
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Dec-2022)

E-mail: ghassan.programer@gmail.com, noor.hassan@puresci.edu.iq,hazim_numan@sciences.uodiyala.edu.iq,

scicompms04@uodiyala.edu.iq.

http://journals.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/1201120

An Efficient and Secure Auditing System of Cloud Storage

Based on BLS Signature

Ghassan Sabeeh Mahmood1, Noor Hasan Hassoon2, Hazim Noman Abed1, Baidaa Abdulrahman Jalil1

1 University of Diyala, College of Science, Computer Science Department, Diyala, Iraq
2 University of Diyala, College of education for Pure Science, Computer Science Department, Diyala, Iraq

Received 28 Mar. 2021, Revised 26 Jul. 2022, Accepted 24 Aug. 2022, Published 31 December 2022

Abstract: Cloud computing users can use the cloud storage service remotely by enjoying various applications and services upon

request from a group of cloud computing resources, all without the burden of storing data as well as maintaining it. However, cloud

users can no longer possess data and this makes data integrity an important issue. Also, users should use cloud storage as if it is

locally, without thinking about verifying the integrity of cloud data. To solve the problems and to provide auditing of cloud storage

securely and effectively without additional burden on users, this paper proposes an efficient and secure auditing system of cloud

storage that supports auditing and maintains users' privacy based on Boneh-Lynn-Shacham (BLS) signature. Besides, the proposed

system worked with dynamic data integrity verification mechanisms as well. The safety and performance analysis of the system has

proven the effectiveness and safety of the proposed system.

Keywords: Data Integrity, Cloud Computing, BLS Signature, Data Auditing

1. INTRODUCTION

The Cloud paradigm is considered as a promising
model to enable access to the network for a set of
computing resources like networks, servers, various
services, different applications, as well as remote storage,
which can be provided quickly and with minimal effort of
the cloud service provider. That is why cloud computing
services are considered very important after the main
services such as electrical utilities, gas and water services,
and telecom services. In recent times, business
organizations and users have relied on cloud computing
services in terms of document creation and data backup,
in addition to cloud-based email services. That is why
cloud computing is an important and effective way for
organizations and users, as a result of the transformation
directly and indirectly to the cloud paradigm, the
information technology expenditures will be affected by
one trillion dollars in the next few years [1].

Despite all the benefits offered by the cloud
computing model, it suffers from security problems. As an
example, a database failure in Salesforce caused data to be
lost for three and a half hours permanently [2]. On the
other hand, a Dropbox security breach caused 68 million
user accounts to be leaked. Once data is outsourced to the

cloud, this results in a lack of control over the data and
thus puts data integrity at risk. There are many reasons for
risking the integrity of data. Therefore, the cloud
computing service must deal with malfunctions and
problems in software as well as hardware that may lead to
the destruction of user data. The provider of cloud service
may choose to hide errors in the data to disguise them. In
order to provide good storage space, a cloud service
provider (CSP) may try to store data that is rarely
accessed in offline ways, or this data may be deleted.
Therefore, these reasons invite users of cloud computing
to use effective and robust methods for performing data
integrity audits frequently [3].

With the time development of information technology
in the recent era, many systems have been introduced
[4,5] that verify the integrity of the data stored in the
cloud by accessing the entire file in order to ensure the
integrity of the data. However, these systems will be less
efficient with large files, because the verification process
will take a long time. In addition, it may lead to the user
being restricted to the number of tries to check file
integrity. Other schemes [6,7,8,9,10] have been developed
to design remote data integrity verification protocols, this
enables checking cloud data integrity without
downloading it completely from the cloud. The system

https://dx.doi.org/10.12785/ijcds/1201119

1492 Ghassan Sabeeh Mahmood et al: An Efficient and Secure Auditing System of Cloud Storage …

http://journals.uob.edu.bh

proposed by [6] is a public checking scheme with
confidentiality in the environment of cloud computing
however is not safe. The main purpose this system is not
secured is that it is highly susceptible to attacks from a
bad server or external attacker. The system proposed by
[9] guarantees remote data integrity verification but it
does not support dynamic processes of the data. Ge et al.
[8] proposed a system that would ensure data integrity
verification and data retrieval through various servers, but
their system's scope is restricted only to fixed data.
Whereas Erway et al. [7] suggested a system for auditing
the data integrity that supports dynamic data processes.
They used a skip list-based data structure to support
modifications to cloud data, and the efficiency of this
system remains unidentified. Therefore, due to users' lack
of trust in cloud computing and the problems mentioned
in the above systems in terms of insecurity, inefficiency
and accessing the whole file to guarantee integrity, in
addition to supporting static data only or not supporting
batch auditing, these factors are what motivated us to
propose this paper.

In this regard, this paper proposes a secure and
efficient cloud data storage auditing system based on a
BLS signature to periodically check the integrity of cloud
data without completely restoring data or by reducing
additional online burdens for cloud users. In addition to
ensuring that privacy and confidentiality of data are
maintained using the AES encryption algorithm. In
addition, the suggested scheme has expanded the scope of
work by supporting dynamic data operations, so that users
are constantly updating their data in the cloud
environment. To maintain the security of storage safety at
the same level, the proposed system has worked
effectively and safely, and this has been proven by
security and performance analysis. Thus our contribution
can be highlighted as follows:

• The authors suggest a remote data integrity
verification scheme depending on the BLS signature
that ensures secure and efficient data auditing,
privacy-preserving, and data dynamic operations.

• The proposed system provided support for data
confidentiality in the cloud and this was done by
using the AES algorithm.

• After the security analysis of the proposed system, it
was evaluated from the security point of view and
proved its security in a random oracle model
assuming the stability of the Computational Diffie–
Hellman (CDH) problems. The performance analysis
also showed the effectiveness of the proposed system.
The connection cost of the proposed system was also
calculated and was O(n).

The rest of the paper is structured as follows. In

Section 2, the related work is presented. In Section 3, a

problem statement is presented. The proposed system is

presented in Section 4. The evaluation of the proposed

system is discussed in Section 5. Lastly, the conclusion of

the paper is offered in Section 6.

2. RELATED WORK

Several auditing systems for data integrity have been
recently suggested to allow only the possessor of data to
perform a data integrity audit [7,8,9]. So that these
systems include the data owner and the cloud storage
server, and these systems are called private auditing
systems. While many systems allow third-party auditors
(TPA) to carry out data integrity audit, these systems are
called public auditing systems [11,12,13,15].

Ateniese et al. [14] suggested an original system for
data integrity proof in which their system relied on RSA
signatures in addition to random sampling methods. They
proposed two models to have Proof of Data Possession
(PDP). The first is the sampling PDP and the second is the
efficient PDP. The S-PDP model provides secure data
acquisition, but at the same time, it is less efficient than
the second model. The limitation in their system is only
suitable for static data files.

Ge et al. [8] supported private auditing by suggesting
exploring search investigation using keywords over
encrypted data with symmetric key-based validation.
They designed a new cumulative authentication signature
depending on symmetric-key to create a cumulative
authentication signature for every keyword. The
disadvantage of this system does not support data
dynamically. Also, supported the proposed scheme Lu et
al. [9] Proving the integrity of static data only by a special
audit of the data sharing system in the cloud computing
environment for mobile devices. The system also ensures
authorized access to data by security checks before
sharing data with users to avoid incorrect calculations.
Their system also achieved lightweight mobile operations
on both the data owner and data requester sides. It lacked
support for dynamic data operations.

Whereas F. Wang et al. [10] suggested a dynamic
demonstrable data possession system with non-
repudiation in the cloud computing environment by using
index tables. This scheme resisted may attack and avoids
the synchronization issue. Moreover, in dynamic
operations, this system had lower storage cost and
computation cost. However, this system cannot protect
privacy. Erway et al. [7] suggested an auditing system for
data integrity that supports dynamic data processes. In
their cloud system, they used the skip list data structure
for data modifications, but the efficiency of their cloud
system is unclear.

Shane et al. [21] suggested an identity-based system
for cloud data integrity auditing. In their system, files
saved in cloud computing can be shared and utilized by
others provided that the sensitive information about the
file is secured. Although their system provides an auditing

 Int. J. Com. Dig. Sys. 12, No.1, 1491-1501 (Dec-2022) 1493

http://journals.uob.edu.bh

protocol, it does not support data dynamics nor does it
provide a solution to data confidentiality.

We believe that most previous work has focused on
the issue of data integrity auditing, while little attention
has been paid to ensuring that data integrity is protected
while supporting dynamic data operations. Our work
contributes to designing a data integrity verification
system in the cloud environment that is secure in the data
audit process and maintains privacy while supporting
dynamic processes. On the other hand, it is effective in
reducing user computation costs during the system
preparation stage as well as in the data integrity
verification stage.

Table 1 illustrates the comparison of the integrity
between the proposed system and other systems in terms
of data auditing, privacy preservation, confidentiality and
data dynamic.

3. PROBLEM STATEMENT

A. System model and threat model

The proposed auditing system comprises two modules
with a specific connection between them, the first one is
the server of cloud, which is owned by the CSP who has
the experience and infrastructure to serve the cloud
storage, also, to provide effective services to its users, to
produce, update and demand data recovery. The second
one is the Client who is responsible for the personal data
or the organization’s data, as he sends the data to the
cloud with his responsibility for its integrity and
confidentiality at the same time.

We assume having a reliable cloud service provider
that most of the time behaves correctly. However, the
CSP may remove data that is rarely retrieved. Or the cloud
provider may mask corruption of data to preserve its
reputation. Therefore, the data integrity used in cloud
computing is connected to two types of threats. The first
threat is the integrity threat, meaning that the attacker will
observe the data and then work to provide forensic

evidence of fraud. While the second threat is called a
privacy threat, which is that the attacker tries to obtain
additional information by monitoring data, such as the
content or type of data.

 System goals

• The proposed system is aimed to do data privacy
preservation, security of data and lightweight
operations.

• Data integrity guaranty: Proving the integrity of data
stored in the cloud and the security of the proposed
system.

• Privacy preservation: The proposed system must
meet data privacy during the data integrity process.

• Lightweight operations: The proposed system should
reduce the computation operations for cloud
computing users to achieve efficiency.

• Data dynamic operations: To ensure that data is
stored dynamically, even if cloud computing users
update their data such as delete or insert some data in
the cloud computing.

• Confidentiality of data: To ensure the security of the
proposed system from an untrusted cloud service
provider or any external attacker.

B. Security paradigm

The security paradigm of the suggested system is
designed to protect the data integrity verification process.
The verification scheme is said to be more secure:

1. 1. If no polynomial algorithm exists, it can pass
validation with the lowest possible probability.

2. If a polynomial extractor can retrieve the original
data by conducting challenge and response
operations.

The model of integrity protection lets adversary query
data. The adversary may be a dishonest (CSP) who
interacts with a challenger (user). The integrity game
involves the following steps:

1. The Setup phase is run by a challenger to generate its
private and public keys. The public key is sent to the
adversary while the private is saved secretly.

2. The number of polynomials for queries of Oracle is
executed by the adversary. The adversary can do a
hash query, and sign query on the oracle model.

3. Finally, the adversary creates a forged proof that
corresponds to the file block. The adversary wins the
game if and only if, the signature is a valid signature
and the data block is never requested through hash
and signature queries.

With previous implementations, if the adversary
successfully wins the game, we can create a simulator

TABLE I. COMPARISON OF THE INTEGRITY SYSTEMS

Schemes Data

auditing

Privacy

preservatio

n

Confidentiality Data

dynamic

[7] Yes No Yes Yes

[8] Yes Yes No Yes

[9] Yes Yes No No

[10] Yes No No Yes

[11] Yes Yes No Yes

[12] Yes Yes No Yes

[13] Yes Yes No Yes

[14] Yes Yes No No

[21] Yes No No No

Proposed
system

Yes Yes Yes Yes

1494 Ghassan Sabeeh Mahmood et al: An Efficient and Secure Auditing System of Cloud Storage …

http://journals.uob.edu.bh

that can fix CDH problems. So, the security of our
system is based on assumptions of CDH stiffness on
the bilinear mappings in the Oracle paradigm.

C. Preliminaries

The proposed system is constructed on the bilinear
maps with the addition of the BLS signature; these two
concepts will be discussed.

1)Bilinear maps

Let G1, G2 and GT are multiplicative cyclic groups of
prime order p. Let g1, g2 be the generator of G1, G2 . A
map e: G1 × G2 → GT will be a bilinear map if it achieves
the following features [16]:

• Calculable: efficient process happens in computing
the map (e).

• Bilinear: e(xa, yb) = e(x, y)ab for all x, y ∈ G1, G2 ,
whereas a, b ∈ Zp ;

• Non-degeneracy: e(g1, g2) guarantees not equal to 1.

2)Boneh-Lynn-Shacham (BLS)signature

It is a short digital signature that allows the user to
verify the authenticity of the signer. And is proven secure
in the random oracle model it was presented in [17]. It has
been used because the short signatures are needed in cloud
environments where there is a strong requirement that
minimum bandwidth is used. Where the BLS produces
short signatures compared to other signatures used such as
RSA and DSA. For instance, when uses a 1024-bit
modulus, RSA signatures are 1024 bits long. Likewise,
when uses a 1024-bit modulus, standard DSA signatures
are 320 bits long. Elliptic curve variants of DSA, such as
ECDSA, are also 320 bits long. A 320-bit signature is too
long to be keyed in by a human. While the BLS signature
scheme whose length is about 160 bits and which
provides a level of security similar to that of 320-bit DSA
signatures. Signature generation is relatively fast,
signature verification is slightly less computationally
complex as it includes a computationally unexpansive
pairing operation. Signature aggregation is one of the
main features of BLS signing, as it is possible to
aggregate multiple signatures into multiple messages
using multiple public keys into a single signature. A gap is
a group whose Diffie-Hellman computation solution is
very hard, but this issue can be solved well, because of its
properties including non-degraded, efficiently
computable, and bilinear pairings [17].

Assume G1 × G2 → GT be non-degraded, calculable
and bilinear whereas G1, GT are sets of prime order p. Let
g be a creator of G. Assume a case of the computational

Diffie Hellman problem [18], (g, ga, gb) . The pairing

function e does not help us to compute gab, the resolve to
the computational Diffie–Hellman. Therefore, estimates
indicate that this situation is difficult to solve. Assumed

gc, maybe we'll check to see if gc = gab , this is done
without knowing the a, b and c values, by proving

whether e(ga, gb) = e(g, gc) true. By making use of the
bilinear property a + b + c, therefore we appreciate it if

e(ga, gb) = e(g, g)ab = e(g, g)c = e(g, gc) then, due to
GT is a prime order set, then ab = c . The key
distinguishing feature of the BLS signature is the
grouping of several signatures into several messages
utilizing several keys to be able to join into one signature.
The BLS have three functions: The key generator, The
signing, and the Verification.

Key generator: It selects a random value a ∈ Zp in

the interval [0, 𝑟 − 1] which denotes the private key. The
owner publishes the ga which denotes the public key.

1. Signing: It takes the value a, and message m, then

computes the signature by hashing the message

m, as h = H(m) . The product of the Signing

function is the signature that is S = ha ∈ G1.

2. Verification: This function takes S and ga to prove

that e(S, g) = e(H(m), ga).

4. THE PROPOSED SYSTEM

A. The auditing system based on BLS signature

The suggested data integrity auditing scheme involves
six algorithms that are performed in two phases, that is the
initial phase and the verification phase. The user directly
sends the blocks to the CSP. The file is seen as a
collection of encrypted blocks {e1, e2, … , en} , with the
identity of each encrypted block as idi. The user may wish
to use the data file E in the future. The main problem is
making sure that the cloud data file must remain intact. So
the cloud computing user performs an integrity audit of
the data.

Initial phase: It includes three algorithms which
contain D_protection, K_generator, and S_generator. The
D_protection is responsible for splitting and encrypting
the data. The K_generator algorithm is primarily
responsible for generating the keys, while the S_generator
algorithm is responsible for generating signatures for data
integrity auditing.

D_protection (F) → (en) In the D_protection, the user
splits the file (F) into a set of blocks (b1, … , bn) ,
depending on the number of rows (r) as F =
({b1, b2, … , bn}, r). To achieve the confidentiality of the
data stored in the cloud, the blocks are encrypted by the
AES algorithm. With this, we will get the encrypted data
file with the name E = (e1, … , en).

K_generator (k) → (y, x) : In the K_ generator, the
user produces the public key (y) and (x) as a secret key
User randomly takes the parameter k as input to produces
the key x ∈ Zp , after that generates y = g2

x ∈ G2 as a

public key.

 Int. J. Com. Dig. Sys. 12, No.1, 1491-1501 (Dec-2022) 1495

http://journals.uob.edu.bh

S_generator (y, x, R, E) → Si: This algorithm is
performed by the cloud user to generate the signatures.
The input of the S_generator algorithm is x and y as
private and public keys respectively, as well as r1, r2 as a
random value ∈ Zp , and the encrypted file E. The output

of this function is the signature Si ∈ G1, where Si is the
single authentication identifier of each block for the file E.
The signature represented from this algorithm is
computed by Equation (1).

Si = (H(id)Ri)xi, (1)

here, the (id) is denoted for the block index and H is the

hash function to the block index H(id) ∈ G1 . The set of

signatures on E appeared as {Si}[1≤i≤n] , with equivalent

xi ∈ Zp, yi = g2
xi ∈ G2, and the Ri = r1 + r2, where Ri

∈ Zp and the user creates metadata (Md) consisting of

(Ai, Bi , Block index (idi)), where Ai = H(id)r1 , Bi =
H(id)r2 is created by the user for each block of the file E.

Then he sends the (E, S, y) to cloud computing and

deletes E and S from its local storage.

Verification phase: The Verification stage also

includes three algorithms which include Ch_generator,
Response, Check Proof. Once the cloud user needs to
check the data, he sends a request to CSP to set up the
audit process by using the Ch_generator algorithm.

Ch_generator (𝑀𝑑) → 𝑐ℎ𝑎𝑙𝑙 : The input of this
algorithm is the metadata (Md) , and it will generate a
challenge (chall), and send it to cloud computing. Define
(chall) = {i, qi }, where i = 1, … . k denotes the challenge
set produced by random values qi , one for each block.
The CSP sends a query about the audit process to the user
to agree to that query, if this is correct, the user sends the
approval to the provider, and the provider creates proof
(P) of integrity matching the received challenge (chall)
using the Response algorithm.

Response (𝑦, 𝑐ℎ𝑎𝑙𝑙, 𝑆, 𝐸) → 𝑃 : This algorithm run by
CSP to produce the proof (P) of cloud data integrity, the
input is (y, chall, S, E), and the final output is P = (S, y),
the S is the aggregate signatures of the challenger blocks
(k) and is presented below:

S = ∏ Si, where 1 ≤ i ≤ k (2)
k

i=1

To audit cloud data, the user performs this process

through the Check Proof algorithm:

Check Proof (𝑦, 𝑃, 𝑐ℎ𝑎𝑙𝑙, 𝑀𝑑) → (𝑦𝑒𝑠 𝑜𝑟 𝑁𝑜) : The

Check Proof algorithm is used by the user to check the

returned proof (P) from the cloud. The inputs of this

algorithm are (y, P, chall, Md) and the output is

yes or No . This algorithm extracts the indexes of the

challenged blocks, where index = 𝑖𝑑𝑖 and proves the

next equation:

e(S, g) = e (∏(Ai

k

i=1

. Bi, yi), (3)

If Equation (3) checks the proof, it returns Yes,

otherwise it returns No.

B. Support data dynamic

In a cloud computing environment, cloud data can be
accessed, in addition to the data being frequently updated
by cloud users [19]. Hence, support the data dynamically
is also important. We now show how the system was able
to perform the data integrity verification process when
making any modification to the data stored in the cloud
such as inserting, deleting or updating any data block and
thus enabling the system to deal with dynamic data.

1. Insert data block: Data insertion process denotes

introducing a new user-defined block afterwards the

indicated location in the encrypted user file (E) stored

in the cloud. Suppose he needs to addition block

(e) after the block (kth). In the beginning, the user

chooses the block he wants to insert from his local

files and encrypts it, then produces the private key

(x), the public key (y), and chooses the random value

(R) to create the (S) with the (Md), to this block.

Finally, the user loads the new block ei with its

associated values (Si, yi) to the cloud to be stored in

its own data file E.

2. Data block modification: With this process, users can

update and modify their cloud data. It denotes the

process of replacing the indicated data blocks with

new blocks. If the cloud customer requests to modify

the block (ei), the customer will send a request to

CSP to download the block (ei) to make the

necessary adjustments to it, then encrypt this updated

block and with the K_generator algorithm it will

produce the public and private keys and select a new

value (R) for this block, to the new (Md) and the

signature (Si) of the updated block(𝑒`
i) is created by

using equation (1). Then, it loads the modified block

(𝑒`
i) with its dependent value (S`

i, y`
i
) to store in the

cloud, after the user sends a request to the cloud to

delete the old block (ei) and store the new block (𝑒 `
i)

instead.

3. Deleting a block of data: This process refers to

deleting a definite block of user data, and then all

following blocks are moved forward in the user's

file. The process will be as follows if the customer

wishes to delete the (ei), then he will send a request

1496 Ghassan Sabeeh Mahmood et al: An Efficient and Secure Auditing System of Cloud Storage …

http://journals.uob.edu.bh

to CSP that contains the index (idi) of the block to

be deleted (bi), so the provider will search for this

block and delete it with the associated values (Si, yi)

and thus the block (ei) is deleted after sending

confirmation of deletion by the CSP.

5. EVALUATION

To evaluate the suggested scheme, we evaluate the
analysis of security and performance analysis in this
section.

A. Security analysis

Initially, we analyse the security of the suggested
scheme, with system correctness, data integrity protection
privacy-preserving and confidentiality, and the
Unpredictability of tokens.

1)Correctness

We establish the correctness of the suggested system
by providing the encrypted data file E =
(e1 , … , en)besides signature S = (S1 , … , Sn) on file E ,
the n is the number of encrypted blocks.

To validate our proposed system, we need to validate
Equation (3) by the characteristics of the bilinear
mappings. The user chooses random indexes (idi) for file
E with corresponding Ai, Bi then the user calculates the
challenge using the Ch_generator algorithm with the
challenge chall , the CSP calculates response using the
Response algorithm with proof P = (S, y) . Finally, the
user verifies the correctness of the response proof (P) by
proving Equation (3) as follows:

 e(S, g) = e(∏(Ai. Bi), yi)

k

i=1

 = e(∏(H(idi)
r1 . H(idi)

r2 , gxi)

k

i=1

 = e(∏(H(idi)
Ri , g)xi

k

i=1

 = e (∏(H(idi)
Ri)xi

k

i=1

, g)

 = e(S, g)
Consequently, the suggested system can correctly

verify data integrity.

2) Ensure data integrity is protected

In this subsection, the proposed system security
adversarial model is presented. The security of the
proposed system against forgery is created under the
selective block of data attack in a random Oracle model
by simulating a game between adversary and challenger.
We will demonstrate that if the adversary can produce

forgery with a nonnegligible probability of success on
signing the data block, then algorithm B can generate a

solution to the CDH problem. In the game, the adversary
can access the following three Oracle queries:

1. System parameter query: The adversary may request

a set of system parameters from the challenger (y, g),

As a result, the challenger returns the parameters to

the adversary.

2. Hash Query: The adversary may request queries of

hash at any time, and a challenger maintains a list to

respond to that query.

3. Sign Query: The adversary may request queries of

signature, and a challenger replies to this query with

a signatureSi.
After several queries, the adversary can generate a

proof P∗, and he wins the game if and only if the S∗ is
considered to be a true signature on the data block (ei),
and the adversary did not issue any Sign query for block
(ei). Therefore, the security of the proposed system is
denoted as follows:

Definition 1. The proposed system is unforgeable in a
selected data block attack type if and only if the
probability of success of a probabilistic polynomial-time
adversary is negligible.

Assuming CDH problem hardness, the security of the
suggested scheme is shown hereby:

Theorem1. If the adversary has an advantage ε to
create a forgery in time t on the block ei by simulating the
game and creating the queries to Hash Query, and qs
queries to Sign Query, then a CDH problem can be
resolved through probability: ε′ ≥ (1 (q + 1)e)⁄ ε in
time: tB ≥ t + tex(qh + qs) . The 𝑒 represents the base of
the natural logarithm.

Proof. Let the adversary be an attacker interacts with
the challenger. The challenger using algorithm B to solve

the CDH problem through probability ε′ in time tB by

providing a sample (g, ga , gb) of a CDH problem with G,
prime order p, and the a, b ∈ ZP as inputs. To compute

the gab ∈ G . The adversary creates queries at game
stages, and to respond to these queries the algorithm B is

implemented by the challenger as follows:

Parameter Query: Initially, the adversary requests

algorithm B to set up the system. Algorithm B choices

x ∈ ZP as a secret key, and generates its public key as

gx ∈ 𝐺 and, then algorithm B sends (g, gx, G) to the

adversary, and saves x as the secret.

Hash Query: The adversary can create a Hash Query

at any time. To keep track of each block ei ever queried

by the adversary, algorithm B creates a list

 L: {idi, mi, ti, ci }, which is initially empty. To answer

this query the algorithm B behaves as follows:

 Int. J. Com. Dig. Sys. 12, No.1, 1491-1501 (Dec-2022) 1497

http://journals.uob.edu.bh

(1) Algorithm B checks L for any previous query on

[id], if found then B responds H(idi) = mi as the answer

to the adversary.

(2) Otherwise:

 (a) The algorithm B flips a coin c where ci ∈ {0,1}.

• If ci = 0 , then the probability (pr = δ) , The

algorithm B selects a random t ∈ Zp , b1−ci and

calculates m = gt.b ∈ G.

• If ci = 1 then the probability (pr = 1 − δ), and

algorithm B computes m become m = gt ∈ G.

 (b) After that the algorithm B adds the new values to L

and responds to H(idi) = mi as an answer to the

adversary.

Sign Query: The adversary can create a Sign Query

for a block (id) and algorithm B replies to this query as

follows:

(a) Initially, algorithm B issues a hash query and

checks the value of ci.

(b) If ci = 0, then algorithm B reports failure and stops.

(c) Else, if ci = 1 , then mi = gt and calculates the

signature Si = gt.x = m𝑅.𝑥.

(d) Algorithm B responds to an adversary with Si.

Forgery: Finally, the adversary generates a forged

signature S∗ for a block [idf] such that no Sign Query

has been issued for [idf] to generate a proof P∗.

Now the algorithm B does the following steps to produce

a forgery:

(a) Algorithm B issues a Hash Query for [idf] and

checks the value of ci ,
(b) If ci = 1, then the algorithm B stops.

(c) If ci = 0 , then H(idi) = mi = gt.b , if the P∗ =
(S∗, y∗) is valid proof then we can get S∗ = (gt.b)𝑅.𝑥 ,

and gb.x = S∗1 𝑡.𝑅⁄
. The algorithm B recognizes the

values of (S∗, t, R), therefore algorithm B can

calculate the gb.x or B solves the CDH problem.

Additionally, the next proof demonstrates that the

problem of CDH can be resolved by algorithm B through

probability: 𝜀′ ≥ ((1 𝑞𝑠 + 1)⁄ e)𝜀 . Therefore, all three

cases must be true for algorithm B to succeed:

C 1: Algorithm B will not stop due to any query

adversary for signatures.

C 2: The adversary generates a valid forged signature 𝑆∗

on the block [idf].

C3: Case C2 happens and 𝑐 = 0 for a group having [idf]
in the list.

The probability of these three cases happens is as

pr[C1 ∩ C2 ∩ C3] = Pr[C1]. Pr[C2|C1]. Pr[C3|C1 ∩ C2].
The following claims afford a minimum for each of the

preceding cases.

Claim1: The probability that B will not be stopped

due to at least any adversary query for a signature is(1 −
δ)𝑞𝑠 .

pr[C1] ≥ (1 − δ)𝑞𝑠

Claim2: The probability that B will not be stopped

due to any query adversary for signatures and the

adversary generates a valid forged signature 𝑆∗ on the

block [idf] is: Pr[C2|C1] ≥ 𝜀.

Claim3: The probability that B will not end after the

adversary has produced valid forgery at least is:

Pr[C3|C1 ∩ C2] ≥ δ.

Proof: To proof the claims presented above, therefore

in Claim1, when the pr[ci = 1] = (1 − δ) then the

probability that algorithm B does not stop is (1 − δ) .

Since it takes approximately Sign Query 𝑞𝑠 , so the

probability of algorithm B not stopping after queries by

the adversary is at least (1 − δ)𝑞𝑠.

Also in Claim2, the responses to Hash Query are as in

the real attack since each response is uniformly and

independently distributed in G. All responses to Sign

Query are valid. Therefore, the adversary will produce a

valid forged signature, then the probability at least 𝜀 .

Moreover, in Claim3, the C1 and C2 states happen,

Algorithm B will not work only if the adversary can

configure a forgery with ci = 1 in the 𝐿. If the adversary

does not request the signature, algorithm B provides

H(idi) to him based on the ci. Meanwhile the adversary

will not be able to issue a query about the signature, this

means the value of ci , will not be known by the

adversary and thus Probability at least δ.

After we used the bounds of the above claims in:

pr[C1 ∩ C2 ∩ C3] = Pr[C1]. Pr[C2|C1]. Pr[C3|C1 ∩ C2]

Therefore, we get the following Equation.

 𝜀′ = ((1 − δ)𝑞𝑠. 𝜀. δ)

 𝜀′ = (δ(1 − δ)𝑞𝑠. 𝜀) (4)

By using the term differential of Equation (4), we get the

smallest value of 𝜀′ as follows:

d𝜀′ dδ ⁄ = 𝑑(δ(1 − δ)𝑞𝑠. 𝜀 dδ⁄
 = (1. (1 − δ)𝑞𝑠. 𝜀) + (δ. qs (1 − δ)(qs−1) . (−1))𝜀

 = (1 − δ)(qs−1) 𝜀((1 − δ) − δ. qs)

 = (1 − δ)(qs−1)𝜀(1 − δ(1 + qs))

Substitute d𝜀′ dδ ⁄ = 0,

 (1 − δ)(qs−1)𝜀(1 − δ(1 + qs)) = 0, then (δ) pick out

(1/(1 + qs)), after replace δ in Equation (4), we get

𝜀′ ≥ 1/(qs + 1)[1 − 1/(qs + 1)]𝑞𝑠. 𝜀.

 For a large value of 𝑞𝑠, the probability of adversary

signature queries is at least 1/e instead of [1 −
1/(qs + 1)] , therefore the CDH problem can be

resolved by B with probability 𝜀′ ≥ [(1 𝑞𝑠 + 1)⁄ . e]𝜀.

The runtime of algorithm B is the same as the

adversary time in addition to the time taken to reply to

1498 Ghassan Sabeeh Mahmood et al: An Efficient and Secure Auditing System of Cloud Storage …

http://journals.uob.edu.bh

hash and signature queries. Every query involves an

exponentiation process that represents 𝑡𝑒𝑥 time.

Therefore, the whole runtime is at most 𝑡𝐵 ≥ 𝑡 +
𝑡𝑒𝑥(𝑞ℎ + 𝑞𝑠) as necessary. This ends Proof of Theorem

1.

3)Privacy-preserving and confidentiality

When the user generates the signature, he creates (R)
which consists of the sum of two different random values
(r1, r2) . Thus, the user will verify the validity of the
signature retrieved from the cloud through the values of
(r1, r2) using Equation (3). Therefore, from the response
of the cloud computing, the response is blinded by the
value of (R) , and because of the strength of the DL
problem, the information about the (R) cannot be known
and cannot be leaked to the server.

 Additional, the confidentiality of cloud computing
user data from both the cloud service provider as well as
from the cloud computing users must be maintained. This
is why security remains one of the biggest concerns in a
cloud environment. The proposed system has provided a
strong solution to one of the most common problems
facing cloud storage, which is the issue of privacy and
confidentiality, by working on the principle of encryption,
thus ensuring the confidentiality of cloud data. But we
must have encryption technology that is sensitive to plain
text and keys also. At initial, we know that the AES key
requires the similar length as the plaintext and its
explanations with which this key can resist any brute force
attack. This is because the correct and incorrect keys have
only one difference. Thus, the results revealed that at the
time of decryption, if the wrong key was used, which may
differ slightly from the correct key, a significant
difference was found between the original file and the
encrypted file.

Therefore, utilizing the incorrect information cannot
recover the original data, thus leading to a failure to
decrypt the data. Therefore, we believe that the AES
algorithm is very sensitive to plain text and thus
guaranteeing the security of the proposed system and
realizes its goals.

B. Performance analysis

The implementation of the suggested system has been
done in the python language through an Intel (R) Core i5
CPU at 3.60 GHz and 8.00 GB RAM. We go into detail to
show the efficiency and security of the suggested system.
The efficiency concept means that the suggested auditing
system provides an assurance of data integrity with
reduced computational and communication overhead. To
test the proposed system performance, the Berka dataset
[20] is used. To implement the suggested scheme, we
depend on the dataset for the original data file, therefore
the customer divides the data file into blocks (100 to 500
blocks) thus that the block size is (1 KB). Moreover, we
use the Dropbox cloud method to deploy our data and to
check the suggested scheme. In the next subsections, we

will now evaluate the performance of the suggested
system according to the cost of the Computation and the
cost of communication as follows:

1)Computation cost

To evaluate the generating performance of both the
keys and the signatures, we generate the keys and the
signatures for a dissimilar number of blocks from 100 to
500 growing by 100 in our experiment. Such as presented
in Figures 1 and 2, the time cost of generating signatures
increases linearly through the increase in the number of
blocks. Keys generation time ranges from 0.021 to 0.046
seconds. While the time to generate signatures ranges
from 0.071 to 0.286 seconds.

It can be noted from Figures 1 and 2 that the proposed
system takes very little time in the keys generation
process as well as in the signatures generation process,
and this guarantees the efficiency of the suggested
scheme.

For an integrity audit, we illustrate the computational
overheads in Figures 3 and 4. In our experience, the
number of data sets challenged varies from 100 to 500. As
presented in Figure 3, we realize that the computational
costs of challenge generation and check the proof on the

Figure 2. The computation overheads of signature generation

Figure 1. The computation overheads of keys generation

 Int. J. Com. Dig. Sys. 12, No.1, 1491-1501 (Dec-2022) 1499

http://journals.uob.edu.bh

user-side grow linearly through the number of data
challenges. The computational cost of challenge
generation ranges from 0.031 to 0.445 seconds. Matched
to check the proof time, the challenge generation time
grows slowly, from 0.159 seconds to 0.833 seconds.
From Figure 4, we can see that the computational cost of
generating proof on the cloudy side differs from 0.411 to
1.997 seconds.

As we have seen in Figures 3 and 4, the computational
overheads of challenge generation, proof generating and
check the proof as to the number of challenges increases.
This is appropriate for performance analysis because
while the block number challenged is in height, the extra
random values must be set in the challenge generation,
plus the cloud has incremental computations while the
user has additional processes. Therefore, we can achieve
that additional data challenge. However, the time required
for the number of data blocks that have been challenged
remains very acceptable and this indicates the efficiency
of the suggested system.

To evaluate the efficiency, we compare the suggested
system to [15] in terms of verification side and server-side
with a 1 KB data block size for 500 blocks and summarize
the results in Table II. We can notice from Table II that
the proposed system has a better computation cost than
the system [15] so that the results show that the proposed
system has a computation cost of fewer than four times.
As well as for comparison with [22], it turns out that the
proposed system has better efficiency.

TABLE II. COMPARISON OF DATA INTEGRITY VERIFICATION

Side The proposed

system (s)

[15]

(s)

[22]

(s)

Verification-side 0.80 4.5 1.5
Server-side 1.79 8.4 3.2

Table III gives a comparison of the computational
overheads between the proposed system and [21,23,24]
at different stages.

TABLE III. COMPARISON OF THE COMPUTATION OVERHEADS

Proposed

system

[21] [23] [24]

Generate

Signatures
0.071 1.702 2.91 2.95

Generate

Challenge
0.031 0.034 1.53 1.57

Check Proof 0.159 1.010 0.22 0.26

Generate Proof 0.411 0.802 0.32 0.35

As presented in Table III, we can realize that the

proposed system and the system [21] have nearly the

same computation cost in the part of challenge creation.

So, the proposed system and the system [21] have equal

efficiency when handling the same data. While in the

proof generation, the proposed system has less

computation overhead, therefore, the proposed system is

better than the system [21]. As well as in the phase of

proof verification. Therefore, the comparison illustrations

that the proposed system has better efficiency than the

system [21]. Also, in comparison with [23,24], it was

found that the proposed system has high efficiency.

2)Communication cost

Communication costs are due to data sending to the
cloud, data retrieval, and responding to the challenge of
auditing, and these are unavoidable matters. As mentioned
in subsection 4.1 of the suggested scheme, the client
selects random blocks to challenge. The burden of
communication is done because the audit process in the
proposed system contains double transmissions. First, it
will be for the challenge data file E which is represented
as chall = (i, iq). The cost is based on the number of n
blocks sent by the client for the audit. While the second is
for the challenge and the corresponding response to the
challenge in the proof P = {S, y}. Thus, the

Figure 3. The computational overheads of challenge

generation and check the proof

Figure 4. The computation overheads of generating proof

1500 Ghassan Sabeeh Mahmood et al: An Efficient and Secure Auditing System of Cloud Storage …

http://journals.uob.edu.bh

communication cost will be O(n). Now, we will calculate
the times of uploading and downloading blocks from the
cloud in order to verify the effectiveness and efficiency of
the proposed system. Initially, after the process of
dividing the data to be stored into a set of n blocks, the
resulting blocks are encrypted, so that we have encrypted
blocks ready to be sent to the cloud. As such, to display
the upload and download results, Figure 5 and Figure 6
illustrate this.

6. CONCLUSION

This paper proposed an auditing system for cloud

computing data. This system used a short signature from

BLS to ensure audit and maintain data privacy, and the

proposed system extends to data dynamically, where the

user can perform insertion, deletion, and modification of

data to enhance efficiency. Moreover, the data integrity

calculation cost is more low for the user auditing, because

the data verification signature contains one element, thus

the cost of storing and transmitting the signature can be

reduced. Comprehensive analysis shows that the

suggested scheme is very efficient and more secure.

Future works could be expanded to support auditing in

multi-cloud environments.

REFERENCES

[1] Vamsi, S., Raviteja, R., Selvan, M. P., & Gladence, M. (2021).
Enabling Ternary Hash Tree-Based Integrity Verification for
Secure Cloud Data Storage. In Advances in Electronics,
Communication and Computing (pp. 447-453). Springer,
Singapore.

[2] Gahlot, D., Tejasvee, S., Ranga, K. B., & Vyas, R. R. (2021). Data
Security & Future Issues for Cloud Computing. In Advances in
Information Communication Technology and Computing (pp.
313-318). Springer, Singapore.

[3] Ghallab, A., Saif, M. H., & Mohsen, A. (2021). Data Integrity and
Security in Distributed Cloud Computing—A Review.
In Proceedings of International Conference on Recent Trends in
Machine Learning, IoT, Smart Cities and Applications (pp. 767-
784). Springer, Singapore.

[4] Mahmood, G. S., Huang, D. J., & Jaleel, B. A. (2019). A secure
cloud computing system by using encryption and access control
model. Journal of Information Processing Systems, 15(3), 538-
549.

[5] Saleh, W. M., Al-Ta'I, Z., T., Mahmood, G. S. (2020). Secure
Distributed Data using Multi-Cloud. International Journal of
Innovative Technology and Exploring Engineering (IJITEE), 9(4),
2998-3003.

[6] Wang, C., Chow, S. S., Wang, Q., Ren, K., & Lou, W. (2011).
Privacy-preserving public auditing for secure cloud storage. IEEE
transactions on computers, 62(2), 362-375.

[7] Erway, C. C., Küpçü, A., Papamanthou, C., & Tamassia, R.
(2015). Dynamic provable data possession. ACM Transactions on
Information and System Security (TISSEC), 17(4), 1-29.

[8] Ge, X., Yu, J., Zhang, H., Hu, C., Li, Z., Qin, Z., & Hao, R.
(2019). Towards achieving keyword search over dynamic
encrypted cloud data with symmetric-key based verification. IEEE
Transactions on Dependable and secure computing.

[9] Lu, X., Pan, Z., & Xian, H. (2020). An efficient and secure data
sharing scheme for mobile devices in cloud computing. Journal of
Cloud Computing, 9(1), 1-13.

[10] Wang, F., Xu, L., Wang, H., & Chen, Z. (2018). Identity-based
non-repudiable dynamic provable data possession in cloud
storage. Computers & Electrical Engineering, 69, 521-533.

[11] Sun, L., Xu, C., Zhang, Y., & Chen, K. (2019). An efficient iO-
based data integrity verification scheme for cloud
storage. Information Sciences, 62(059101), 1-059101.

[12] Ping, Y., Zhan, Y., Lu, K., & Wang, B. (2020). Public Data
Integrity Verification Scheme for Secure Cloud
Storage. Information, 11(9), 409.

Figure 5. Upload blocks

Figure 6. Download blocks

 Int. J. Com. Dig. Sys. 12, No.1, 1491-1501 (Dec-2022) 1501

http://journals.uob.edu.bh

[13] Shang, T., Zhang, F., Chen, X., Liu, J., & Lu, X. (2019). Identity-
Based Dynamic Data Auditing for Big Data Storage. IEEE
Transactions on Big Data.

[14] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,
Peterson, Z., & Song, D. (2007, October). Provable data
possession at untrusted stores. In Proceedings of the 14th ACM
conference on Computer and communications security (pp. 598-
609).

[15] Thokchom, S., & Saikia, D. K. (2019). Privacy Preserving and
Public Auditable Integrity Checking on Dynamic Cloud Data. IJ
Network Security, 21(2), 221-229.

[16] Li, S., Liu, J., Yang, G., & Han, J. (2020). A Blockchain-Based
Public Auditing Scheme for Cloud Storage Environment without
Trusted Auditors. Wireless Communications and Mobile
Computing, 2020.

[17] Boneh, D., Lynn, B., & Shacham, H. (2004). Short signatures
from the Weil pairing. Journal of cryptology, 17(4), 297-319.

[18] Kumar, K. A., Babu, R. M. H., Kalaivanan, S., & Kanimozhi, V.
(2020). Multiauditing Based Cloud Storage Using a Dynamic
Hash Table.

[19] Fan, Y., Lin, X., Tan, G., Zhang, Y., Dong, W., & Lei, J. (2019).
One secure data integrity verification scheme for cloud
storage. Future Generation Computer Systems, 96, 376-385.

[20] Phil, A., Marguerite, D., & Priya, K. (2002). Credit Card Analysis
of Czech Bank.
https://webpages.uncc.edu/mirsad/itcs6265/group1/domain.html.

[21] Shen, W., Qin, J., Yu, J., Hao, R., & Hu, J. (2018). Enabling
identity-based integrity auditing and data sharing with sensitive
information hiding for secure cloud storage. IEEE Transactions on
Information Forensics and Security, 14(2), 331-346.

[22] Wang, Q., Wang, C., Li, J., Ren, K., Lou, W., 2009. Enabling
public verifiability and data dynamics for storage security in cloud
computing. In: European Symposium on Research in Computer
Security. Springer, Berlin, Heidelberg, pp. 355–370

[23] Xu, Z., Wu, L., Khan, M. K., Choo, K. K. R., & He, D. (2017). A
secure and efficient public auditing scheme using RSA algorithm
for cloud storage. The Journal of Supercomputing, 73(12), 5285-
5309.

[24] Yu, Y., Xue, L., Au, M. H., Susilo, W., Ni, J., Zhang, Y., ... &
Shen, J. (2016). Cloud data integrity checking with an identity-
based auditing mechanism from RSA. Future Generation
Computer Systems, 62, 85-91.

Ghassan Sabeeh Mahmood received the B.Sc. degree in

computer science from University of Baghdad,

Iraq in 2002, Iraq and the M.Sc. degree in

School of Information Science and Engineering

from Central South University, China in 2015.

His research interests include security of cloud

computing.

Noor Hasan Hassoon received her

bachelor’s in computer science from Diyala

University, Iraq in 200, and master’s in

information technology form Universiti Tenaga

Nasional. Her research interests include LMS,

Cloud Computing and AI in education. she is

currently lecturer at Department of computer

science, College of Education for Pure Science, Diyala

University.

Hazim Noman Abed received his bachelor’s

in computer science from Diyala University,

Iraq in 2007, and master’s in information

technology from Universiti Tenga Nasional

(UNITEN). His major filed of research are semantic web,

Ontology, Knowledge representation, and cloud computing. He

is currently lecturer at Diyala University, College of science,

and Department of computer science

Baidaa Abdulrahman Jaleel received a

B.Sc. degree in computer science from the

University of Diyala, Iraq in 2007, Iraq, and

the M.Sc. degree in computer science from the

University of Diyala, Iraq in 2021. Her

research interests include cloud computing.

https://webpages.uncc.edu/mirsad/itcs6265/group1/domain.html

