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Abstract:   Alzheimer's disease is an advanced form of brain disorder that touches a person’ ability and disallows him to perform his 

daily tasks. Early diagnosis in this disease is important because it allows treatments that slow down its progression. A diagnostic 

indicator in patients with Alzheimer disease is the degree of generalized cerebral atrophy, revealed by MRI. The most important step in 

medical image diagnosis is image segmentation, which leads to precise extraction and classification. It relies on thresholding, based on 

the best threshold value detection that separates the background from the foreground. To estimate the best threshold value, Minimum 

Cross Entropy Thresholding is one of the well-known thresholding technique. To detect an optimal threshold that extracts the region 

reflecting the presence of the disease, we developed a novel segmentation algorithm for MRI images, using Pal method and based on a 

heterogeneous cross entropy thresholding technique. This technique consists of using a heterogeneous combination of 2 different 

statistical distributions to detect the optimal thresholding. On each image, we applied one type of distribution on the foreground and 

another on the background. We tried all the combinations between the statistical distributions Gaussian, Gamma, and Lognormal. Then, 

we confirmed validity of the proposed methodology, by using two benchmark of Alzheimer's disease images datasets, namely, OASIS-

1 and OASIS-2. The hybrid combination methodology achieved more accuracy in detection, compared to other homogeneous 

segmentation techniques. 
 

Keywords: Image Thresholding, Minimum Cross Entropy, PAL Method, Alzheimer MRI images, Heterogeneous Distribution. 

1. Introduction 

      Alzheimer's disease (AD) is a brain disorder, resulting 

in a loss of memory and an alteration in thinking and 

language skills. Early treatment is essential to postpone its 

consequences on patients, and to maintain a certain good 

level of life. AD prevalence has dramatically increased 

worldwide, from a reported 46.8 million patients affected 

in 2015, to a predicted 131.5 million patients with AD in 

2050 [3]. Hence, novel approaches are required to detect 

Alzheimer’s disease at the prodromal stages. One 

significant issue in MRI image processing is segmentation 

for diagnosis of AD. Image segmentation relies on 

thresholding [1], which is based on the detection of the 

best threshold value that separates the background from 

the foreground. Nevertheless, difficulty remains in 

determining the optimal threshold value. While many 

segmentation models have been proposed to find an 

optimal threshold, they follow homogeneous distributions 

technique. Thus, the goal of our work is to propose a new 

robust and reliable methodology, heterogeneous 

distributions based, to obtain an optimal thresholding 

system, that provides consistent diagnosis, and helps 

physicians to detect early the disease [4]. This 

methodology is based on Minimum Cross Entropy 

Thresholding technique [1] and uses heterogeneous  

distributions for the detection of the disease.  

The contributions in this paper are underlined as 

following:  

• Evolving an enhanced segmentation algorithm 

for accurate AD detection, based on the 

MCET technique, and using heterogeneous 

distributions,  

• Applying our methodology on two benchmark 

datasets (OASIS-1 and OASIS-2) of AD MRI 

images [12], 

• Comparing our heterogeneous methodology 

with the standard homogeneous ones, 

• Using the adequate performance measures to 

evaluate our enhanced methodology. 

The paper is organized as following: Section 2, studies the 

related work; Section 3, describes the cross entropy 

thresholding technique; Section 4, introduces the statistical 

distributions and their properties; Section 5, describes our 

proposed heterogeneous model, and the proposed 

algorithm; Section 6, explains the performance measures 

used in our study; Section 7, presents the experimental 

results; Section 8, concludes the paper, and proposes our 

future work. 

mailto:n.zreika@cityu.edu.lb
mailto:elzaart@bau.edu.lb
mailto:a.alshakik@bau.edu.lb


 

 

742                  Nancy Zreika:  A Hybrid Cross Entropy Thresholding for Early Alzheimer's Disease Detection 

 

 

http://journals.uob.edu.bh 
 

2. Related Work 

        Image segmentation is one of the most significant 

stages that make the computer-aided diagnosis (CAD) 

system reliable and effective, to be used by physicians. 

Several segmentation methods have been proposed to 

enhance AD detection, and improve diagnosis systems 

accuracy [5, 7, 8]. Li and Lee [1] proposed a new 

technique based on Minimum cross entropy thresholding 

technique (MCET), that optimizes the threshold value, and 

improves the segmentation. This technique provides better 

solutions for a large diversity of images that resolve NP-

hard segmentation problem. Another technique, using 

Particle Swarm Optimization (PSO) which is based on 

MCET technique has been proposed by Chakraborty [5]. 

Using a random forests classifier, Mishra [10] proposed a 

new classifier model, which detects a better segmentation 

in skin cancer images. Al-Osaimi and El-Zaart [7], used 

Gamma distribution to develop a new segmentation 

method, to estimate an optimal thresholding system. 

Similarly, El-Zaart [8], used Gamma distribution to 

develop an improved Pal-MCET technique for bi-level and 

multi-level segmentation, and he applied his enhanced 

method on Synthetic Aperture Radar images. Also, Tan 

[11] proposed a new algorithm based also on PSO 

clustering model, to improve the performance of skin 

images segmentation. However, most of the 

aforementioned models are based on homogeneous 

distributions technique, while our proposed HCET 

(Heterogeneous Cross Entropy Thresholding) presents a 

novel model that combines two different statistical 

distributions to detect an optimum threshold value. A brain 

disorder such as Alzheimer's disease, requires precise 

segmentation. This proposed technique provides a great 

optimization process. 

3. Image Segmentation and Thresholding 

Technique 

      Brain disorder identification is helped by image 

segmentation using the CAD systems, which can help 

physicians in patient treatment. The segmentation process 

guides the CAD system analysis to be accurate and 

reliable [11]. Some criteria are required to accomplish 

segmentation based on grouping image’s pixels [5]. 

Different segmentation methods have been suggested. 

These follow several thresholding methods to detect the 

optimum segmentation. They rely on finding optimal 

thresholding value by separating objects from their 

background. Minimum Cross Entropy Gaussian 

distribution based, is one of the well-known thresholding 

technique [1]. However, when the distribution of image 

pixels is non-symmetric, this type of distribution is 

ineffective. To enhance the AD thresholding, distributions 

such as Gamma, Lognormal, and Beta, offer more 

proficiency in identifying symmetric and non-symmetric 

distributions.  

Unlike the homogeneous distributions above, we used a 

hybrid model that combines between two statistical 

distributions, to provide a better image segmentation. The 

heterogeneous distributions used in our study are: 

Gamma/Gaussian, Gaussian/Gamma, Gamma/Lognormal, 

Lognormal/Gamma, Gaussian/Lognormal and 

Lognormal/Gaussian distributions. Note that the first 

distribution describes the object and the second describes 

the background. We applied our proposed hybrid 

thresholding technique on two benchmark MRI images 

datasets: OASIS-1 and OASIS-2 [12]. Then, we compared 

the results with those of the homogeneous distribution 

technique.  Accordingly, we obtained promising 

experimental results. 

A.   Cross Entropy Thresholding  

    To estimate the similarity of two statistical distributions, 

the cross-entropy term has been proposed [8]. Thus, the 

cross entropy measures the theoretic distance between two 

distributions, and it is defined as [14]: 

D(F , G)= ∑ fi . log (
fi 

gi 

L−1

i=0
)                                       (1) 

where F and G refer to the sources of information, fi and gi 

are the probabilistic distributions relative to these sources 

while L is to the number of information values.  

Mathematically, the resultant thresholded image 𝐼𝑡 (𝑥, 𝑦) is 

defined as:  

It (x,y)= { 
μO(0, t),           I (x, y) < t

μB(t + 1, L − 1),           I(x, y) ≥ t
                (2) 

 

where I (x, y) is the original image and t is the optimum 

threshold. 

In the thresholded image It, pixels are grouping into two 

classes: class1 = {0, 1, …, t-1} and class2 = {t, t+1, …, L-

1} where class1 represents the object and class2 represents 

the background.  

 

Figure 1 shows the object class and the background class 

of a histogram separated by a threshold line. 

 
Figure 1. An example showing the object class and the 

background class of a histogram separated by a threshold 

line. 

 

B.  Minimum Cross Entropy Thresholding 

    To estimate the optimal threshold t* of an image I, 

MCET minimizes the distance between the original image 
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I and the resultant segmented image It. Therefore, the 

optimal threshold t* will be as follows:  

 

t*=arg 𝑚𝑖𝑛𝑡 (𝐷 (𝐼, 𝐼𝑡)) =arg 𝑚𝑖𝑛𝑡(𝐷(𝑡))                            

(3) 

 

According to Li and Lee, the distance between (I) and (It) 

is defined as:   

D(I , It) =  ∑ i. h(i). log
i

μO

t

i=0
  + ∑ i. h(i). log

i

μB

L−1

i=t+1
      

(4) 

 

Where i counts from 1 till 255, h(i) refers the histogram, t 

is the threshold value, and μO and μB  are the mean values 

respectively of object and background regions in the 

original image.  

Brink and Pendock assumed that the objective function of 

Kullback is non-symmetric and they proposed a new 

theoretic distance based on a true symmetric cross entropy 

as follows [16]:  

D(F , G) = ∑ fi . log
fi 

gi 

L−1

i=0
+ ∑ gi . log

gi 

fi 

L−1

i=0
                  

(5) 

Exhaustively, the cross entropy DO(t) refers to the object 

region and DB(t) refers to the background region. 

DO(t)=  D(FO, GO) = ∑ fi
o log (

fi
o

gi
o) + ∑ gi

o log (
gi

o

fi
o )t

i=0
t
i=0    

(6) 

DB(t) = D(FB, GB) = ∑ fi
B log (

fi
B

gi
B) +L−1

i=t+1

∑ gi
B log (

gi
B

fi
B )L−1

i=t+1  (7)  

Thus, the total cross entropy is:       D(t) = DO(t)+ DB(t)        

(8) 

Hence, according to Brink, the total cross entropy 

becomes: 

D(I , It) =  ∑ i. h(i). log
i

μO

t

i=0
  + ∑ i. h(i). log

i

μB

L−1

i=t+1
  

+ ∑ μO. h(i). log
μO

i

t

i=0
  + ∑ μB. h(i). log

μB

i

L−1

i=t+1
            

(9) 

 

Pal used the symmetric distance defined by Brink and 

Pendock in the equations (6), (7), and (8), but he assumed 

that each pixel in the segmented image is modeled by a 

statistical distribution [15], and he used Poisson 

distribution (respectively gi
O =  

e−μO

i!
μO

i  and gi
B =  

e−μB

i!
μB

i ) 

to develop a cross entropy method that is more wide-

ranging than Li and Brink.  

Therefore, according to Pal, the total cross entropy is: 

D(I, It ) = ∑ fi
o log (

fi
o

gi
o) + ∑ gi

o log (
gi

o

fi
o )t

i=0
t
i=0 +

∑ fi
B log (

fi
B

gi
B) + ∑ gi

B log (
gi

B

fi
B )L−1

i=t+1
L−1
i=t+1                          (10) 

Where, fi
o  and fi

B are the probability distribution of pixels 

value in the object and background regions of the original 

image respectively, and calculated as follows:  

 fi
o =

ℎ(𝑖)

∑ ℎ(𝑖)𝑡−1
𝑖=0

                                                                 (11)              

 and           fi
𝐵 =

ℎ(𝑖)

∑ ℎ(𝑖)𝐿
𝑖=𝑡

                                                (12) 

And gi
o   and gi

B  are the probability distribution of pixels 

value in the object and background regions of the 

thresholded image respectively and estimated using 

Poisson distribution: gi
O =  

e−μO

i!
μO

i         (13)     and         

gi
B =

e−μB

i!
μB

i             (14) 

N. Zreika & El-Zaart [17] improved the work of Pal, by 

assuming that the pixels in the thresholded image could be 

modeled by other probabilistic distributions (i.e. Gamma, 

Gaussian or Lognormal). They applied their enhanced 

methods on bi-level skin lesion images, and achieved 

promising results.  

The previous mentioned methods are PAL Method based 

but they used only homogeneous distributions technique. 

Our goal in this paper has been to improve PAL Method 

more and more, by using heterogeneous distributions 

technique which combines two different statistical 

distributions. 

4. Probabilistic Distributions 

    A histogram graphs the pixels' distribution of an image. 

Basically, there are two types of distribution: symmetric 

and non-symmetric. Gaussian distribution deals better with 

the symmetric shape but leads to poor segmentation results 

in the non-symmetric shape, whereas Gamma and 

Lognormal distributions represent both symmetric and 

non-symmetric shapes. Next, we introduced an overall 

description of the probabilistic distributions used in our 

methodology.  

A. Gaussian Distribution 

           Gaussian distribution, represents a bell-shaped 

probability density curve. The following function 

represents Gaussian distribution [18]:  

   f(x, μ, σ ) =
1

σ√2π
e

−1

2
(

x−µ

σ
)

2

                         (15) 

Where x represents the pixel’s intensity level; σ is the 

standard deviation and μ is the mean. 

Gaussian distribution can only model symmetric 

distributions. Therefore, µ and σ are defined as it follows 

[9]: 

μ =
∑ i.h(i)L

i=0

∑ h(i)L
i=0

                                                  (16) 

σ2 =
∑ (i−μ)2.h(i)L

i=0

∑ h(i)L
i=0

                                         (17) 

And, the distribution means of the object and the 

background and their standard deviations using Gaussian 

distribution, are respectively:                 

  μ𝑂 =
∑ i.h(i)t−1

i=0

∑ h(i)t−1
i=0

                                        (18) 

 μ𝐵 =
∑ i.h(i)L

i=𝑡

∑ h(i)L
i=t

                                          (19)  

σ𝑂
2 =

∑ (i−μ)2.h(i)𝑡−1
i=0

∑ h(i)𝑡−1
i=0

                                    (20) 

 and  σ𝐵
2 =

∑ (i−μ)2.h(i)L
i=𝑡

∑ h(i)L
i=𝑡

                            (21)                                                                                                                                            
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B.   Lognormal Distribution 

     Lognormal distribution, whose logarithm is normally 

distributed, is a continuous probability distribution of a 

random variable. It models symmetric and moderate 

positively skewed distributions. The function of 

Lognormal distribution is defined as [19]: 

f(x, μ, σ) =
1

xσ√2π
e

−1

2
(

lnx−µ

σ
)

2

                   (22) 

Where x is the pixel’s intensity level. 

µ and σ are defined as it follows: 

 μ =
∑ ln(i).h(i)L

i=0

∑ h(i)L
i=0

                                      (23) 

 σ2 =
∑ (ln (i)−μ)2.h(i)L

i=0

∑ h(i)L
i=0

                             (24) 

Therefore, the distribution means of the object and the 

background and their standard deviations using Lognormal 

distribution, are respectively 

μ𝑂 =
∑ ln(i).h(i)t−1

i=0

∑ h(i)t−1
i=0

                                                (25) 

μ𝐵 =
∑ ln(i).h(i)L

i=t

∑ h(i)L
i=t

                                                 (26) 

σ𝑂
2 =

∑ (ln (i)−μ)2.h(i)t−1
i=0

∑ h(i)t−1
i=0

                                         (27) 

σ𝐵
2 =

∑ (ln (i)−μ)2.h(i)L
i=t

∑ h(i)L
i=t

                                          (28) 

C.    Gamma Distribution 

      In statistics and probability theory, Gamma 

distribution stands to a continuous probability distribution 

of two parameters. Gamma distributions performs well in 

symmetric and non-symmetric histograms. The shape of 

Gamma distribution function can be varied from 

symmetric to asymmetric according to the shape parameter 

N. Gamma distribution function is defined by [20,21]: 

 f(x, μ, N) =
2q

μ

NN

Γ(N)
(

qx

μ
)2N−1e

−N(
qx

μ
)

2

              (29) 

Where  𝑞 =
Γ(N+0.5)

√N Γ(N)
, x is the intensity of the pixel and N is 

the shape parameter of the distribution. Therefore, µ is 

estimated as following: 

 µ2 =
∑ h(i).i2.q2L

i=0

∑ h(i)L
i=0

                                               (30) 

And, object mean and background mean using Gamma 

distribution, are respectively   

μ𝑂
2 =

∑ h(i).i2.q2𝑡−1
i=0

∑ h(i)t−1
i=0

                                                (31) 

μ𝐵
2 =

∑ h(i).i2.q2L
i=t

∑ h(i)L
i=𝑡

                                                 (32) 

 

5.   The proposed Hybrid Methodology 

       The main contribution of this study is a 

Heterogeneous Cross Entropy Thresholding methodology, 

based on PAL-MCET algorithm [15], and using 

heterogeneous statistical distributions. The proposed 

methods are described as it follows: 

We considered that AD MRI image is a compound of two 

different distributions, one describing the object region, 

and another describing the background region. These 

distributions are varying between Gamma, Gaussian, and 

Lognormal. Therefore,  μO  (𝑡) and μB  (𝑡) are estimated 

from two different distributions according to the assessed 

region. Hence, the histogram of the image is written as 

follow: 

ℎ(𝑥)= PO∗𝑑𝑖𝑠𝑡1(𝑥, µO(t)) + PB ∗𝑑𝑖𝑠𝑡2(𝑥, µB(𝑡))             

(33)                                           

such that, 𝑑𝑖𝑠𝑡1(𝑥, µO(t)) is the distribution type applied 

on the object region and 𝑑𝑖𝑠𝑡2(𝑥, µB(𝑡)) is the distribution 

type applied on the background region. 

Algorithm 1 presents the proposed PAL-HCET algorithm 

based on MCET using a heterogeneous distributions 

combination. The algorithm reads the original image and 

computes its histogram in line 1. Then, it works on each 

image histogram point (i.e. [0, 255]) to compute µO(t) , 

µB(t) , gi
O, gi

B, DO(t), DB(t) and D(t) using the different 

combinations of distributions. The object region average µO(t) 

and the background region average µB(t) are calculated using 

homogeneous distributions (lines 2.1-2.2-2.3) and 

heterogeneous distributions (lines 2.4 – 2.9). In homogeneous 

distributions, one type of distribution is applied on both 

object and background regions; while in heterogeneous 

distributions, one type of distribution is applied on the object 

region and a different type on the background region. All the 

possible combinations of our suggested distributions 

(Gaussian-Lognormal-Gamma) are used. Then, the algorithm 

calculates the corresponding , gi
O, gi

B, DO(t), DB(t) and D(t) 

and it searches the best threshold which minimize the distance 

D(t) for each of the nine combinations. Finally, the algorithm 

returns nine optimum thresholds relative to the nine 

combinations of distributions. 

 

Proposed Algorithm: PAL-HCET Algorithm 

Input: image I (x, y)       //the original image 

Processing: 

1. Compute histogram h(i) of the input image, where pixels 

value counts from 0 till 255.  

2. for each value of threshold t=0, ..., 255  

2.1. Compute µO(t) and µB(t) using Equations (18) and 

(19) 

2.2. Compute µO(t) and µB(t) using Equations (25) and 

(26) 

2.3. Compute µO(t) and µB(t) using Equations (31) and 

(32) 

2.4. Compute µO(t) and µB(t) using Equations (18) and 

(26) 

2.5. Compute µO(t) and µB(t) using Equations (18) and 

(32) 

2.6. Compute µO(t) and µB(t) using Equations (25) and 

(19) 

2.7. Compute µO(t) and µB(t) using Equations (25) and 

(32) 

2.8. Compute µO(t) and µB(t) using Equations (31) and 

(19) 

2.9. Compute µO(t) and µB(t) using Equations (31) and 

(26) 

2.10. Compute gi
o and gi

B based on the different 

combinations listed above (lines 2.1-2.9) and using 

respectively the heterogeneous combinations 

between the Equations (15-22-29). 
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2.11. Compute the cross entropies of the object and the 

background, DO(t) and DB(t), for all the 

combinations listed above, using equations (6) and 

(7). 

2.12. Compute D(t) =DO(t)+DB(t) for all the 

combinations using the equation (8). 

2.13. Search the minimum cross entropy which 

minimizes the distance D(t) and its corresponding 

threshold. 

                        If (min > D(t)) 

                                { 

                            min = D(t) ;   

                                 } 

3. Output: optimal thresholds relative to nine 

combinations : t1*, t2*, t3*, t4*, t5*, t6*, t7*, t8*, t9* 

6.     Experimental Results and Discussion 

       In this work, we propose a hybrid segmentation 

technique by using heterogeneous distributions, and 

compare it to the benchmark techniques using 

homogeneous distribution. All the methods compared 

together are PAL Method based. We evaluate the 

performance of our proposed methods by testing them 

using two benchmark OASIS Brain datasets released by 

the Open Access Series of Imaging Studies (OASIS), and 

contains MRI data in Demented and Non Demented Older 

Adults. OASIS-1 is a dataset of cross-sectional MRI data, 

enclosing 434 scan sessions across 416 different subjects. 

It was made available in 2007. OASIS-2 is a dataset of 

longitudinal MRI data, enclosing 373 scan sessions across 

150 subjects, which was made available in 2010 [12].  

        To evaluate the segmentation proficiency, we used 2 

metrics: Image Uniformity (UN) and Region Contrast 

(RC) [6].  

UN defines the region homogeneity in the image, and it is 

defined as follow:  

UN(t) = 1- 
σO

2 (t)+σB
2 (t)

C
                 (34) 

where σO
2 (t) and σB

2 (t) are the respective variances of the 

object and background regions, and  

C =  
(gmax−gmin)2

2
                     (35)  

gmax and gmin refers to the maximum and minimum gray 

levels values.  

UN ranges between the values 0 and 1. A value of 1 

belongs to a perfect segmentation while a value of 0 

belongs to a bad segmentation. 

RC detects the presence of high contrast across adjacent 

regions in the thresholded image. The thresholded image 

shows a better quality when the region contrast is higher. 

The region contrast is defined as [6]:  

RC(t) =
|μO(t)−μB(t)|

μO(t)+μB(t)
       (36) 

Where μO and μB are respectively the mean values of the 

foreground and the background regions. The value of RC 

ranges between the values 0 and 1. A value of 1 refers to a 

perfect segmentation while a value of 0 refers to a bad 

segmentation. 

The arithmetic average of UN and RC is represented by 

AVG, where AVG =  
UN+RC

2
       (37) 

           Tables 1, 2 and 3 show the segmentation results of 

10 images selected from the two datasets after applying 

the proposed HCET methods. The following tables show 

the optimal threshold obtained and study the performance 

measures for each method. 

Table 1 shows the results of segmentation obtained using 

HCET-Gamma/Gaussian, HCET-Gaussian/Gamma, 

MCET-Gamma and MCET-Gaussian.  

Table 2 shows the results of segmentation obtained using 

HCET-Gamma/Lognormal and HCET-Lognormal 

/Gamma and then compared with MCET-Gamma and 

MCET- Lognormal.  

Table 3 shows the performance measures and the threshold 

values obtained using HCET-Gaussian/Lognormal and 

HCET-Lognormal/Gaussian and then compared with 

MCET-Lognormal and MCET-Gaussian.  

We notice that resulted thresholds for a particular image 

are distributed in a wide range, since the histogram is 

multimodal and the original images have low contrast. 

Tables 4, 5 and 6 show a statistical study on all the images 

of the two datasets, the performance metrics: UN, RC and 

AVG, and the percentage of images ranked first for each 

method respectively according to UN, RC and AVG.  

In table 4, for UN measure, HCET Gaussian-Gamma got 

first rank for 90% of all the images, MCET Gamma got 

first rank for only 5% of all the images, and each of 

MCET Gaussian and HCET Gamma-Gaussian got first 

rank for only 2.5% of all the images. 

For RC measure, HCET Gamma-Gaussian got first rank 

for 55% of all the images, MCET Gaussian got first rank 

for only 37.5% of all the images, HCET Gaussian-Gamma 

got first rank for only 4% of all the images, and MCET 

Gamma got first rank for only 2.5% of all the images. 

For AVG measure, HCET Gamma-Gaussian got first rank 

for 80% of all the images, HCET Gaussian-Gamma got 

first rank for only 15% of all the images, and each of 

MCET Gaussian and MCET Gamma got first rank for 

only 2.5% of all the images. 

In table 5, for UN measure, HCET Lognormal-Gamma got 

first rank for 70% of all the images, MCET Gamma got 

first rank for 5% of the images, and each of MCET 

Gamma-Lognormal and MCET Lognormal got first rank 

for only 2.5% of all the images. 

For RC measure, MCET Lognormal got first rank for 65% 

of all the images, HCET Gamma-Lognormal got first rank 

for 30% of all the images, and each of MCET Gamma and 

HCET Lognormal-Gamma got first rank for only 2.5% of 

all the images. 

For AVG measure, MCET Lognormal got first rank for 

65% of all the images, HCET Gamma-Lognormal got first 

rank for 30% of all the images, and each of MCET 

Gamma and HCET Lognormal-Gamma got first rank for 

only 2.5% of all the images. 

In table 6, for UN measure, MCET Lognormal got first 

rank for 92.5% of all the images and each of the following 

methods: MCET Gaussian, HCET Gaussian-Lognormal 

and HCET Lognormal-Gaussian got first rank for only 

2.5% of all the images. 
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For RC measure, HCET Gaussian-Lognormal got first 

rank for 90% of all the images, HCET Lognormal-

Gaussian got first rank for 5% of all the images, and each 

of MCET Gaussian and MCET Lognormal got first rank 

for only 2.5% of all the images. 

For AVG measure, HCET Gaussian-Lognormal got first 

rank for 85% of all the images, HCET Lognormal-

Gaussian got first rank for 10% of all the images, and each 

of MCET Gaussian and MCET Lognormal got first rank 

for only 2.5% of all the images. 

Table 7 shows a Comparison between the 9 methods 

MCET-Gamma, MCET-Gaussian, MCET-Lognormal, 

HCET-Gamma/Gaussian, HCET-Gaussian/Gamma, 

HCET-Gamma/Lognormal, HCET-Lognormal/Gamma, 

HCET-Gaussian/Lognormal, and HCET-

Lognormal/Gaussian. 

For UN measure, HCET Gaussian-Lognormal got first 

rank for 81% of all the images, HCET Gamma-Gaussian 

got first rank for 16% of all the images and Gamma-

Lognormal got first rank for 2.5% of all the images. 

For RC measure, HCET Gaussian-Lognormal got first 

rank for 84% of all the images, HCET Gamma-Gaussian 

got first rank for 6.5% of all the images and Lognormal-

Gaussian got first rank for 4% of all the images. 

For AVG measure, HCET Lognormal-Gamma got first 

rank for72% of all the images, HCET Gaussian-Gamma 

got first rank for 18% of all the images, and each of 

MCET Lognormal got first rank for 6% of all the images. 

 

Table 1. Performance Measures: MCET-Gamma, MCET-Gaussian, HCET-Gamma/Gaussian and HCET-Gaussian/Gamma.

Image Method Threshold UN UN/Rank RC RC/Rank AVG AVG/Rank 

OAS1-0002 MCET Gamma 69 0.92457 2 0.54131 3 0.73294 2 

  MCET Gaussian 52 0.89112 4 0.56519 2 0.72816 3 

  HCET Gamma-Gaussian 64 0.92050 3 0.56765 1 0.74407 1 

  HCET Gaussian-Gamma 80 0.93160 1 0.51839 4 0.72500 4 

OAS1-0010 MCET Gamma 61 0.91417 2 0.57719 3 0.74568 3 

  MCET Gaussian 51 0.89354 4 0.59364 2 0.74359 4 

  HCET Gamma-Gaussian 59 0.91291 3 0.59449 1 0.75370 1 

  HCET Gaussian-Gamma 70 0.92045 1 0.57439 4 0.74742 2 

OAS1-0020 MCET Gamma 72 0.93169 1 0.51819 3 0.72494 2 

  MCET Gaussian 55 0.89660 4 0.53615 1 0.71638 4 

  HCET Gamma-Gaussian 68 0.92948 3 0.52814 2 0.72881 1 

  HCET Gaussian-Gamma 72 0.93169 1 0.51819 3 0.72494 2 

OAS1-0050 MCET Gamma 76 0.91987 2 0.53608 2 0.72798 2 

  MCET Gaussian 66 0.91112 4 0.52552 3 0.71832 4 

  HCET Gamma-Gaussian 70 0.91603 3 0.55067 1 0.73335 1 

  HCET Gaussian-Gamma 83 0.92284 1 0.52152 4 0.72218 3 

OAS1-0100 MCET Gamma 64 0.91652 1 0.57732 4 0.74692 4 

  MCET Gaussian 44 0.89634 4 0.60573 1 0.75103 2 

  HCET Gamma-Gaussian 63 0.91578 2 0.57900 3 0.74739 3 

  HCET Gaussian-Gamma 48 0.90126 3 0.60141 2 0.75133 1 

OAS2-0009 MCET Gamma 73 0.92551 2 0.52077 3 0.72314 2 

  MCET Gaussian 59 0.90390 4 0.53891 1 0.72141 3 

  HCET Gamma-Gaussian 71 0.92427 3 0.52582 2 0.72504 1 

  HCET Gaussian-Gamma 84 0.93077 1 0.49565 4 0.71321 4 

OAS2-0014 MCET Gamma 67 0.91671 2 0.55977 3 0.73824 2 

  MCET Gaussian 53 0.89060 4 0.57657 1 0.73359 3 

  HCET Gamma-Gaussian 63 0.91364 3 0.57149 2 0.74256 1 

  HCET Gaussian-Gamma 83 0.92586 1 0.51773 4 0.72179 4 

OAS2-0021 MCET Gamma 71 0.91377 2 0.56833 3 0.74105 2 

  MCET Gaussian 54 0.88326 4 0.56921 2 0.72624 4 

  HCET Gamma-Gaussian 64 0.90722 3 0.58104 1 0.74413 1 

  HCET Gaussian-Gamma 80 0.92030 1 0.55203 4 0.73617 3 

OAS2-0098 MCET Gamma 67 0.90952 1 0.59762 3 0.75357 3 

  MCET Gaussian 45 0.87762 4 0.57169 4 0.72466 4 

  HCET Gamma-Gaussian 61 0.90459 2 0.60816 2 0.75638 2 

  HCET Gaussian-Gamma 52 0.89519 3 0.62300 1 0.75910 1 

OAS2-0102 MCET Gamma 70 0.91016 2 0.57761 2 0.74389 2 



 

 

 Int. J. Com. Dig. Sys. 12, No.1, 741-755 (Sep-2022)                747 

 

 

http://journals.uob.edu.bh 
 

  MCET Gaussian 47 0.87079 4 0.55499 4 0.71289 4 

  HCET Gamma-Gaussian 64 0.90402 3 0.58678 1 0.74540 1 

  HCET Gaussian-Gamma 73 0.91244 1 0.57360 3 0.74302 3 

 

 

Table 2. Performance Measures: MCET-Gamma, MCET-Lognormal, HCET-Gamma/Lognormal and HCET-

Lognormal/Gamma. 

 

Image Method Threshold UN UN/Rank RC RC/Rank AVG AVG/Rank 

OAS1-0002 MCET Gamma 69 0.92457 3 0.54131 2 0.73294 2 

  MCET Lognormal 97 0.93754 1 0.48559 4 0.71156 4 

  HCET Gamma-Lognormal 66 0.92215 4 0.54816 1 0.73515 1 

  HCET Lognormal-Gamma 80 0.93160 2 0.51839 3 0.72500 3 

OAS1-0010 MCET Gamma 61 0.91417 1 0.57719 2 0.74568 2 

  MCET Lognormal 51 0.90645 4 0.60439 1 0.75542 1 

  HCET Gamma-Lognormal 61 0.91417 1 0.57719 2 0.74568 2 

  HCET Lognormal-Gamma 61 0.91417 1 0.57719 2 0.74568 2 

OAS1-0020 MCET Gamma 72 0.93169 3 0.51819 1 0.72494 1 

  MCET Lognormal 77 0.93387 1 0.50650 3 0.72018 3 

  HCET Gamma-Lognormal 72 0.93169 3 0.51819 1 0.72494 1 

  HCET Lognormal-Gamma 77 0.93387 1 0.50650 3 0.72018 3 

OAS1-0050 MCET Gamma 76 0.91987 2 0.53608 1 0.72798 1 

  MCET Lognormal 85 0.92343 1 0.51762 3 0.72052 3 

  HCET Gamma-Lognormal 76 0.91987 2 0.53608 1 0.72798 1 

  HCET Lognormal-Gamma 85 0.91310 4 0.51762 3 0.71536 4 

OAS1-0100 MCET Gamma 64 0.91652 1 0.57732 4 0.74692 4 

  MCET Lognormal 48 0.90126 4 0.60141 1 0.75133 1 

  HCET Gamma-Lognormal 63 0.91578 2 0.57900 3 0.74739 3 

  HCET Lognormal-Gamma 58 0.91154 3 0.58724 2 0.74939 2 

OAS2-0009 MCET Gamma 73 0.92551 4 0.52077 1 0.72314 1 

  MCET Lognormal 90 0.93235 1 0.48307 4 0.70771 4 

  HCET Gamma-Lognormal 78 0.92838 3 0.50837 2 0.71837 2 

  HCET Lognormal-Gamma 84 0.93077 2 0.49565 3 0.71321 3 

OAS2-0014 MCET Gamma 67 0.91671 2 0.55977 3 0.73824 3 

  MCET Lognormal 58 0.90966 4 0.58554 1 0.74760 1 

  HCET Gamma-Lognormal 63 0.91364 3 0.57149 2 0.74256 2 

  HCET Lognormal-Gamma 81 0.92500 1 0.52261 4 0.72381 4 

OAS2-0021 MCET Gamma 71 0.91377 3 0.56833 2 0.74105 2 

  MCET Lognormal 80 0.92030 2 0.55203 3 0.73617 3 

  HCET Gamma-Lognormal 67 0.91032 4 0.57528 1 0.74280 1 

  HCET Lognormal-Gamma 81 0.92092 1 0.55014 4 0.73553 4 

OAS2-0098 MCET Gamma 67 0.90952 1 0.59762 4 0.75357 4 

  MCET Lognormal 52 0.89519 4 0.62308 1 0.75914 1 

  HCET Gamma-Lognormal 62 0.90545 2 0.60649 2 0.75597 2 

  HCET Lognormal-Gamma 62 0.90545 2 0.60649 2 0.75597 2 

OAS2-0102 MCET Gamma 70 0.91016 2 0.57761 3 0.74389 3 

  MCET Lognormal 55 0.89300 4 0.60024 1 0.74662 1 

  HCET Gamma-Lognormal 64 0.90402 3 0.58678 2 0.74540 2 
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  HCET Lognormal-Gamma 82 0.91902 1 0.55954 4 0.73928 4 

 
 

Table 3. Performance Measures: MCET-Gaussian, MCET-Lognormal, HCET-Gaussian/Lognormal and HCET-
Lognormal/Gaussian. 

Image Method Threshold UN UN/Rank RC RC/Rank AVG AVG/Rank 

OAS1-0002 MCET Gaussian 52 0.89112 4 0.56519 3 0.72816 3 

  MCET Lognormal 97 0.93754 1 0.48559 4 0.71156 4 

  HCET Gaussian-Lognormal 45 0.90063 3 0.59650 1 0.74857 1 

  HCET Lognormal-Gaussian 52 0.90896 2 0.58028 2 0.74462 2 

OAS1-0010 MCET Gaussian 51 0.89354 4 0.59364 4 0.74359 4 

  MCET Lognormal 51 0.90645 1 0.60439 2 0.75542 2 

  HCET Gaussian-Lognormal 43 0.89823 3 0.62602 1 0.76212 1 

  HCET Lognormal-Gaussian 51 0.90645 1 0.60439 2 0.75542 2 

OAS1-0020 MCET Gaussian 55 0.89660 4 0.55615 2 0.72638 3 

  MCET Lognormal 77 0.93387 1 0.50650 4 0.72018 4 

  HCET Gaussian-Lognormal 49 0.91391 3 0.58059 1 0.74725 1 

  HCET Lognormal-Gaussian 68 0.92948 2 0.52814 3 0.72881 2 

OAS1-0050 MCET Gaussian 66 0.91112 3 0.52552 3 0.71832 4 

  MCET Lognormal 85 0.92343 1 0.51762 4 0.72052 3 

  HCET Gaussian-Lognormal 55 0.90295 4 0.58845 1 0.74570 1 

  HCET Lognormal-Gaussian 66 0.91310 2 0.56060 2 0.73685 2 

OAS1-0100 MCET Gaussian 44 0.89634 3 0.60573 1 0.75103 3 

  MCET Lognormal 48 0.90126 2 0.60141 2 0.75133 2 

  HCET Gaussian-Lognormal 46 0.88722 4 0.56956 4 0.72839 4 

  HCET Lognormal-Gaussian 51 0.90844 1 0.59985 3 0.75414 1  

OAS2-0009 MCET Gaussian 59 0.90390 4 0.53891 3 0.72141 3 

  MCET Lognormal 90 0.93235 1 0.48307 4 0.70771 4 

  HCET Gaussian-Lognormal 59 0.91498 2 0.55854 1 0.73676 1 

  HCET Lognormal-Gaussian 59 0.91498 2 0.55854 1 0.73676 1 

OAS2-0014 MCET Gaussian 53 0.89060 4 0.57657 4 0.73359 4 

  MCET Lognormal 58 0.90966 1 0.58554 3 0.74760 3 

  HCET Gaussian-Lognormal 47 0.89926 3 0.61658 1 0.75792 1 

  HCET Lognormal-Gaussian 53 0.90521 2 0.59995 2 0.75258 2 

OAS2-0021 MCET Gaussian 54 0.88326 4 0.56921 2 0.72624 4 

  MCET Lognormal 80 0.92030 1 0.55203 4 0.73617 3 

  HCET Gaussian-Lognormal 50 0.88911 3 0.60979 1 0.74945 1 

  HCET Lognormal-Gaussian 71 0.91377 2 0.56833 3 0.74105 2 

OAS2-0098 MCET Gaussian 45 0.87762 4 0.57169 4 0.72466 4 

  MCET Lognormal 52 0.89519 1 0.62308 3 0.75914 3 

  HCET Gaussian-Lognormal 44 0.88338 3 0.63561 1 0.75949 1 

  HCET Lognormal-Gaussian 51 0.89395 2 0.62468 2 0.75931 2 

OAS2-0102 MCET Gaussian 47 0.87079 4 0.55499 4 0.71289 4 

  MCET Lognormal 55 0.89300 1 0.60024 3 0.74662 2 

  HCET Gaussian-Lognormal 45 0.87768 3 0.61349 1 0.74559 3 

  HCET Lognormal-Gaussian 52 0.88894 2 0.60434 2 0.74664 1 

 

Table 4. Performance Measures Evaluation for the 4 Methods: MCET-Gamma, MCET-Gaussian, HCET-

Gamma/Gaussian and HCET-Gaussian/Gamma. 

Method %UN %RC %AVG 

MCET Gamma 5% 2.5% 2.5% 

MCET Gaussian 2.5% 37.5% 2.5% 

HCET Gamma-Gaussian 2.5% 55% 80% 

HCET Gaussian-Gamma 90% 4% 15% 
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Table 5. Performance Measures Evaluation for the 4 Methods: MCET-Gamma, MCET-Lognormal, HCET-
Gamma/Lognormal and HCET-Lognormal/Gamma. 

Method %UN %RC %AVG 

MCET Gamma 5.0% 2.5% 2.5% 

MCET Lognormal 2.5% 65.0% 65.0% 

HCET Gamma-Lognormal 2.5% 30.0% 30.0% 

HCET Lognormal-Gamma 70.0% 2.5% 2.5% 

 
Table 6. Performance Measures Evaluation for the 4 Methods: MCET-Gaussian, MCET-Lognormal, HCET-

Gaussian/Lognormal and HCET-Lognormal/Gaussian. 

Method %UN %RC %AVG 

MCET Gaussian 2.5% 2.5% 2.5% 

MCET Lognormal 92.5% 2.5% 2.5% 

HCET Gaussian-Lognormal 2.5% 90.0% 85.0% 

HCET Lognormal-Gaussian 2.5% 5.0% 10.0% 

 
Table 7. Comparison between the 9 methods (Homogeneous and Heterogeneous Distributions based): MCET-Gamma, MCET-

Gaussian, MCET-Lognormal, HCET-Gamma/Gaussian, HCET-Gaussian/Gamma, HCET-Gamma/Lognormal, HCET-

Lognormal/Gamma, HCET-Gaussian/Lognormal, and HCET-Lognormal/Gaussian. 

Method %UN UN/Rank %RC RC/Rank %AVG AVG/Rank 

MCET Gamma 0.30% 7 0.00% 7 0.10% 6 

MCET Gaussian 0.10% 8 0.00% 7 0.00% 9 

MCET Lognormal 6.00% 3 3.50% 4 1.00% 4 

HCET Gamma-Gaussian 1.00% 5 6.50% 2 16.00% 2 

HCET Gaussian-Gamma 18.00% 2 0.00% 7 0.10% 6 

HCET Gamma-Lognormal 1.50% 4 1.00% 5 1.50% 3 

HCET Lognormal-Gamma 72.00% 1 1.00% 5 0.10% 6 

HCET Gaussian-Lognormal 1.00% 5 84.00% 1 81.00% 1 

HCET Lognormal-Gaussian 0.10% 8 4.00% 3 0.20% 5 

 
 

Figure 2, Figure 3, Figure 4 and Figure 5 show a sample of tested images and their resulting segmentation using our 

enhanced methodology. Each figure contains the original image (a), the thresholded images respectively resulting from 

MCET-Gamma (b), MCET-Gaussian (c), MCET- Lognormal (d), HCET- Gamma/Gaussian (e), HCET- 

Gaussian/Gamma(f), HCET- Gamma/Lognormal (g), HCET-Lognormal/Gamma (h), HCET- Gaussian/Lognormal (i), 

HCET-Lognormal/Gaussian (j). The graph (k) shows the histogram of the image, and the value of thresholds found in 

each method (l).  
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 (a)  (b)    (c)  (d)  (e) 

 (f)   (g)   (h)   (i)  (j) 

(k)                                                                                                                            

 

 

(l) 

(b) MCET-Gamma         T=72 

(c) MCET-Gaussian      T=55 

(d) MCET-Lognormal      T=77 

(e) HCET-Gamma/Gaussian        T=68 

(f) HCET-Gaussian/Gamma        T=72 

(g) HCET-Gamma/Lognormal      T=72 

 (h) HCET-Lognormal/Gamma     T=77 

(i) HCET-Gaussian/Lognormal    T=49 

(j) HCET-Lognormal/Gaussian   T=68 

 

 

Figure 1. (a)Original Image OAS1-0020. (b) Segmented Image using MCET-Gamma.  (c) Segmented Image using 
MCET-Gaussian. (d) Segmented Image using MCET-Lognormal. (e) Segmented Image using HCET- Gamma/Gaussian. 
(f) Segmented Image using HCET- Gaussian/Gamma. (g) Segmented Image using HCET- Gamma/Lognormal. (h) 
Segmented Image using HCET-Lognormal/Gamma. (i) Segmented Image using HCET- Gaussian/Lognormal. (j) 
Segmented Image using HCET-Lognormal/Gaussian. (k) Histogram of OAS1-0020 image. (l) The threshold value found 
in each method. 
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 (a)  (b)    (c)  (d)  (e) 

 (f)   (g)   (h)   (i)  (j) 

 (k)                                                                                                                            

 

 

(l) 

(b) MCET-Gamma         T=64 

(c) MCET-Gaussian      T=44 

(d) MCET-Lognormal      T=48 

(e) HCET-Gamma/Gaussian        T=63 

(f) HCET-Gaussian/Gamma        T=48 

(g) HCET-Gamma/Lognormal      T=46 

 (h) HCET-Lognormal/Gamma     T=58 

(i) HCET-Gaussian/Lognormal    T=46 

(j) HCET-Lognormal/Gaussian   T=51 

 

 

Figure 2. (a)Original Image OAS1-0100. (b) Segmented Image using MCET-Gamma.  (c) Segmented Image using 
MCET-Gaussian. (d) Segmented Image using MCET-Lognormal. (e) Segmented Image using HCET- Gamma/Gaussian. 
(f) Segmented Image using HCET- Gaussian/Gamma. (g) Segmented Image using HCET- Gamma/Lognormal. (h) 
Segmented Image using HCET-Lognormal/Gamma. (i) Segmented Image using HCET- Gaussian/Lognormal. (j) 
Segmented Image using HCET-Lognormal/Gaussian. (k) Histogram of OAS1-0100 image. (l) The threshold value found 
in each method. 
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(a) (b) (c) (d) (e) 

(f)  (g)  (h)  (i) (j) 

(k) 

 
 

(l) 

(b) MCET-Gamma         T=73 

(c) MCET-Gaussian      T=59 

(d) MCET-Lognormal      T=90 

(e) HCET-Gamma/Gaussian        T=71 

(f) HCET-Gaussian/Gamma        T=84 

(g) HCET-Gamma/Lognormal      T=78 

 (h) HCET-Lognormal/Gamma     T=84 

(i) HCET-Gaussian/Lognormal    T=59 

(j) HCET-Lognormal/Gaussian   T=59 

 

 

Figure 3. (a)Original Image OAS2-0009. (b) Segmented Image using MCET-Gamma.  (c) Segmented Image using 
MCET-Gaussian. (d) Segmented Image using MCET-Lognormal. (e) Segmented Image using HCET- Gamma/Gaussian. 
(f) Segmented Image using HCET- Gaussian/Gamma. (g) Segmented Image using HCET- Gamma/Lognormal. (h) 
Segmented Image using HCET-Lognormal/Gamma. (i) Segmented Image using HCET- Gaussian/Lognormal. (j) 
Segmented Image using HCET-Lognormal/Gaussian. (k) Histogram of OAS2-0009 image. (l) The threshold value found 
in each method. 
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 (a)  (b)  (c)  (d) (e)   

 (f)  (g) 

 

(h)  

  

(i)   (j)   

(k)                                               

 
 

(l) 

(b) MCET-Gamma         T=70 

(c) MCET-Gaussian      T=47 

(d) MCET-Lognormal      T=80 

(e) HCET-Gamma/Gaussian        T=64 

(f) HCET-Gaussian/Gamma        T=73 

(g) HCET-Gamma/Lognormal      T=64 

 (h) HCET-Lognormal/Gamma     T=82 

(i) HCET-Gaussian/Lognormal    T=45 

(j) HCET-Lognormal/Gaussian   T=52 
 

 

Figure 4. (a)Original Image OAS2-0102. (b) Segmented Image using MCET-Gamma.  (c) Segmented Image using 
MCET-Gaussian. (d) Segmented Image using MCET-Lognormal. (e) Segmented Image using HCET- Gamma/Gaussian. 
(f) Segmented Image using HCET- Gaussian/Gamma. (g) Segmented Image using HCET- Gamma/Lognormal. (h) 
Segmented Image using HCET-Lognormal/Gamma. (i) Segmented Image using HCET- Gaussian/Lognormal. (j) 
Segmented Image using HCET-Lognormal/Gaussian. (k) Histogram of OAS2-0102 image. (l) Threshold value found in 
each method. 

7. Conclusion and Future Work: 

                This work proposed a new performed 

segmentation method based on MCET technique, defined 

by PAL and using heterogeneous statistical distributions to 

find best segmentation for MRI AD images. The efficiency 

of the proposed methodology is tested using two Oasis 

Brain datasets [12]. As shown, the suggested 

Heterogeneous Cross Entropy Thresholding methods 

(PAL-HCET) using the combination Gaussian/Lognormal 

empirically outperformed other homogeneous 

segmentation methods.  

The result of the experiment, in Table 7, shows that 81% of 

the tested images are better segmented using the 

heterogeneous combination of statistical distributions 

Gaussian-Lognormal, also around 99% of the tested 

images confirmed that AD images histogram is a 

combination of heterogeneous distributions.  

Therefore, the proposed Heterogeneous Cross Entropy 

Thresholding model is a robust model and surpasses the 

other classical segmentation methods. 

Future work will aim to cover other domains such as, skin 

cancer images, radar images, industrial images, and 

satellite images. Moreover, we will extend PAL-HCET 

contribution to include multi-level images.  
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