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Abstract: In this paper, a variable-length conditional counter algorithm is proposed to count or add the partial products of serial 

multiplier circuits for minimizing computational delay. The proposed variable-length conditional counter enables optimizing critical 

path delay and improving its slack time at different input frequencies. The evaluation of the slack time of any circuit is essential to 

estimate the highest frequency of operation. In this work, the slack time of the proposed architecture is computed and compared with 

the related work. The result shows that slack time is higher as compared to the existing circuit, which implies that the proposed 

architecture of the serial multiplier operates at high frequency. The proposed variable-length conditional counter design and its serial 

multiplier architecture of 8, 16, 32 and 64-bit has been designed using Verilog HDL. The simulation of the proposed design has been 

done on the mentor Graphics EDA Tool. The physical layout design of the proposed 8-bit multiplier circuit using 180-nm CMOS 

technology is obtained in this work. 
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1. INTRODUCTION 

The multiplier is the core component of any digital 
signal processing (DSP) unit, encryption and decryption 
algorithm in cryptography, data rendering in medical 
imaging, and other logical computations [1]- [4]. 
Performance of various operations such as arithmetic and 
logic unit in microprocessors [5], In DSP applications [6]- 
[7], various operations like convolution, Fast Fourier 
Transform (FFT), filtering, intensive arithmetic functions 
[8], and other operations are mostly dependent on 
multiplier design architecture. For higher throughput 
arithmetic operations, it is necessary to achieve the 
desired performance. In arithmetic operations, binary 
multiplication is one of the most important key 
components. Therefore, the development of low hardware 
and high-speed multiplier architecture has become a 
subject of interest over the decades. Low chip area, less 
power consumption and high speed are the basic 
requirement for the design of multiplier circuits. Since 
multiplication dominates the execution time of most DSP 

processors, cryptography algorithms, ALU operations, 
etc. the performance of these systems mainly depends on 
the speed of the multiplier circuit. So, a high-speed 
multiplier circuit with the optimum required area and 
power dissipation is needed in VLSI systems. 

The minimization of timing performance, chip area 

and power dissipation of binary multiplier circuits is a 

major challenge for researchers. To estimate the 

frequency constraints, Slack time analysis is also done by 

design engineers. Its consideration is important because 

one needs to understand how fast the chip is going to run 

and interact with the other chips. Slack time is generally 

defined as the difference between the desired arrival time 

of a signal and its actual arrival time.  It indicates the 

violation of timing constraints in VLSI circuits. A 

violation may occur if the slack time is less than the 

threshold value i.e. specified by the user. A timing 

constraint is violated when its value is negative. In the 

electronic design automation (EDA) tool, static time 

analysis (STA) is used to determine the designed circuit 
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will reliably operate or not at a specified frequency 

constraint [9]- [10].  

Binary multiplication of two integers gives partial 

products which are added for producing final results. The 

addition of that partial product dominates the critical path 

delay or speed of serial multiplier architecture. To 

combine the partial product efficiently, a column 

compressor is generally used. Various techniques have 

been proposed in earlier literature to minimize the 

performance of partial product addition, such as Wallace 

tree [11]- [12], Dadda tree multiplier [13]. These 

techniques use full adders (as a binary counter) to reduce 

each 3-bits (with the same weight column’s element) into 

2-bits of different weight and these bits are further added 

using a carry-save adder tree. But these techniques do not 

optimize carry propagation delay. 

A 7:3 parallel counter built from full and half adder 

was presented by Mehta et al to minimize carry 

propagation delay [14] of [12]- [13]. It accepts 7-bit of the 

same weight column elements that give a 3-bit output of 

different weight column’s elements. These counter are 

then designed as an efficient counter-based Wallace tree 

multiplier. The delay observed in such design was due to 

the chain of the XOR gate on the critical path. In [15]- 

[16], presented a booth multiplier architecture with 

significantly improved delay. It uses a multi-stage parallel 

addition rather than sequential addition for the addition of 

partial products. It is also used carry-save adder with carry 

look-ahead logic for adder implementation and bubble 

pushing techniques are used for booth encoder 

optimization. A 7:3 multi-bit counter to count the partial 

products of binary multiplication was proposed by Aloke 

Saha et. al. [17]. This design includes the half-adders 

rather than full-adders. The input operands are divided 

into multiple groups (each of 2-bit) that count using a 

half-adder circuit. Fritz and Fam in [18] were presented a 

counting method that uses the stacking circuit to stack the 

number of ones in given binary data and these stack data 

are thereafter counted using this binary counter, producing 

a 7:3 binary counter. Also, they proposed a multiplier 

circuit. 

To optimize the carry propagation delay of partial 

products in multiplier architecture, a variable-length 

conditional counter to count or add the partial product is 

proposed to improve its critical path delay and slack time 

with the different input frequencies. To demonstrate the 

proposed variable-length conditional counter, a multiplier 

circuit of different sizes has been designed using the 

proposed binary counter and stacking-based counter for 

critical path delay and slack time analysis at the different 

input frequencies. The rest of the paper is organized as 

follows: Section-2, the concept of column converter is 

summarized. The design of the variable-length conditional 

counter is discussed in Section-3. The proposed algorithm 

for binary multiplication is described in Section-4. The 

discussion on simulated results is mentioned in Section-5. 

Finally, Section-6 concludes the work. 

2. COLUMN CONVERTER 

In a column converter, partial product in binary 
multiplication operations is arranged in separate columns. 
In the proposed architecture of a multiplier circuit, a 
column converter is one of the primary steps, in which 
partial products are converted into a separate column that 
has the same weight element in the form of 0’s and 1’s. 
Vedic mathematics [19] is used to generates columns of 
partial products using this technique. This column 
converter requires less time as compared to serial 
operation. In conventional multiplication operation these 
phenomena are executed using serial left shifting of 
multiplicand then logic AND with multiplier data and 
MSB’s bit in every shifting operation, which is a more 
time-consuming operation compared to column 
conversion of partial products.  

An example is taken here to show how different 

columns with elements corresponding to the partial 

product of 8-bit data give the 16 different columns with 

variable elements size in symmetric order. 

 
𝑐0 = A0&B0; 

𝑐1 = {A1&B0 , A0&B1}; 

𝑐2 = {A2&B0 , A1&B1, A0&B2, y11}; 

c3 = {A3&B0 , A0&B3, A2&B1, A1&B2, y21}; 

𝑐4 = {A4&B0 , A0&B4, A2&B2, A3&B1, A1&B3, y22, y31}; 

𝑐5 = {A5&B0 , A0&B5, A4&B1, A1&B4, A3&B2, A2&B3, y32, y41}; 

𝑐6 = {A6&B0 , A0&B6, A5&B1, A1&B5, A4&B2, A2&B4, A3&B3, y42, y51}; 

𝑐7 = {A7&B0 , A0&B7, A1&B6, A6&B1, A5&B2, A2&B5, A3&B4, A4&B3, y43, y52 , y61}; 

𝑐8 = {A7&B1 , A1&B7, A2&B6, A6&B2, A3&B5, A5&B3, A4&B4, y53, y62 , y71}; 

𝑐9 = {A7&B2 , A2&B7, A3&B6, A6&B3, A4&B5, A5&B4, y63 , y72, y81}; 

𝑐10 = {A7&B3 , A3&B7, A4&B6, A6&B4, A5&B5, y73 , y82 , y91}; 

c11 = {A7&B4 , A4&B7, A5&B6, A6&B5, y83, y92 , y101}; 

𝑐12 = {A7&B5 , A5&B7, A6&B6, y93 , y102 , y111}; 

𝑐13 = {A7&B6 , A6&B7, y103 , y112 , y121}; 

𝑐14 = {A7&B7 , y122 , y131 }; 

𝑐15 = {y132  , y141 }; 

3. DESIGN OF VARIABLE LENGTH CONDITIONAL 

COUNTER 

To minimize the carry propagation delay in multiplier 
architecture, this section develops the variable-length 
conditional counter that counts the logic 1’s in each 
column of partial products. The counting operation of this 
counter depends on the column’s element. In the partial 
product of multiplier circuits, each column requires a 
variable length of the element, so one needs a variable-
length conditional counter. Using this counter, one can 
design a multiplier architecture that is efficient in terms of 
carry propagation delay.   
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Algorithm 1 shows the step for the proposed variable-

length conditional counter in which  ‘X’ is the n -bit 

register that store the ‘n’ elements of binary input, 

Y is (m + 1)  bit register that is used to store the count 

value, variable ‘i’  is log2n  bit register which is used to 

select the input bit in register  ‘X’ . The output of this 

counter is (𝐶𝑚, … , 𝐶1, S). This algorithm is designed by 

hardware description language (HDL) in which 

conditional assignment is used, if  X[i] a bit of register ‘X’ 
is zero or one, depend on that increment in ‘Y’ and ‘i’ 
have been executed. This operation is executing ‘n’ times 

in the loop with the clock signal. When register (i) value 

equal to input bit size (n), the value of the register (Y) 

assign to the output variable (Cm, … , 𝐶1, S). 

 

Algorithm-1: Stage for proposed general variable-length 

conditional counter 

Initialize: i ← 0, Y ← 0, X ← input data, n ← number of 

elements in the X register 

while (i ≤ n) 

do 

if (𝐶[𝑖] = 0) 

Y ← Y,   i ← i + 1 

else  

Y ← Y + 1, i ← i + 1 

end 

{Cm, … , C1, S} ← Y  
 

To design the gate level architecture for the above 
algorithm, this section proposes a sequential circuit that 

counts or add a binary sequence based on the clock signal. 
This architecture containing T-flip flops holds the value of 
the variable register (Y) and the number of flip flops is 
depended on the size of this variable. The output of flip 
flops are control by the value of a variable (i) and it is 
assigned to the output variable (Cm, … , 𝐶1, S). The flip-
flops input is control by the input binary sequence and 
relevant logic gates which are described in Eq. (1) to Eq. 
(9). Assume output of flip flops to be 𝑄𝑛, 𝑄𝑛−1, … . 𝑄1, 𝑄0 
and corresponding inputs as 𝑇𝑛, 𝑇𝑛−1, … . 𝑇1, 𝑇0. 

Generalized input combinational logic at each flip-flop 
is given in Eq. (1) to Eq. (5) and the count value of this 
counter is given in Eq. (6) to Eq. (9) for designing the 
general variable-length conditional counter. The count 
value will be reflected by the specific value of a 
variable (i) and its value will depend on the size of the 
binary counter. Eq. (6) represents the LSB of the count 
value and the rest of the bits of the count value are given 
by Eq. (7) to Eq. (9). 

For designing the 7:3 binary counter, extract the logic 

expression from the generalized equation, which is given 

in Eq. (10) to Eq. (15). It requires three flip flops to design 

this architecture and each flip flop’s input is controlled by 

the relevant combinational logic, which is given in the 

equation. Fig. 1 presents the proposed 7:3 binary counter. 

Similarly, Fig. 2 presents the proposed 5:3 binary counter. 

It is similar to a 7:3 binary counter but controlling the 

output signal is different from that. The output is 

controlled by 𝐼[2]. 𝐼[̅1]. 𝐼[0], as shown in Fig. 2. 

 

 𝑇𝑛 = 𝐼𝑛. �̅�𝑛𝑄𝑛−1 … 𝑄1. 𝑄0 (1) 

 𝑇𝑛−1 = 𝐼𝑛. �̅�𝑛𝑄𝑛−2 … 𝑄0. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄𝑛−2 … 𝑄1. 𝑄0 (2) 

 𝑇𝑛−2 = 𝐼𝑛. �̅�𝑛. 𝑄𝑛−3 … 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄𝑛−3 … 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−2. 𝑄𝑛−3 … 𝑄1. 𝑄0 (3) 

 .  

 .  

 𝑇1 = 𝐼𝑛. �̅�𝑛. 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄1. 𝑄0 + ⋯ + 𝐼𝑛. �̅�3. 𝑄1. 𝑄0 + 𝐼𝑛. �̅�2. 𝑄1. 𝑄0 (4) 

 𝑇0 = 𝐼𝑛. �̅�𝑛 + 𝐼𝑛. �̅�𝑛−1 + 𝐼𝑛. �̅�𝑛−2 + ⋯ + 𝐼𝑛. �̅�1 + 𝐼𝑛. �̅�0 (5) 

 𝑆 = 𝑄𝑛. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (6) 

 𝐶𝑛 = 𝑄𝑛−1. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (7) 

 𝐶𝑛−1 = 𝑄𝑛−2. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐸[0] (8) 

 .  

 .  

 𝐶1 = 𝑄0. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (9) 
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Figure 1. Gate level Schematic of 7:3 binary conditional counter using Proposed Algorithm. 

 

C2S C1

Clock
I[0]

I[1]

I[2]

Binary Sequence

 
 

Figure 2. Gate level Schematic of 5:3 binary conditional counter using Proposed Algorithm. 

 

For the 7:3 binary counter, 

 𝑇2 = 𝐼𝑛. �̅�2. 𝑄1. 𝑄0 (10) 

 𝑇1 = 𝐼𝑛. �̅�2. 𝑄0 + 𝐼𝑛. �̅�1. 𝑄0 (11) 

 𝑇0 = 𝐼𝑛. �̅�2 + 𝐼𝑛. �̅�1 + 𝐼𝑛. �̅�0 (12) 
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 𝑆 = 𝑄2. 𝐼[2]. 𝐼[1]. 𝐼[0] (13) 

 𝐶2 = 𝑄1. 𝐼[2]. 𝐼[1]. 𝐼[0] (14) 

 𝐶1 = 𝑄0. 𝐼[2]. 𝐼[1]. 𝐼[0] (15) 

 

4. PROPOSED ALGORITHM FOR BINARY 

MULTIPLICATION 

The proposed algorithm is realized with the concept of the 

column converter of partial product and variable-length 

conditional counter. The first step of this algorithm to 

generate the columns of partial product using Vedic 

mathematics through input A  and B  such that every 

column element group together after column conversion. 

After that select each column from 𝐶0 to 𝐶2P−1 one by 

one, count the number of ones in a selected column in 

each iteration using the proposed conditional counter 

based on the column’s elements. In algorithm 𝐶𝑟[𝑖] is the 

𝑖𝑡ℎ  an element of selected column in r𝑡ℎ iteration, if its 

value is logic one, count register Y is an increment to 1 i.e. 

Y ← Y + 1 otherwise count register will preserve their 

previous value i.e. Y ← Y and ‘i’ will be an increment to 1 

in both cases i.e. i ← i + 1 . This process will be 

continuing until ‘i’  is less than or equal to ‘n’ (i ≤ n) 

whenever ‘i’  is equal to ‘n’, the count register value Y 

moves into the register D and LSB bit of register ‘D’ in 

r𝑡ℎ  iteration, move into the output register bit M[r] where 

M is 2P-bit register which store the multiplication result 

and ′𝑟′ is the bit position of register M and simultaneously 

rest of (𝑙𝑜𝑔2𝑛 − 1) bits of the register(D), move into the 

next columns, and group together with the same weight 

elements. These operations have been done in each 

iteration and for the complete operation of this algorithm, 

these iterations will be repeats 2P times where P is the bit 

size of multiplicand and multiplier. 

Fig.3 shows the data paths and control signals of the 

proposed multiplier architecture. Control and data path 

signal i.e. Sel column, Condition, Multiplicand (A) , 

Multiplier (B), Output, column’s element, clock, etc. have 

their individual control on multiplication operation. 

Column converter module gives the columns 

(𝐶𝑛  … . 𝐶1, 𝐶0)  with different weight elements of a partial 

product of Multiplicand  (A)  and Multiplier  (B) . For 

counting operations ‘Sel Column’ signal is used to choose 

the column from the rightmost column and the condition 

signal is used to find the column element is zero or one, 

based on that counter register (Y) is increment or preserve 

to their previous value. When’s complete the counting 

operation, MSB bit  (Y0) of count value (Yn … Y1Y0) 

moves into output register at corresponding position and 

rest of bits (Yn  … Y1) merge into the next column with 

the same weight elements. 

 

Algorithm-2: Stage for proposed binary multiplier using 

variable-length conditional counter  

 

Initialize: A, B ← 𝐏-bit input data 

for r = 0 to 2P − 1 

Initialize: i ← 0, Y ← 0, n ←number of elements in rth 

column 

  while (i ≤ n) 

  do 

  if (𝐶𝑟[𝑖] = 0) 

  Y ← Y, i ← i + 1 

  else  

  Y ← Y + 1, i ← i + 1 

  ends 

  D ← Y 

  R[r] ← D[0] 
  {C2P−1, … , Cr } ← D[log2n: 1] 
end 

 

Variable Length 

Conditional 

Counter

Column Converter

A B

 cn         c1           c0

  

Sel Column

Condition

 ..

      yn         y1       y0

Output

Clock

 

Figure 3. Data path and control signal of proposed conditional counter-

based Multiplier 
 

A dot representation of binary data operation, for 8-bit 

input data flow, is shown in Fig. 4. In this representation, 

the first two rows are indicating the multiplicand and 

multiplier and their partial products are arranged in 

separate columns (𝐶15, 𝐶14, … , 𝐶1, 𝐶0)  and each column 

has the same weight with a different number of elements  

which are represented by dots(. ). At every iteration count, 

the number of ones in the entire column and counter 

register value is denoted by a symbol (∗𝑛)  where ‘n’ 
denotes the counting operation for nth column. LSB of ‘ ∗
’ is moved into the output register and the rest of the bit 

combines with the next column which is shown in Fig. 4.   
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        . . . . . . . . 

        . . . . . . . . 

C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 

*13 . . . . . . . . . . . . . . . 

*14 *12 . . . . . . . . . . . . .  

 *13 *10 . . . . . . . . . . .   

  *11 *9 . . . . . . . . . *1   

  *12 *10 *8 . . . . . . . *2    

   *11 *9 *7 . . . . . *2     

    *10 *8 *6 . . . *3 *3     

     *9 *7 *5 . *4 *4      

      *8 *6 *5 *5       

       *7 *6        

*15 *14 *13 *12 *11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0 

 

Figure 4. Dot representation of a proposed algorithm for 8-bit data. 
 

 
Figure 5. The semi-custom layout of 8-bit Multiplier of proposed 

architecture using 180-nm CMOS technology. 

5. RESULT AND DISCUSSION 

The proposed variable-length conditional counter and its 

serial multiplier architecture have been designed using 

Verilog HDL and behavior level simulation has been done 

using Questa Simulator by Mentor Graphics. The 

Leonardo Spectrum Tool has been used for the synthesis 

of the proposed design. For this simulation, 350-nm, 180-

nm and 45nm CMOS technology are used. For validation 

of this work, a Stacking-based binary counter and its 

multiplier design [18] were implemented using the same 

process file. The simulation of the 7:3 binary counter 

using the proposed variable-length conditional counter 

and stacking-based counter have been done to analyze and 

compare its critical path delay and slack time at the 

different input frequencies. To demonstrate the proposed 

variable-length Conditional counter, a Multiplier circuit of 

different sizes has been designed using the proposed 

binary counter and stacking-based counter for critical path 

delay and slack time analysis at a different frequency. The 

semi-custom layout of the 8-bit proposed multiplier 

Architecture using 180-nm CMOS technology is shown in 

Fig. 5. 

Table 1 shows the simulation result of the proposed 

7:3 binary counter and stacking-based counter in terms of 

critical path delay and slack time with a variation of the 

input frequency. Based on the result, the critical path 

delay of the proposed counter and stacking-based counter 

are obtained as 1.11 ns and 1.65 ns  (for 350-nm CMOS 

technology) respectively. It shows that the proposed 

counting operation is faster than a stacking-based counter. 

This is because the concept of parallelization has been 

used in our counter design. Data required time and slack 

time decrease with input frequency constraint. It can be 

seen in Table-1 that, at the 590-MHz frequency, the slack 

time of the stack-based counter is near to zero, which 

means it is near to critical working frequency constraint 

however, at the same operating frequency, the slack time 

of the proposed counter is 0.58 ns, which indicates that 

the design meets the timing constraint and still it can be 

improved for higher frequency signal. The proposed 

design operates successfully till 800-MHz input 

frequency. Fig. 6 shows the graphical representation of 

the slack time variation with the operating frequency of 

the 7:3 binary counter. 

Table 2 shows the simulation result of the 8-bit 

proposed multiplier and stacking-based multiplier in terms 

of critical path delay and slack time at the different input 

frequencies. Based on simulation results, the critical path 

delay of the proposed variable-length conditional counter 

and stack counter-based 8-bit multiplier is obtained as 

2.14ns and 6.82ns  (for 350-nm CMOS technology) 

respectively. This shows that the proposed multiplier is 

faster than the stacking counter-based multiplier. It is due 

to the use of a variable-length conditional counter which 

can count or add the partial product with minimum carry 
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propagation delay without using a carry-save adder. It also 

minimizes the computational time of the multiplication. 

Data required time and slack time decrease with input 

frequency, as seen in Table-2.  At 145-MHz frequency, 

the slack time of the stack-based counter closes to zero, 

which means, it reaches critical working frequency, but at 

the same frequency, the slack time of the proposed 

multiplier is 4.67ns. It indicates that the proposed design 

meets the timing constraint and it can further be improved 

to 465 MHz frequency. The slack time observed for the 

stacked counter-based multiplier at 465 MHz is negative. 

So it concludes that the proposed multiplier architecture 

operates at a higher input frequency compared to the 

conventional multiplier. Slack time at different frequency 

constraints of both multipliers is shown in Fig. 7. 

Table 3 presents the simulation result of 8, 16, 32, and 64-

bit proposed and stacking-based multipliers design in 

terms of critical path delay and slack time at 20MHz input 

frequency. As mention in this table, the critical path delay 

of proposed variable-length conditional counter-based 

multipliers is less as compared to stacking counter-based 

multipliers [18]. Slack time of proposed architecture is 

higher than conventional architecture for all sizes of the 

multiplier (i.e. 8, 16, 32, and 64-bit). This table 

demonstrates that the proposed work can be operated at a 

higher frequency constraint. The graphical representation 

of results is displayed in Fig. 8. 

 
Table 1. Synthesis report of 7:3 binary counter 

 
Table 2. Synthesis report of 8-bit multiplier 

 
 

 

 

 

Frequency 

constraint 

(MHz) 

Date 

required 

time 

(ns) 

350-nm CMOS 180-nm CMOS 45-nm CMOS 

7:3 counter [18] 
Proposed 7:3 

counter 
7:3 counter [18] 

Proposed 7:3 

counter 
7:3 counter [18] 

Proposed 7:3 

counter 

Date 

arrival 

time 

(ns) 

Slack 

time  

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time  

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time  

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

510 1.96 1.65 0.31 1.11 0.85 0.868 1.092 0.584 1.376 0.217 1.743 0.146 1.814 

520 1.92 1.65 0.27 1.11 0.81 0.868 1.052 0.584 1.336 0.217 1.703 0.146 1.774 

530 1.89 1.65 0.23 1.11 0.77 0.868 1.022 0.584 1.306 0.217 1.673 0.146 1.744 

540 1.85 1.65 0.2 1.11 0.74 0.868 0.982 0.584 1.266 0.217 1.633 0.146 1.704 

550 1.82 1.65 0.17 1.11 0.71 0.868 0.952 0.584 1.236 0.217 1.603 0.146 1.674 

560 1.79 1.65 0.13 1.11 0.67 0.868 0.922 0.584 1.206 0.217 1.573 0.146 1.644 

570 1.75 1.65 0.1 1.11 0.64 0.868 0.882 0.584 1.166 0.217 1.533 0.146 1.604 

580 1.72 1.65 0.07 1.11 0.61 0.868 0.852 0.584 1.136 0.217 1.503 0.146 1.574 

590 1.69 1.65 0.04 1.11 0.58 0.868 0.822 0.584 1.106 0.217 1.473 0.146 1.544 

800 1.25 1.65 -0.40 1.11 0.27 0.868 0.382 0.584 0.666 0.217 1.033 0.146 1.104 

Frequency 

constraint 

(MHz) 

Date 

required 

time 

(ns) 

350-nm CMOS 180-nm CMOS 45-nm CMOS 

8-bit multiplier 

[18] 

proposed  8-bit 

multiplier 

8-bit multiplier 

[18] 

proposed  8-bit 

multiplier 

8-bit multiplier 

[18] 

proposed  8-bit 

multiplier 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

50 20 6.82 13.18 2.14 17.86 3.589 16.411 1.126 18.874 0.897 19.10 0.281 19.719 

60 16.67 6.82 9.85 2.14 14.53 3.589 13.081 1.126 15.544 0.897 15.77 0.281 16.389 

70 14.29 6.82 7.47 2.14 12.14 3.589 10.701 1.126 13.164 0.897 13.39 0.281 14.009 

80 12.50 6.82 5.68 2.14 10.36 3.589 8.911 1.126 11.374 0.897 11.60 0.281 12.219 

90 11.11 6.82 4.29 2.14 8.97 3.589 7.521 1.126 9.984 0.897 10.21 0.281 10.829 

100 10 6.82 3.18 2.14 7.86 3.589 6.411 1.126 8.874 0.897 9.103 0.281 9.719 

110 9.09 6.82 2.27 2.14 6.95 3.589 5.501 1.126 7.964 0.897 8.193 0.281 8.809 

120 8.33 6.82 1.51 2.14 6.19 3.589 4.741 1.126 7.204 0.897 7.433 0.281 8.049 

130 7.69 6.82 0.87 2.14 5.55 3.589 4.101 1.126 6.564 0.897 6.793 0.281 7.409 

140 7.14 6.82 0.32 2.14 5 3.589 3.551 1.126 6.014 0.897 6.243 0.281 6.859 

145 6.9 6.82 0.08 2.14 4.76 3.589 3.311 1.126 5.774 0.897 6.003 0.281 6.619 

465 2.15 6.82 -4.67 2.14 0.01 3.589 -1.439 1.126 1.024 0.897 1.253 0.281 1.869 
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Table 3. Binary multiplier synthesis report at 20 MHz 

Size 

Date 

required 

time 

(ns) 

350-nm CMOS 180-nm CMOS 45-nm CMOS 

Multiplier [18] Proposed Multiplier Multiplier [18] Proposed Multiplier Multiplier [18] Proposed Multiplier 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

Date 

arrival 

time 

(ns) 

Slack 

time 

(ns) 

Date 

arrival 

time (ns) 

Slack 

time 

(ns) 

8-bit 40 6.82 33.18 2.14 37.86 3.589 36.410 1.126 38.873 0.897 39.102 0.281 39.718 

16-bit 40 10.03 29.97 3.88 36.12 5.278 34.721 2.042 37.957 1.319 38.680 0.510 39.489 

32-bit 40 18.81 21.19 13.03 26.97 9.9 30.1 6.857 33.142 2.475 37.525 1.714 38.285 

64-bit 40 34.89 5.11 29.11 10.89 18.363 21.636 15.321 24.679 4.590 35.409 3.830 36.169 
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Figure 6. Comparison analysis of slack time for 7:3Binary stack counter 

[18] and proposed 7:3 conditional binary counter. 
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Figure 7. Comparison analysis of slack time for 8-bit multiplier using 7:3 

binary stack counter [18] and proposed conditional binary counter. 
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Figure 8. Comparison of analysis of critical path delay for multipliers. 
 

6. CONCLUSION 

This paper introduces a general variable-length 

conditional counter algorithm to count or add the partial 

products for the minimum computational delay. The 

results of the proposed design are compared and 

contrasted with the results obtained for the stacking-based 

[18] counter. The analysis has been done for critical path 

delay and slack time at different working frequencies. It 

demonstrates that the proposed counting operation is 

faster than a stacking-based counter. It was also suggested 

that the proposed counter can be operated at a high-

frequency constraint compared to a conventional binary 

counter. Analysis has been done in this work to 

demonstrate the usage of the proposed variable-length 

conditional counter-based multiplier circuit at different 

operand sizes. Critical path delay and slack time were 

obtained from the proposed design as well as of the stack 

counter-based multiplier reported in the literature [18]. 

The physical layout for the 8-bit proposed serial multiplier 

circuit is also obtained in this work using 180-nm CMOS 

technology. This work demonstrates that the proposed 

variable-length conditional counter-based multiplier 

architecture can significantly improve the slack time by 

14% and delay is reduced by 68% of multiplier circuit and 

it can successfully be operated at a higher frequency 
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compared to the earlier reported designs. The simulation 

results show that the slack time of the multiplier circuit 

increase by 18% and critical path delay is reduced by 87% 

when 45 nm is compared with 350-nm CMOS 

technology. The performance of the proposed multiplier 

design was therefore superior compared to its 

contemporary design. If the dimensions of the device are 

further reduced from 45nm, it is expected that the 

proposed design will show better performance. The 

proposed binary multiplier can be used to design modern 

processors or digital systems for low-area and high-speed 

applications. 
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