evident that proposed multiplier outperforms
existing ones.

Keywords: multiplier; arithmetic unit; distributed memory; column bits compressors; counter; multi-operand adder; look-up-
table.

1. Introduction
Multiplication is one of the mostly used arithmetic

operations which involve addition of multiple numbers i.e.
the partial products, and this is the crucial part that decides
the performance of the Multiplier w.r.t area and delay.
Generally the use of compressor trees has a long history
in the design of arithmetic units [3], [4], [5], [6]. The
basic idea is to avoid the slow carry propagation by passing
(saving) the carry to the next compressor stage instead of
propagating it within the same stage. While this guarantees
substantial improvement in Application Specific Integrated
Circuits (ASICs) or custom ICs, but the use of carry save
arithmetic on Field Programmable Gate Arrays (FPGAs)
was regarded as unsuitable, and more over efficient mapping
of compressor trees on to LUTs decide the performance.
In 2008, Parandeh-Afshar et al., [7] introduced the con-
cept of so-called Generalized Parallel Counters (GPCs) is
adapted in FPGAs. Parandeh-Afshar in his publication titled
“Efficient Synthesis of Compressor Trees on FPGAs” has
reported the first method that synthesizes compressor trees
on FPGAs with GPCs as basic element and found drastic
improvement both in terms of resource utilization and delay.
Matsunaga et al. [8] in their research publication of 2013
titled “An Exact Approach for GPC-Based Compressor Tree
Synthesis” formulated the mapping of GPCs as an Integer

Linear Programming (ILP) which resulted in reduced count
of GPCs in compressor tree.

Many of the inventions prior have targeted to de-
velop logic for efficient compressor tree in multi operand
adders [9]. The logic for compressors used is different in
ASICs and FPGAs. A compressor efficient in the ASIC may
not map on to LUT fabric i.e. FPGA efficiently. Hence the
motive of this work is to bridge the gap between ASICs and
FPGAs by providing a soft core of a multiplier architecture
that uses only registers and ROMs / LUTs so that the
difficulty of mapping the logic on to LUTs of FPGAs
is simplified. As LUTs are also a memory elements, in
this architecture the LUTs can be used instead to ROMs.
Different FPGA family has different size of LUTs, hence
to prove the efficacy of the proposed architecture design,
it is synthesized on different FPGAs and corresponding
comparison is made with the most recent existing work.

The long carry chain propagation is a major hurdle
in partial product addition of larger size multipliers. This
is optimized in the proposed architecture as the carry
propagate only within a basic block of m- operand adder
module (m=2, 3, 4, 5). Even these blocks are connected in
multiple stages, the carry bits are stored within the module

E-mail address: aruna mastani.ece@jntua.ac.in, usk310587@gmail.com

https:// journal.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/120142
https://journal.uob.edu.bh

524 Aruna Mastani, et al.: Distributed Memory based Architecture for Multiplier

to add to next higher weight bits coming serially, and only
sum bits are propagated from stage to stage in such a way
that pipelining and parallelism are implemented implicitly
thus eliminating the long carry chain. The multi-operand
adder concept used in the proposed Multiplier architecture
has been filed/ published and is with the Indian patent
office bearing application number 201941024136 pending
[10]. From the above discussion the proposed multiplier
architecture made of memory blocks is equally efficient
for both ASIC and FPGA implementation more over as
carry propagation is limited to individual modules, the
bottlenecks of long carry chain and complexity of routing
to pipelining as in conventional multipliers is removed. The
proposed architecture can be extended to larger bit sizes
by the replicating the m-operand modules thus supporting
modularity and regularity which is a figure of merit in
IC fabrication. The total delay in number of clock cycles
increases logarithmically with increased in bit length in
contrast to linear increase in existing multipliers.

2. RelatedWork
The proposed multiplier is synthesized on different

FPGAs to compare the performance with the existing
multipliers that were implemented on same FPGA. In this
section the existing techniques are discussed in brief. In
2015, Mani Kunnathettu et al., [11] have implemented
an efficient high speed Wallace Tree Multiplier on Artix-7
FPGA. In 2016, K. M. Gaikwad et al., [12] have analysed
array and vedic multipliers using Xilinx. In 2018, Arpita
Singh et al., [1] have implemented “High Speed Multiplier
with Optimized Reduction Phase” on Artix-7 FPGA. In this
technique Carry Look Ahead Adders were used to reduce
the partial products. By using carry look-ahead adder (CLA)
in Wallace Tree reduction method for addition, the delay has
reduced further than Wallace Tree Adders. In 2018, Prashant
R. Deshmukh et al., [13] have presented “Development of
Concurrent Architecture of Vedic Multiplier” on Virtex-
5 FPGA, wherein to reduce the overall time delay and
area overhead a novel data base analyzer has included
with built in self test block. The pre-computed values are
stored in database. If the input samples are matched with
value in local database the performance of the multiplier is
outstanding. If the matching probability is less than 50%
then the emphasis is given specifically on optimization of
concurrent Vedic Multiplier architecture. In this method
both memory based approach and a conventional multiplier
are used. So, the mapping on to FPGA device is become
complex; the performance of delay and area increases in
worst case.

In 2017, ku. Dhamini et al., [2] have implemented high
speed 16-bit Vedic and Booth Multiplier using a modified
Carry Save Adder tree on Virtex-6 FPGA to reduce the
partial products and to compare over the existing two
techniques i.e.,Wallace and Booth Multiplier of 16-bit. In
2011, S. A. Shinde et al., [14] have implemented Booth
Multiplier on Virtex-5 FPGA using Wallace tree reduction
scheme to reduce the hardware utilization. By using Booth

Multiplier the number of partial products is intended to
reduce and the addition depth has reduced by using Wallace
Tree reduction [15]. In 2017, Xiaoqing Liu et al., [16]
had implemented an asynchronous 64-bit Booth Multiplier
on Virtex-7 FPGA by isolating the functional blocks from
control circuit therefore they made the complete circuit
operate asynchronously to increase the replication of blocks
to reduce power consumption.

The main drawback of memory based multipliers is
the memory size and hence the accessing time, as the
bit size increases the memory size has to increases lin-
early to cover all the combinations of multiplicand and
multiplier. Hence mostly in FIR filter design a memory
based multiplier is used to multiply a variable input with
constant coefficient [17] so that pre-computed products of
inputs is reduced. Promod Kumar Mehar [18], [19], [20]
has implemented various techniques for LUT optimization
to perform memory based multiplication. To the best of
our knowledge the proposed multiplier is the one which
adopts memory based approach when both multiplier and
multiplicand are considered as variables yet utilizing small
distributed memories.

The proposed architecture for multiplier has an opti-
mized performance with respect to area and delay com-
pared the existing multipliers discussed in this section. The
detailed description of multiplier along with multi-operand
adder used for partial product addition is explained in the
further sections.

3. Multi-Operand Adder
The invention in patent mentioned above relates to

architecture for 2-operand, 3-operand, 4-operand, 5-operand
N-bit binary adder modules and also a method of intercon-
necting column array of these modules in stages to build
architecture for addition of larger number of operands. The
architecture of 4-operand adder is as shown in Figure 1.
The novelty of this work is that ROMs are stored with
binary representation of count of number of 1’s in their
address. For example, if the input address to a 26 × 3 ROM
shown in Figure 1 is ‘101011’, the value stored in that
address location is ‘100’ representing the count of four 1’s
in the specified address.

The complete architecture is built using only memories
(ROMs) and registers, hence making the architecture suit-
able both for ASICs and FPGAs. The advantages of the
proposed architecture also lie in hierarchal usage of the
basic modules to extend it to sum a plurality of ‘K’ operands
of any arbitrary size of N-bits each by just replicating the
proposed 2-operand, 3-operand, 4-operand, 5-operand adder
architecture modules supporting modularity and regularity.

For adding ‘K’ number of N-bit operands it requires(⌈N+⌈log2 K⌉
3

⌉
+no.o f stages−1

)
clock cycles. Here one stage

represents one complete set of column array modules for
which inputs are given simultaneously. This approach is
used to add all the partial products simultaneously. The

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 523-532 (Aug-2022) 525

Figure 1. Architecture of 4-Operand Adder

logic components, the interconnections between them which
forms the architecture and also the method of its operation
is same for the 4-operand, 3-operand, 5-operand, 2-operand
adder modules, however the sizes of the ROM and the
number of input shift registers varies with the number of
operands. Hence the detail of the architecture along with
the operating process of only 4-operand adder is illustrated
through Figure 1.

A. Method of Operation
Let ‘K’ number of binary operands of N-bit size

each is taken and each binary operand is represented as
′bN−1bN−2....b′0 where b0 is the Least Significant Bit (LSB),
and bN−1 is the Most Significant Bit (MSB). A binary digit
bi represents a single bit with weight ‘i’. Given a set of ‘K’
N-bit operands to add, all the bits from ‘K’ operands with
the same weight form one column. In one clock cycle three
columns of bits starting with the LSB are added using three
ROMs along with three delay elements to get corresponding
3-bit sum. The process of adding three columns of bits at a
time is repeated until all the columns of input operands are

added using the same hardware. In this work, the inputs
to the ROMs are column of bits with same weight. For
example, to add four 8-bit operands, all the least significant
bits of four operands form one column. In the same way
from LSB to MSB it can be viewed as eight columns and
a group of three columns are processed in one clock cycle.
The four 8-bit operands are processed in three clock cycles
and the carry generated from second, third clock cycles are
added in fourth clock cycle, totally four clock cycles are
required to get final sum.

4. PROPOSED UNSIGNED MULTIPLIERS
In the proposed multiplier, the main concern is to de-

velop new architecture for partial product addition through
the concept of multi-operand adders avoiding the com-
plexity of deep pipelining built with multi-bit column
compressors / counters called Generalized Parallel Counters
(GPCs) [9] used in FPGAs and even with traditional carry
save adders, carry Look-ahead adders, carry propagate
adders used in ASIC that result in long carry chains
leading to increase in power consumption, and extra area for

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

526 Aruna Mastani, et al.: Distributed Memory based Architecture for Multiplier

Figure 2. Architecture of 4-bit Multiplier

pipelining. However, in this invention all these bottlenecks
of conventional multipliers are addressed by using basic
m-operand adders for m=2,3,4,5 to build the compressor
tree instead to GPCs of FPGA and traditional adders of
ASIC approach. An N-bit multiplier as can be interpreted
from Figure 2. representing a 4-bit multiplier. The partial
products are generated simultaneously by ANDing of the
multiplicand with multiplier bits, with just by an AND gate
delay through AND gate array. The N number of N-bit
partial products are generated using NxN AND gate array.

The unoccupied Least Significant Bits (LSB) and Most
Significant Bits (MSB) in the 2N-bit partial products as
per their shifting are appended with zeros before loading
them in to the input registers of m-operand adders using
additional Flip-Flops in the Parallel in Serial Out Shift reg-

isters of multi-operand adder, resulting in a new architecture
for the multiplier with slight increase in Flip- Flops but
optimizing the overall area and delay/latency.

The ’N’ number of partial products, considered as input
operands, are grouped in sets of ‘m’ operands (m=2, 3, 4,
5), are given to respective m-operand adders forming the
first stage called the input stage. For example, if there are
12 partial products from three 4-bit multipliers then one
can use either three 4-operand adders (4+4+4) or four 3-
operand adders (3+3+3+3) or any combination covering
all ‘N’ partial products, however maintaining regularity in
structure is given preference.

In every clock cycle an m-operand adder process 3-bits
of all the ‘m’ operands starting from least significant bits

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 523-532 (Aug-2022) 527

Figure 3. Architecture of 16-bit unsigned Multiplier

i.e. bits with weights ′i+2, i+1, i′ at ith iteration. All the bits
with the same weight form one column. In one clock cycle
three columns of bits are added in set of any of the above
said m-operand adder modules to generate 3-bit sum output
′si+2, si+1, si′ at ith iteration. These 3-bit outputs stored in
the pipeline registers, are grouped again and given as inputs
to next stage of set of m-operand adders, during the addition
of these bits in this stage called intermediate stage, the next
three least significant bits with weights ′i+5, i+4, i+3′ the
all input operands are added in the first stage. Similarly, all
the 2N-bits are added in a pipelined manner with required
multiple stages. However, in each clock cycle the final

stage shift the 3-bit sum to a SIPO shift register, giving
the final sum after completing all the 2N-bits at the input
in
(⌈

2N
3

⌉
+ no.o f stages − 1

)
clock cycles to be loaded in

to readout register, which represent the 2N-bit output of
multiplier. The resources are greatly reduced due to serial-
parallel architecture of ‘m-operand’ adder modules built
with small memory blocks.

Coming to pipelining, as three columns of bits are
processed at a time using multi-operand adders instead
to multi-bit counters the area overhead is less compared
to conventional multipliers and more over as the carry

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

528 Aruna Mastani, et al.: Distributed Memory based Architecture for Multiplier

Figure 4. Architecture of 16-bit Signed Multiplier

propagation is confined to individual m-operand adder
modules, long carry propagation is avoided leading to low
power consumption and less complexity in pipelining. The
resources can be further reduced if high radix approach of
partial products generation is used instead to AND gate
array, so that a less operand adder is required for further
process. High radix approach is must for signed numbers.

A. 16-bit Unsigned Multiplier
To make the invention more understandable, architecture

of ‘16-bit multiplier’ is analyzed further as an example. The
block diagram of the architecture for ‘16-bit multiplier’ is
shown in Figure 3. To perform multiplication operation on
16-bit operands, multiplicand and multiplier are given to 16
x 16 AND gate array. Sixteen partial products of 32-bit each
are generated simultaneously. These 16 partial products are
loaded onto the Parallel-In-Serial-Out shift register of 16-
operand adder as input. The 16-operand adder includes four
4-operand adder modules in the input stage to cover all
the operands as inputs; and one 4-operand adder module at
the output stage. In general each 4-operand adder module

at the input stage receives three bits from each four input
operands starting from the LSB position and generates 3-bit
sum output in each clock cycle; hence four 3-bit outputs
are generated from input stage. These four 3-bit outputs
from the input stage are grouped as sets of four operands,
and each set of four operands are given as input to one of
the 4-operand adder modules in the following stage, which
once again generate four 3-bit outputs after second clock
cycle, these four 3-bit outputs are given as input operands
to one 4-operand adder modules at the output stage to get
sum output of three column of bits of all operands after the
third clock cycle, this process repeats until the thirty two
column of bits are added to get the final sum in 12 clock
cycles. To be more specific if the input stage is processing
input operands to generate three intermediate sum bits in ith
clock cycle, then the intermediate stage will be processing
the output bits of input stage in (i + 1)th clock cycle to
generate another three intermediate sum bits, and then the
output stage will process the output bits of intermediate
stage in the (i + 2)th clock cycle in a pipeline manner.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 523-532 (Aug-2022) 529

TABLE I. Comparison of Unsigned Multiplier (8-bit, 16-bit, 32-bit) in terms of Area (LUTs), Delay (ns)

Multiplier Type FPGA Device
Input Bit Size

8-bits 16-bits 32-bits

LUT
Delay

(ns)
LUT

Delay

(ns)
LUT

Delay

(ns)
Array Multiplier

A. Singh et al., [1](2018) Artix-7

xc7a200-3sbg484

132 45.743 520 61.429

Wallace Multiplier

A. Singh et al., [1](2018)
164 26.264 683 44.870

Dadda Multiplier

A. Singh et al., [1](2018)
207 25.471 610 45.363

Wallace Multiplier using CLA

A. Singh et al., [1](2018)
191 24.350 541 40.131

Improved Wallace Tree Multiplier

Mani Kunnathettu et al., [11](2016)
128 11.314

Proposed
Unsigned Multiplier 126 13.804 457 23.664 1666 47.328

Vedic Multiplier
R Deshmukh et al., [13] Virtex-5

xc5vlx50t-ff1136-3

13.252 556 29.068 1561 59.643

Proposed
Unsigned Multiplier 118 15.75 427 27 1626 54

B. 16-bit Signed Multiplier
The proposed Signed Multiplier has a booth encoder

(radix-4) for generation of partial products; addition of par-
tial products is made with similar architecture and working
principle as that of unsigned. A block diagram for a 16-
bit signed multiplier is shown in Figure 4 for illustration.
The input multiplicand and multiplier operands are repre-
sented in 2’s complement form and the final product also
generated in 2’s complement form. In an N-bit multiplier,
N/2 partial products are generated and are added by using
multi-operand Adder. As the number of partial products
generated is half of that of the unsigned multiplier, it has
one stage less than that of unsigned multiplier thus reducing
the latency by one clock cycle thus still enhancing the
performance in terms of Area-Delay product. The number
of clock cycles required to get the product output is equal
to
(⌈

2N
3

⌉
+ no.o f stages − 1

)
.

The proposed modular architecture for 16-bit signed
multiplier has eight partial products of 32 bits each and
is added by using 8-operand adder in two stages, and as
per defined formula, after 12 clock cycles the SIPO is read
to the output 32-bit product register. Similarly, the concept
can be extended to N-bit multiplier.

5. RESULTS AND DISCUSSION
The synthesis and implementation of proposed archi-

tectures for all the multipliers discussed are done using
Virtex-5, Virtex-6, Artix-7 FPGA families in order

to make apt comparison with the existing multipliers. As
the choice of FPGA vendor and family can significantly
influence the design architecture because of FPGA internal
architecture and resources available, the comparison is made
with existing methods which are implemented with same
FPGA family. The performance of the proposed multiplier
is compared with most recent state of art architectures for
multipliers namely Wallace Multiplier using CLA by A.
Singh et al., [1], Improved Wallace Tree Multiplier by Mani
Kunnathettu et al., [11], Concurrent Vedic Multiplier by R
Deshmukh et al., [13], Booth Asynchronous Multiplier by
Xiaoqing Liu et al., [16]. The parameters considered for
comparison are area (in terms of LUTs) and delay/latency
i.e. Area-Delay product, percentage of reduction in LUTs
and delay w.r.t. highest utilizing method. In the results tabu-
lated here some slots are kept as ’ ’ , this indicate that
the existing method in the literature has not implemented
multiplier with those specifications.

The designs are coded in VHDL and verified the func-
tionality by applying different input vectors using Xilinx
ISE 14.7. Component based coding strategy is used to have
a better control over mapping. Analysis is done for each
basic module to verify the functionality. The synthesis result
of the proposed Signed, Unsigned multiplier is tabulated for
input operands of 8-bit, 16-bit, 32-bit word sizes. As our
architecture supports modular design, it can be extended
to plurality of operands of 64, 128 bit sizes also. For fair

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

530 Aruna Mastani, et al.: Distributed Memory based Architecture for Multiplier

TABLE II. Performance of proposed Signed Multiplier (8-bit, 16-bit,32-bit,64-bit) in terms of Area(LUTs), Delay(ns)

FPGA Device
Input Size

8-bit 16-bit 32-bit 64-bit

LUTs
Delay

(ns)
LUTs

Delay

(ns)
LUTs

Delay

(ns)
LUTs

Delay

(ns)
Virtex-6

(XC6VCX75T-2FF84)
107 11.676 480 23.352 1436 46.70 5609 91.464

Virtex-7

(xc7vx550tffg1158-2)
111 10.272 488 20.544 1919 39.38 7560 80.464

TABLE III. Comparison of Signed Multiplier (8-bit, 16-bit, 32-bit,64-bit) in terms of Area(LUTs), Delay(ns)

Multiplier Type FPGA Device
Input Size

8-bit 16-bit 32-bit 64-bit

LUT
Delay

(ns)
LUT

Delay

(ns)
LUT Delay

(ns) LUT
Delay

(ns)
Booth-Wallace

S.A.Shinde et al.
[14] (2011)

Virtex-5

(xc5vlx50
-3ff324)

222 7.405

Proposed
Signed Multiplier 97 13.5

Radix-4 Booth

Ku. Daminiet al.
[2] (2017)

Virtex-6

(XC6VCX75T
-2FF84)

752 22.12

Proposed
Signed Multiplier 480 23.352

Booth Asynchronous

Xiaoqing Liu et al.
[16] (2018)

Virtex-7

(xc7vx550t
-2ffg1158)

3814 180

Proposed
Signed Multiplier 7560 80.46

comparison the proposed multiplier architectures for above
said multipliers are implemented on the same FPGA devices
as that in the existing literature taken as reference in this
work.

A. Performance of Unsigned Multiplier
The performance of proposed unsigned multiplier is

compared with existing unsigned multipliers given in [11],
[1], [13], and results of comparison are tabulated in
Table I. From the results in Table I, it is observed that the
proposed architecture utilizes least number of LUTS and
has minimum delay. There is an exception for improved
Wallace [11], in which for 8-bit multiplier LUTs are
increased by 1.5%, and reduction in delay by 18.03% than
proposed multiplier. However for higher bit size multipliers
our approach outperforms as the clock cycles reduces due
to serial – parallel architecture. In terms of LUTs the
proposed method utilize 34.03%, 15.52% less LUTs than

that of best existing multiplier reported in [1] and in
terms of delay our architecture achieves 43.31%, 41.033%
of reduction for 8-bit and 16-bit multiplication operation
respectively. Synthesis and implementation of the proposed
multiplier are done using ’XC5VLX50T- FF1136-3’ device
from Virtex-5 FPGAs for fair comparison with existing
Concurrent Vedic Multiplier which was implemented by R
Deshmukh et al. [13] in 2018 using the same FPGA device
package. The performance of proposed multiplier in terms
LUTs, time delay is reported at the bottom of Table I for
8-bit, 16-bit and 32-bit word size multiplications.

The proposed multiplier is more effective for higher
word size multipliers as the design is aimed to compress
large number of partial products with less time. So, it is well
suited for applications with higher word length multiplica-
tions. The proposed unsigned multiplier is also compared
with recent implementation of Concurrent Vedic Multiplier

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 523-532 (Aug-2022) 531

[13] using Virtex-5 xc5vlx50t-3ff1136FPGA device.

The formula for percentage of reduction is given by(
existing value−new value

existing value

)
∗100. The negative values given in the

table indicates the parameters i.e. area and/or delay is in-
creased in percentage over the existing method and positive
values indicates the percentage of reduction over existing
method. Comparing the Concurrent Vedic Multiplier to ours
the delay is 18% higher for 8-bit, however the delay is best
for the proposed i.e. it is reduced by 7.11%, 9.46% with a
slight increase in LUTs for 16-bit, 32-bit respectively.

B. Performance of Signed Multiplier
The proposed Signed Multiplier is implemented on

Virtex-5, Virtex-6, Virtex-7 FPGA for 8-bit, 16-bit,
32-bit, 64-bit and its performance is made in terms of
utilized LUTs, delay is tabulated in Table II, the comparison
of the proposed multiplier with existing Booth multipliers
given in [2], [14], [16] is tabulated in Table III. From the
performance table, it is observed that delay of proposed
signed multiplier is reduced for higher bit size multipli-
cation due to higher frequency of the architecture. The
proposed 8-bit signed multiplier is compared with the Booth
– Wallace Multiplier [14] implemented on Virtex-5
(xc5vlx50-3ff324) FPGA. It utilizes 56.30% less LUTs,
with increase in delay, however when bit size increased to
16-bits the delay is approximately same, but LUTs remains
less.

The proposed 16-bit signed multiplier is compared
with Radix-4 Booth multiplier implemented on Virtex-6
(XC6VCX75T-2FF84) FPGA device by Ku. Damini et
al. [2]. It utilize 36.17% less LUTs with 5.5% increase in
delay. But there is a drastic fall in delay for the proposed
64-bit multiplier compared to existing multiplier [16] by
55.3%. But in parallel the LUT’s are increased to almost
double of existing 64-bit multiplier i.e existing multiplier
has less LUT than the proposed multiplier by 49.55%.
Therefore the proposed multiplier for lower bit length to
higher bit length the delay is reducing drastically and area
is increasing compared to existing multipliers. But when
compared to the existing multipliers the proposed multiplier
has less area-delay product by 20.34%, 32.618%, 11.39%
for 8-bit, 16-bit and 64-bit respectively.

6. CONCLUSION
The proposed multiplier architecture made of memory

blocks and registers is equally efficient for both ASIC
and FPGA implementation, more over as carry propagation
is limited to individual m- operand adder modules, the
bottlenecks of long carry chain and complexity of routing
to pipelining as in conventional multipliers is removed. The
registers at the input and output of the m-operand adder
modules can be used to take the advantage of parallelism
and pipelining of data. The architecture of our multiplier
is planned to involve this advantage in the addition of
partial products, resulting in serial-parallel architecture with
pipelining. This made our multiplier outperform existing
architecture as the bit size increases.

References
[1] A. Singh, A. Sharma, and P. Kumari, “Fpga Implementation

of High Speed Multiplier with Optimized Reduction Phase,” in
Intelligent Communication, Control and Devices., ser. Advances in
Intelligent Systems and Computing, vol. 624. Singapore: Springer
Nature, Apr. 2018, pp. 187–195.

[2] C. Damini Dandade and R. Prashant Indurkar, “Design of High
Speed 16-Bit Vedic and Booth Multiplier,” International Journal
for Research in Applied Science & Engineering Technology, vol. 5,
no. VIII, pp. 689–696, 2017.

[3] C. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, vol. EC-13, pp. 14–17, Feb. 1964.
[Online]. Available: https://ieeexplore.ieee.org/document/4038071

[4] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 45, no. 5, pp. 349–356, 1965.

[5] K. Bickerstaff, M. Schulte, and E. Swartzlander, “Reduced area mul-
tipliers,” in Proceedings of International Conference on Application
Specific Array Processors (ASAP ’93), Oct 1993, pp. 478–489.

[6] A. Meo, “Arithmetic networks and their minimization using a new
line of elementary units,” IEEE Transactions on Computers, vol.
C-24, no. 3, pp. 258–280, March 1975.

[7] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient Synthesis
of Compressor trees on FPGA,” in 2008 Asia and South Pacific
Design Automation Conference. Seoul, Korea (South): IEEE, Mar.
2008, pp. 138–143.

[8] T. Matsunaga, S. Kimura, and Y. Matsunaga, “An Exact Approach
for GPC-Based Compressor Tree Synthesis,” IEICE Transactions
on Fundamentals of Electronics Communications and Computer
Sciences, vol. E96-A, no. 12, pp. 2553–2560, Dec. 2013.

[9] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis
for fpgas,” IEEE Transactions on Computers, vol. 67, no. 8, pp.
1078–1091, Aug 2018.

[10] S. Aruna Mastani, S. Kannappan, “Memory based Multi-Operand
Adder,” Indian patent application 201 941 024 136, june 18, 2019.

[11] M. Kunnathettu Rajee, T. Thomas, A. Manuel, A. Rachel, and
R. Cheriyan, “Fpga Implementation of an Efficient High Speed
Wallace Tree Multiplier,” International Journal of Computer
Applications, pp. 9–14, 2015. [Online]. Available: https://research.
ijcaonline.org/icettas2015/number1/icettas2565.pdf

[12] K. M. Gaikwad, M. S. Chavan, “Analysis of Array Multiplier
and Vedic Multiplier using Xilinx,” Communications on Applied
Electronics (CAE), vol. 5, no. 1, pp. 13–16, May 2016.
[Online]. Available: https://www.caeaccess.org/archives/volume5/
number1/gaikwad-2016-cae-652140.pdf

[13] P. R. Deshmukh and J. S. Edle, “Development of concurrent
architecture of vedic multiplier,” in 2018 Fourth International
Conference on Computing Communication Control and Automation
(ICCUBEA). pune, India: IEEE, 2018, pp. 1–6.

[14] S. A. Shinde, R. K.Kamat, “Fpga based improved hardware imple-
mentation of booth wallace multiplier using handel c,” Elektronika
Ir Elektrotechnika, vol. 109, no. 3, pp. 71–74, Mar. 2011.

[15] S. B. Suhas, S. Ramakrishna, and S. B. Rajashekar, “Design and
implementation of adders and multiplier in fpga using chipscope:

https:// journal.uob.edu.bh

https://ieeexplore.ieee.org/document/4038071
https://research.ijcaonline.org/icettas2015/number1/icettas2565.pdf
https://research.ijcaonline.org/icettas2015/number1/icettas2565.pdf
https://www.caeaccess.org/archives/volume5/number1/gaikwad-2016-cae-652140.pdf
https://www.caeaccess.org/archives/volume5/number1/gaikwad-2016-cae-652140.pdf
https://journal.uob.edu.bh

532 Aruna Mastani, et al.: Distributed Memory based Architecture for Multiplier

A performance improvement,” in Proceedings of Information and
Communication Technology for Competitive Strategies, ser. Lecture
Notes in Networks and Systems, vol. 40. Springer, Aug 2018, pp.
11–19.

[16] X. Liu, A. He, C. Li, G. Feng, and J. Zhang, “Study of 64-bit
booth asynchronous multiplier based on fpga,” in 2017 IEEE 12th
International Conference on ASIC (ASICON), 2017, pp. 263–266.

[17] P. K. Meher, “New approach to look-up-table design and memory-
based realization of fir digital filter,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 3, pp. 592–603, March
2010. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5356201&isnumber=5424135

[18] P. K. Meher, “Lut optimization for memory-based computation,”
IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 57, no. 4, pp. 285–289, April 2010.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5447668&isnumber=5452111

[19] P. K. Meher, “New approach to lut implementation and
accumulation for memory-based multiplication,” in 2009 IEEE
International Symposium on Circuits and Systems, May 2009, pp.
453–456.

[20] P. K. Meher, “New look-up-table optimizations for memory-based
multiplication,” in Proceedings of the 2009 12th International
Symposium on Integrated Circuits, Dec 2009, pp. 663–666.

S. Aruna Mastani S. Aruna Mastani re-
ceived the B.Tech. and M.Tech. degrees
in Electronics and Communication engi-
neering from Jawaharlal Nehru Technolog-
ical University Anantapur(JNTUA), Anan-
thapuramu, Andhra Pradesh, India. She
was awarded with Ph.D. degree in Image
Processing from JNTUA, Ananthapuramu,
Andhra Pradesh, in 2008. She is working
as Assistant Professor in the department of

Electronics and Communication Engineering, JNTUA, Anantha-
puramu., India. She has 20 years of experience in teaching for
Electronics and Communication Engineering. She filled three
complete Indian Patent applications. One of the patent applications
is published in the Journal of Indian Patent and is in the process
of examination by the Indian Patent office. She published research
articles in 35 international journals. Being a supervisor she is
guiding 8 Ph.D scholar students. Her areas of interest covers
Image Processing, Very Large Scale Integration, VLSI circuits and
systems.

S. Kannappan S. Kannappan was born in
Sathrawada village, Nagari, Andhra Pradesh,
India in 1987. He successfully completed the
Ph.D VIVA defence on december 2020 in
Jawaharlal Nehru Technological University
Anantapur(JNTUA), Andhra Pradesh. His
research area is VLSI circuits and systems
and more particularly design of digital cir-
cuits and systems, design of Processor. He
received the B.Tech degree in Electronics

and Communication Engineering from Narayana Engineering Col-
lege, Nellore, Andhra Padesh. He received M.Tech degree in
Digital Electronics and Communication Systems fron JNTUA Col-
lege of Engineering, Ananthapuramu, Andhra Pradesh. He filled
two complete Indian patent applications along with Dr. S. Aruna
Mastani, Assistant Professor, JNTUA, Ananthapuramu, Andhra
Pradesh. He publicshed papers in Five International journals and
presented papers in three international conferences.

https:// journal.uob.edu.bh

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5356201&isnumber=5424135
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5356201&isnumber=5424135
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5447668&isnumber=5452111
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5447668&isnumber=5452111
https://journal.uob.edu.bh

	Introduction
	Related Work
	Multi-Operand Adder
	Method of Operation

	PROPOSED UNSIGNED MULTIPLIERS
	16-bit Unsigned Multiplier
	16-bit Signed Multiplier

	RESULTS AND DISCUSSION
	Performance of Unsigned Multiplier
	Performance of Signed Multiplier

	CONCLUSION
	References
	Biographies
	S. Aruna Mastani
	S. Kannappan

