

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Sep-2022)

E-mail: mangaldeepgcet@gmail.com, rkchauhan27@gmail.com

http://journals.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/120164

Design of Serial Multiplier Circuit Based on a Variable

Length Conditional Binary Counter for Improved Critical

Path Delay and Slack Time

Mangal Deep Gupta 1and R. K. Chauhan 2

1, 2 Department of Electronics and Communication Engineering, MMMUT, Gorakhpur, Uttar Pradesh, India

Received 21 Mar. 2021, Revised 01 Apr. 2022, Accepted 05 Apr. 2022, Published 30 Sep. 2022

Abstract: In this paper, a variable-length conditional counter algorithm is proposed to count or add the partial products of serial

multiplier circuits for minimizing computational delay. The proposed variable-length conditional counter enables optimizing critical

path delay and improving its slack time at different input frequencies. The evaluation of the slack time of any circuit is essential to

estimate the highest frequency of operation. In this work, the slack time of the proposed architecture is computed and compared with

the related work. The result shows that slack time is higher as compared to the existing circuit, which implies that the proposed

architecture of the serial multiplier operates at high frequency. The proposed variable-length conditional counter design and its serial

multiplier architecture of 8, 16, 32 and 64-bit has been designed using Verilog HDL. The simulation of the proposed design has been

done on the mentor Graphics EDA Tool. The physical layout design of the proposed 8-bit multiplier circuit using 180-nm CMOS

technology is obtained in this work.

Keywords: Variable-Length Conditional Binary Counter, Critical Path Delay, Slack Time, Multiplier, Semi-Custom Layout, Verilog

HDL

1. INTRODUCTION

The multiplier is the core component of any digital
signal processing (DSP) unit, encryption and decryption
algorithm in cryptography, data rendering in medical
imaging, and other logical computations [1]- [4].
Performance of various operations such as arithmetic and
logic unit in microprocessors [5], In DSP applications [6]-
[7], various operations like convolution, Fast Fourier
Transform (FFT), filtering, intensive arithmetic functions
[8], and other operations are mostly dependent on
multiplier design architecture. For higher throughput
arithmetic operations, it is necessary to achieve the
desired performance. In arithmetic operations, binary
multiplication is one of the most important key
components. Therefore, the development of low hardware
and high-speed multiplier architecture has become a
subject of interest over the decades. Low chip area, less
power consumption and high speed are the basic
requirement for the design of multiplier circuits. Since
multiplication dominates the execution time of most DSP

processors, cryptography algorithms, ALU operations,
etc. the performance of these systems mainly depends on
the speed of the multiplier circuit. So, a high-speed
multiplier circuit with the optimum required area and
power dissipation is needed in VLSI systems.

The minimization of timing performance, chip area

and power dissipation of binary multiplier circuits is a

major challenge for researchers. To estimate the

frequency constraints, Slack time analysis is also done by

design engineers. Its consideration is important because

one needs to understand how fast the chip is going to run

and interact with the other chips. Slack time is generally

defined as the difference between the desired arrival time

of a signal and its actual arrival time. It indicates the

violation of timing constraints in VLSI circuits. A

violation may occur if the slack time is less than the

threshold value i.e. specified by the user. A timing

constraint is violated when its value is negative. In the

electronic design automation (EDA) tool, static time

analysis (STA) is used to determine the designed circuit

782 Mangal Deep Gupta & R.K. Chauhan: Design of Serial Multiplier Circuit Based on a Variable …

http://journals.uob.edu.bh

will reliably operate or not at a specified frequency

constraint [9]- [10].

Binary multiplication of two integers gives partial

products which are added for producing final results. The

addition of that partial product dominates the critical path

delay or speed of serial multiplier architecture. To

combine the partial product efficiently, a column

compressor is generally used. Various techniques have

been proposed in earlier literature to minimize the

performance of partial product addition, such as Wallace

tree [11]- [12], Dadda tree multiplier [13]. These

techniques use full adders (as a binary counter) to reduce

each 3-bits (with the same weight column’s element) into

2-bits of different weight and these bits are further added

using a carry-save adder tree. But these techniques do not

optimize carry propagation delay.

A 7:3 parallel counter built from full and half adder

was presented by Mehta et al to minimize carry

propagation delay [14] of [12]- [13]. It accepts 7-bit of the

same weight column elements that give a 3-bit output of

different weight column’s elements. These counter are

then designed as an efficient counter-based Wallace tree

multiplier. The delay observed in such design was due to

the chain of the XOR gate on the critical path. In [15]-

[16], presented a booth multiplier architecture with

significantly improved delay. It uses a multi-stage parallel

addition rather than sequential addition for the addition of

partial products. It is also used carry-save adder with carry

look-ahead logic for adder implementation and bubble

pushing techniques are used for booth encoder

optimization. A 7:3 multi-bit counter to count the partial

products of binary multiplication was proposed by Aloke

Saha et. al. [17]. This design includes the half-adders

rather than full-adders. The input operands are divided

into multiple groups (each of 2-bit) that count using a

half-adder circuit. Fritz and Fam in [18] were presented a

counting method that uses the stacking circuit to stack the

number of ones in given binary data and these stack data

are thereafter counted using this binary counter, producing

a 7:3 binary counter. Also, they proposed a multiplier

circuit.

To optimize the carry propagation delay of partial

products in multiplier architecture, a variable-length

conditional counter to count or add the partial product is

proposed to improve its critical path delay and slack time

with the different input frequencies. To demonstrate the

proposed variable-length conditional counter, a multiplier

circuit of different sizes has been designed using the

proposed binary counter and stacking-based counter for

critical path delay and slack time analysis at the different

input frequencies. The rest of the paper is organized as

follows: Section-2, the concept of column converter is

summarized. The design of the variable-length conditional

counter is discussed in Section-3. The proposed algorithm

for binary multiplication is described in Section-4. The

discussion on simulated results is mentioned in Section-5.

Finally, Section-6 concludes the work.

2. COLUMN CONVERTER

In a column converter, partial product in binary
multiplication operations is arranged in separate columns.
In the proposed architecture of a multiplier circuit, a
column converter is one of the primary steps, in which
partial products are converted into a separate column that
has the same weight element in the form of 0’s and 1’s.
Vedic mathematics [19] is used to generates columns of
partial products using this technique. This column
converter requires less time as compared to serial
operation. In conventional multiplication operation these
phenomena are executed using serial left shifting of
multiplicand then logic AND with multiplier data and
MSB’s bit in every shifting operation, which is a more
time-consuming operation compared to column
conversion of partial products.

An example is taken here to show how different

columns with elements corresponding to the partial

product of 8-bit data give the 16 different columns with

variable elements size in symmetric order.

𝑐0 = A0&B0;

𝑐1 = {A1&B0 , A0&B1};

𝑐2 = {A2&B0 , A1&B1, A0&B2, y11};

c3 = {A3&B0 , A0&B3, A2&B1, A1&B2, y21};

𝑐4 = {A4&B0 , A0&B4, A2&B2, A3&B1, A1&B3, y22, y31};

𝑐5 = {A5&B0 , A0&B5, A4&B1, A1&B4, A3&B2, A2&B3, y32, y41};

𝑐6 = {A6&B0 , A0&B6, A5&B1, A1&B5, A4&B2, A2&B4, A3&B3, y42, y51};

𝑐7 = {A7&B0 , A0&B7, A1&B6, A6&B1, A5&B2, A2&B5, A3&B4, A4&B3, y43, y52 , y61};

𝑐8 = {A7&B1 , A1&B7, A2&B6, A6&B2, A3&B5, A5&B3, A4&B4, y53, y62 , y71};

𝑐9 = {A7&B2 , A2&B7, A3&B6, A6&B3, A4&B5, A5&B4, y63 , y72, y81};

𝑐10 = {A7&B3 , A3&B7, A4&B6, A6&B4, A5&B5, y73 , y82 , y91};

c11 = {A7&B4 , A4&B7, A5&B6, A6&B5, y83, y92 , y101};

𝑐12 = {A7&B5 , A5&B7, A6&B6, y93 , y102 , y111};

𝑐13 = {A7&B6 , A6&B7, y103 , y112 , y121};

𝑐14 = {A7&B7 , y122 , y131 };

𝑐15 = {y132 , y141 };

3. DESIGN OF VARIABLE LENGTH CONDITIONAL

COUNTER

To minimize the carry propagation delay in multiplier
architecture, this section develops the variable-length
conditional counter that counts the logic 1’s in each
column of partial products. The counting operation of this
counter depends on the column’s element. In the partial
product of multiplier circuits, each column requires a
variable length of the element, so one needs a variable-
length conditional counter. Using this counter, one can
design a multiplier architecture that is efficient in terms of
carry propagation delay.

 Int. J. Com. Dig. Sys. 11, No.1, 781-789 (Sep-2022) 783

http://journals.uob.edu.bh

Algorithm 1 shows the step for the proposed variable-

length conditional counter in which ‘X’ is the n -bit

register that store the ‘n’ elements of binary input,

Y is (m + 1) bit register that is used to store the count

value, variable ‘i’ is log2n bit register which is used to

select the input bit in register ‘X’ . The output of this

counter is (𝐶𝑚, … , 𝐶1, S). This algorithm is designed by

hardware description language (HDL) in which

conditional assignment is used, if X[i] a bit of register ‘X’
is zero or one, depend on that increment in ‘Y’ and ‘i’
have been executed. This operation is executing ‘n’ times

in the loop with the clock signal. When register (i) value

equal to input bit size (n), the value of the register (Y)

assign to the output variable (Cm, … , 𝐶1, S).

Algorithm-1: Stage for proposed general variable-length

conditional counter

Initialize: i ← 0, Y ← 0, X ← input data, n ← number of

elements in the X register

while (i ≤ n)

do

if (𝐶[𝑖] = 0)

Y ← Y, i ← i + 1

else

Y ← Y + 1, i ← i + 1

end

{Cm, … , C1, S} ← Y

To design the gate level architecture for the above
algorithm, this section proposes a sequential circuit that

counts or add a binary sequence based on the clock signal.
This architecture containing T-flip flops holds the value of
the variable register (Y) and the number of flip flops is
depended on the size of this variable. The output of flip
flops are control by the value of a variable (i) and it is
assigned to the output variable (Cm, … , 𝐶1, S). The flip-
flops input is control by the input binary sequence and
relevant logic gates which are described in Eq. (1) to Eq.
(9). Assume output of flip flops to be 𝑄𝑛, 𝑄𝑛−1, … . 𝑄1, 𝑄0
and corresponding inputs as 𝑇𝑛, 𝑇𝑛−1, … . 𝑇1, 𝑇0.

Generalized input combinational logic at each flip-flop
is given in Eq. (1) to Eq. (5) and the count value of this
counter is given in Eq. (6) to Eq. (9) for designing the
general variable-length conditional counter. The count
value will be reflected by the specific value of a
variable (i) and its value will depend on the size of the
binary counter. Eq. (6) represents the LSB of the count
value and the rest of the bits of the count value are given
by Eq. (7) to Eq. (9).

For designing the 7:3 binary counter, extract the logic

expression from the generalized equation, which is given

in Eq. (10) to Eq. (15). It requires three flip flops to design

this architecture and each flip flop’s input is controlled by

the relevant combinational logic, which is given in the

equation. Fig. 1 presents the proposed 7:3 binary counter.

Similarly, Fig. 2 presents the proposed 5:3 binary counter.

It is similar to a 7:3 binary counter but controlling the

output signal is different from that. The output is

controlled by 𝐼[2]. 𝐼[̅1]. 𝐼[0], as shown in Fig. 2.

 𝑇𝑛 = 𝐼𝑛. �̅�𝑛𝑄𝑛−1 … 𝑄1. 𝑄0 (1)

 𝑇𝑛−1 = 𝐼𝑛. �̅�𝑛𝑄𝑛−2 … 𝑄0. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄𝑛−2 … 𝑄1. 𝑄0 (2)

 𝑇𝑛−2 = 𝐼𝑛. �̅�𝑛. 𝑄𝑛−3 … 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄𝑛−3 … 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−2. 𝑄𝑛−3 … 𝑄1. 𝑄0 (3)

 .

 .

 𝑇1 = 𝐼𝑛. �̅�𝑛. 𝑄1. 𝑄0 + 𝐼𝑛. �̅�𝑛−1. 𝑄1. 𝑄0 + ⋯ + 𝐼𝑛. �̅�3. 𝑄1. 𝑄0 + 𝐼𝑛. �̅�2. 𝑄1. 𝑄0 (4)

 𝑇0 = 𝐼𝑛. �̅�𝑛 + 𝐼𝑛. �̅�𝑛−1 + 𝐼𝑛. �̅�𝑛−2 + ⋯ + 𝐼𝑛. �̅�1 + 𝐼𝑛. �̅�0 (5)

 𝑆 = 𝑄𝑛. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (6)

 𝐶𝑛 = 𝑄𝑛−1. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (7)

 𝐶𝑛−1 = 𝑄𝑛−2. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐸[0] (8)

 .

 .

 𝐶1 = 𝑄0. 𝐼[𝑛 − 1]. 𝐼[𝑛 − 2] … . 𝐼[1]. 𝐼[0] (9)

784 Mangal Deep Gupta & R.K. Chauhan: Design of Serial Multiplier Circuit Based on a Variable …

http://journals.uob.edu.bh

C2S C1

Clock
I[0]

I[1]

I[2]

Binary Sequence

Figure 1. Gate level Schematic of 7:3 binary conditional counter using Proposed Algorithm.

C2S C1

Clock
I[0]

I[1]

I[2]

Binary Sequence

Figure 2. Gate level Schematic of 5:3 binary conditional counter using Proposed Algorithm.

For the 7:3 binary counter,

 𝑇2 = 𝐼𝑛. �̅�2. 𝑄1. 𝑄0 (10)

 𝑇1 = 𝐼𝑛. �̅�2. 𝑄0 + 𝐼𝑛. �̅�1. 𝑄0 (11)

 𝑇0 = 𝐼𝑛. �̅�2 + 𝐼𝑛. �̅�1 + 𝐼𝑛. �̅�0 (12)

 Int. J. Com. Dig. Sys. 11, No.1, 781-789 (Sep-2022) 785

http://journals.uob.edu.bh

 𝑆 = 𝑄2. 𝐼[2]. 𝐼[1]. 𝐼[0] (13)

 𝐶2 = 𝑄1. 𝐼[2]. 𝐼[1]. 𝐼[0] (14)

 𝐶1 = 𝑄0. 𝐼[2]. 𝐼[1]. 𝐼[0] (15)

4. PROPOSED ALGORITHM FOR BINARY

MULTIPLICATION

The proposed algorithm is realized with the concept of the

column converter of partial product and variable-length

conditional counter. The first step of this algorithm to

generate the columns of partial product using Vedic

mathematics through input A and B such that every

column element group together after column conversion.

After that select each column from 𝐶0 to 𝐶2P−1 one by

one, count the number of ones in a selected column in

each iteration using the proposed conditional counter

based on the column’s elements. In algorithm 𝐶𝑟[𝑖] is the

𝑖𝑡ℎ an element of selected column in r𝑡ℎ iteration, if its

value is logic one, count register Y is an increment to 1 i.e.

Y ← Y + 1 otherwise count register will preserve their

previous value i.e. Y ← Y and ‘i’ will be an increment to 1

in both cases i.e. i ← i + 1 . This process will be

continuing until ‘i’ is less than or equal to ‘n’ (i ≤ n)

whenever ‘i’ is equal to ‘n’, the count register value Y

moves into the register D and LSB bit of register ‘D’ in

r𝑡ℎ iteration, move into the output register bit M[r] where

M is 2P-bit register which store the multiplication result

and ′𝑟′ is the bit position of register M and simultaneously

rest of (𝑙𝑜𝑔2𝑛 − 1) bits of the register(D), move into the

next columns, and group together with the same weight

elements. These operations have been done in each

iteration and for the complete operation of this algorithm,

these iterations will be repeats 2P times where P is the bit

size of multiplicand and multiplier.

Fig.3 shows the data paths and control signals of the

proposed multiplier architecture. Control and data path

signal i.e. Sel column, Condition, Multiplicand (A) ,

Multiplier (B), Output, column’s element, clock, etc. have

their individual control on multiplication operation.

Column converter module gives the columns

(𝐶𝑛 … . 𝐶1, 𝐶0) with different weight elements of a partial

product of Multiplicand (A) and Multiplier (B) . For

counting operations ‘Sel Column’ signal is used to choose

the column from the rightmost column and the condition

signal is used to find the column element is zero or one,

based on that counter register (Y) is increment or preserve

to their previous value. When’s complete the counting

operation, MSB bit (Y0) of count value (Yn … Y1Y0)

moves into output register at corresponding position and

rest of bits (Yn … Y1) merge into the next column with

the same weight elements.

Algorithm-2: Stage for proposed binary multiplier using

variable-length conditional counter

Initialize: A, B ← 𝐏-bit input data

for r = 0 to 2P − 1

Initialize: i ← 0, Y ← 0, n ←number of elements in rth

column

 while (i ≤ n)

 do

 if (𝐶𝑟[𝑖] = 0)

 Y ← Y, i ← i + 1

 else

 Y ← Y + 1, i ← i + 1

 ends

 D ← Y

 R[r] ← D[0]
 {C2P−1, … , Cr } ← D[log2n: 1]
end

Variable Length

Conditional

Counter

Column Converter

A B

 cn c1 c0

Sel Column

Condition

 ..

 yn y1 y0

Output

Clock

Figure 3. Data path and control signal of proposed conditional counter-

based Multiplier

A dot representation of binary data operation, for 8-bit

input data flow, is shown in Fig. 4. In this representation,

the first two rows are indicating the multiplicand and

multiplier and their partial products are arranged in

separate columns (𝐶15, 𝐶14, … , 𝐶1, 𝐶0) and each column

has the same weight with a different number of elements

which are represented by dots(.). At every iteration count,

the number of ones in the entire column and counter

register value is denoted by a symbol (∗𝑛) where ‘n’
denotes the counting operation for nth column. LSB of ‘ ∗
’ is moved into the output register and the rest of the bit

combines with the next column which is shown in Fig. 4.

786 Mangal Deep Gupta & R.K. Chauhan: Design of Serial Multiplier Circuit Based on a Variable …

http://journals.uob.edu.bh

C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

*13

*14 *12

 *13 *10

 *11 *9 *1

 *12 *10 *8 *2

 *11 *9 *7 *2

 *10 *8 *6 . . . *3 *3

 *9 *7 *5 . *4 *4

 *8 *6 *5 *5

 *7 *6

*15 *14 *13 *12 *11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

Figure 4. Dot representation of a proposed algorithm for 8-bit data.

Figure 5. The semi-custom layout of 8-bit Multiplier of proposed

architecture using 180-nm CMOS technology.

5. RESULT AND DISCUSSION

The proposed variable-length conditional counter and its

serial multiplier architecture have been designed using

Verilog HDL and behavior level simulation has been done

using Questa Simulator by Mentor Graphics. The

Leonardo Spectrum Tool has been used for the synthesis

of the proposed design. For this simulation, 350-nm, 180-

nm and 45nm CMOS technology are used. For validation

of this work, a Stacking-based binary counter and its

multiplier design [18] were implemented using the same

process file. The simulation of the 7:3 binary counter

using the proposed variable-length conditional counter

and stacking-based counter have been done to analyze and

compare its critical path delay and slack time at the

different input frequencies. To demonstrate the proposed

variable-length Conditional counter, a Multiplier circuit of

different sizes has been designed using the proposed

binary counter and stacking-based counter for critical path

delay and slack time analysis at a different frequency. The

semi-custom layout of the 8-bit proposed multiplier

Architecture using 180-nm CMOS technology is shown in

Fig. 5.

Table 1 shows the simulation result of the proposed

7:3 binary counter and stacking-based counter in terms of

critical path delay and slack time with a variation of the

input frequency. Based on the result, the critical path

delay of the proposed counter and stacking-based counter

are obtained as 1.11 ns and 1.65 ns (for 350-nm CMOS

technology) respectively. It shows that the proposed

counting operation is faster than a stacking-based counter.

This is because the concept of parallelization has been

used in our counter design. Data required time and slack

time decrease with input frequency constraint. It can be

seen in Table-1 that, at the 590-MHz frequency, the slack

time of the stack-based counter is near to zero, which

means it is near to critical working frequency constraint

however, at the same operating frequency, the slack time

of the proposed counter is 0.58 ns, which indicates that

the design meets the timing constraint and still it can be

improved for higher frequency signal. The proposed

design operates successfully till 800-MHz input

frequency. Fig. 6 shows the graphical representation of

the slack time variation with the operating frequency of

the 7:3 binary counter.

Table 2 shows the simulation result of the 8-bit

proposed multiplier and stacking-based multiplier in terms

of critical path delay and slack time at the different input

frequencies. Based on simulation results, the critical path

delay of the proposed variable-length conditional counter

and stack counter-based 8-bit multiplier is obtained as

2.14ns and 6.82ns (for 350-nm CMOS technology)

respectively. This shows that the proposed multiplier is

faster than the stacking counter-based multiplier. It is due

to the use of a variable-length conditional counter which

can count or add the partial product with minimum carry

 Int. J. Com. Dig. Sys. 11, No.1, 781-789 (Sep-2022) 787

http://journals.uob.edu.bh

propagation delay without using a carry-save adder. It also

minimizes the computational time of the multiplication.

Data required time and slack time decrease with input

frequency, as seen in Table-2. At 145-MHz frequency,

the slack time of the stack-based counter closes to zero,

which means, it reaches critical working frequency, but at

the same frequency, the slack time of the proposed

multiplier is 4.67ns. It indicates that the proposed design

meets the timing constraint and it can further be improved

to 465 MHz frequency. The slack time observed for the

stacked counter-based multiplier at 465 MHz is negative.

So it concludes that the proposed multiplier architecture

operates at a higher input frequency compared to the

conventional multiplier. Slack time at different frequency

constraints of both multipliers is shown in Fig. 7.

Table 3 presents the simulation result of 8, 16, 32, and 64-

bit proposed and stacking-based multipliers design in

terms of critical path delay and slack time at 20MHz input

frequency. As mention in this table, the critical path delay

of proposed variable-length conditional counter-based

multipliers is less as compared to stacking counter-based

multipliers [18]. Slack time of proposed architecture is

higher than conventional architecture for all sizes of the

multiplier (i.e. 8, 16, 32, and 64-bit). This table

demonstrates that the proposed work can be operated at a

higher frequency constraint. The graphical representation

of results is displayed in Fig. 8.

Table 1. Synthesis report of 7:3 binary counter

Table 2. Synthesis report of 8-bit multiplier

Frequency

constraint

(MHz)

Date

required

time

(ns)

350-nm CMOS 180-nm CMOS 45-nm CMOS

7:3 counter [18]
Proposed 7:3

counter
7:3 counter [18]

Proposed 7:3

counter
7:3 counter [18]

Proposed 7:3

counter

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

510 1.96 1.65 0.31 1.11 0.85 0.868 1.092 0.584 1.376 0.217 1.743 0.146 1.814

520 1.92 1.65 0.27 1.11 0.81 0.868 1.052 0.584 1.336 0.217 1.703 0.146 1.774

530 1.89 1.65 0.23 1.11 0.77 0.868 1.022 0.584 1.306 0.217 1.673 0.146 1.744

540 1.85 1.65 0.2 1.11 0.74 0.868 0.982 0.584 1.266 0.217 1.633 0.146 1.704

550 1.82 1.65 0.17 1.11 0.71 0.868 0.952 0.584 1.236 0.217 1.603 0.146 1.674

560 1.79 1.65 0.13 1.11 0.67 0.868 0.922 0.584 1.206 0.217 1.573 0.146 1.644

570 1.75 1.65 0.1 1.11 0.64 0.868 0.882 0.584 1.166 0.217 1.533 0.146 1.604

580 1.72 1.65 0.07 1.11 0.61 0.868 0.852 0.584 1.136 0.217 1.503 0.146 1.574

590 1.69 1.65 0.04 1.11 0.58 0.868 0.822 0.584 1.106 0.217 1.473 0.146 1.544

800 1.25 1.65 -0.40 1.11 0.27 0.868 0.382 0.584 0.666 0.217 1.033 0.146 1.104

Frequency

constraint

(MHz)

Date

required

time

(ns)

350-nm CMOS 180-nm CMOS 45-nm CMOS

8-bit multiplier

[18]

proposed 8-bit

multiplier

8-bit multiplier

[18]

proposed 8-bit

multiplier

8-bit multiplier

[18]

proposed 8-bit

multiplier

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

50 20 6.82 13.18 2.14 17.86 3.589 16.411 1.126 18.874 0.897 19.10 0.281 19.719

60 16.67 6.82 9.85 2.14 14.53 3.589 13.081 1.126 15.544 0.897 15.77 0.281 16.389

70 14.29 6.82 7.47 2.14 12.14 3.589 10.701 1.126 13.164 0.897 13.39 0.281 14.009

80 12.50 6.82 5.68 2.14 10.36 3.589 8.911 1.126 11.374 0.897 11.60 0.281 12.219

90 11.11 6.82 4.29 2.14 8.97 3.589 7.521 1.126 9.984 0.897 10.21 0.281 10.829

100 10 6.82 3.18 2.14 7.86 3.589 6.411 1.126 8.874 0.897 9.103 0.281 9.719

110 9.09 6.82 2.27 2.14 6.95 3.589 5.501 1.126 7.964 0.897 8.193 0.281 8.809

120 8.33 6.82 1.51 2.14 6.19 3.589 4.741 1.126 7.204 0.897 7.433 0.281 8.049

130 7.69 6.82 0.87 2.14 5.55 3.589 4.101 1.126 6.564 0.897 6.793 0.281 7.409

140 7.14 6.82 0.32 2.14 5 3.589 3.551 1.126 6.014 0.897 6.243 0.281 6.859

145 6.9 6.82 0.08 2.14 4.76 3.589 3.311 1.126 5.774 0.897 6.003 0.281 6.619

465 2.15 6.82 -4.67 2.14 0.01 3.589 -1.439 1.126 1.024 0.897 1.253 0.281 1.869

788 Mangal Deep Gupta & R.K. Chauhan: Design of Serial Multiplier Circuit Based on a Variable …

http://journals.uob.edu.bh

Table 3. Binary multiplier synthesis report at 20 MHz

Size

Date

required

time

(ns)

350-nm CMOS 180-nm CMOS 45-nm CMOS

Multiplier [18] Proposed Multiplier Multiplier [18] Proposed Multiplier Multiplier [18] Proposed Multiplier

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

Date

arrival

time

(ns)

Slack

time

(ns)

Date

arrival

time (ns)

Slack

time

(ns)

8-bit 40 6.82 33.18 2.14 37.86 3.589 36.410 1.126 38.873 0.897 39.102 0.281 39.718

16-bit 40 10.03 29.97 3.88 36.12 5.278 34.721 2.042 37.957 1.319 38.680 0.510 39.489

32-bit 40 18.81 21.19 13.03 26.97 9.9 30.1 6.857 33.142 2.475 37.525 1.714 38.285

64-bit 40 34.89 5.11 29.11 10.89 18.363 21.636 15.321 24.679 4.590 35.409 3.830 36.169

510 520 530 540 550 560 570 580 590 800
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

S
la

c
k
 t

im
e
 o

f
7
:3

 b
in

a
ry

 c
o

u
n

te
r

(n
s
)

Frequency constraint (MHz)

 [18] 350-nm CMOS

 Proposed 350-nm CMOS

 [18] 180-nm CMOS

 Proposed 180-nm CMOS

 [18] 45-nm CMOS

 Proposed 45-nm CMOS

Figure 6. Comparison analysis of slack time for 7:3Binary stack counter

[18] and proposed 7:3 conditional binary counter.

50 60 70 80 90 100 110 120 130 140 145 465

-5

0

5

10

15

20

S
la

c
k
 t

im
e
 o

f
8
-b

it
 M

u
lt

ip
li
e
r

(n
s
)

Frequency constraint (MHz)

 [18] 350-nm CMOS

 Proposed 350-nm CMOS

 [18] 180-nm CMOS

 Proposed 180-nm CMOS

 [18] 45-nm CMOS

 Proposed 45-nm CMOS

Figure 7. Comparison analysis of slack time for 8-bit multiplier using 7:3

binary stack counter [18] and proposed conditional binary counter.

8 16 32 64
0

5

10

15

20

25

30

35

40

C
ri

ti
c

a
l

p
a

th
 d

e
la

y
 o

f
M

u
lt

ip
li

e
r

(n
s
)

Multiplier size (bit)

 [18] 350-nm CMOS

 Proposed 350-nm CMOS

 [18] 180-nm CMOS

 Proposed 180-nm CMOS

 [18] 45-nm CMOS

 Proposed 45-nm CMOS

Figure 8. Comparison of analysis of critical path delay for multipliers.

6. CONCLUSION

This paper introduces a general variable-length

conditional counter algorithm to count or add the partial

products for the minimum computational delay. The

results of the proposed design are compared and

contrasted with the results obtained for the stacking-based

[18] counter. The analysis has been done for critical path

delay and slack time at different working frequencies. It

demonstrates that the proposed counting operation is

faster than a stacking-based counter. It was also suggested

that the proposed counter can be operated at a high-

frequency constraint compared to a conventional binary

counter. Analysis has been done in this work to

demonstrate the usage of the proposed variable-length

conditional counter-based multiplier circuit at different

operand sizes. Critical path delay and slack time were

obtained from the proposed design as well as of the stack

counter-based multiplier reported in the literature [18].

The physical layout for the 8-bit proposed serial multiplier

circuit is also obtained in this work using 180-nm CMOS

technology. This work demonstrates that the proposed

variable-length conditional counter-based multiplier

architecture can significantly improve the slack time by

14% and delay is reduced by 68% of multiplier circuit and

it can successfully be operated at a higher frequency

 Int. J. Com. Dig. Sys. 11, No.1, 781-789 (Sep-2022) 789

http://journals.uob.edu.bh

compared to the earlier reported designs. The simulation

results show that the slack time of the multiplier circuit

increase by 18% and critical path delay is reduced by 87%

when 45 nm is compared with 350-nm CMOS

technology. The performance of the proposed multiplier

design was therefore superior compared to its

contemporary design. If the dimensions of the device are

further reduced from 45nm, it is expected that the

proposed design will show better performance. The

proposed binary multiplier can be used to design modern

processors or digital systems for low-area and high-speed

applications.

REFERENCES

[1] Gupta MD & Chauhan RK. Efficient Hardware Implementation of
Pseudo-Random Bit Generator Using Dual-CLCG Method.
Journal of Circuits, Systems and Computers (2021).

[2] A. T. Abebe, Y. N. Shiferaw, and P. G. V. S. Kumar, Compact
and High Speed Point Multiplication Architecture for Elliptic
Curve Diffie-Hellman Algorithm on FPGA, Int. J. Comput. Digit.
Syst., (2021).

[3] U. Iqbal and A. H. Mir, Efficient and dynamic access control
mechanism for secure data acquisition in IoT environment, Int. J.
Comput. Digit. Syst., 10, 9–28 (2021).

[4] Gupta MD & Chauhan RK. Coupled variable‐input LCG and
clock divider‐based large period pseudo‐random bit generator on
FPGA, IET Computer and Digital Techniques. 1–13 (2021).
doi:10.1049/cdt2.12027

[5] Tang, G. M., Takagi, K. & Takagi, N. 32 × 32-Bit 4-Bit Bit-Slice
Integer Multiplier for RSFQ Microprocessors. in IEEE
Transactions on Applied Superconductivity (2017).
doi:10.1109/TASC.2017.2662700

[6] Warrier, R., Shreejith, S., Zhang, W., Vun, C. H. & Fahmy, S. A.
Fracturable DSP Block for Multi-Context Reconfigurable
Architectures. Circuits, Syst. Signal Process. (2017).
doi:10.1007/s00034-016-0445-x

[7] Meher, P. K. Seamless Pipelining of DSP Circuits. Circuits, Syst.
Signal Process. 35, 1147–1162 (2016).

[8] Kim, E. J., Lee, J. H. & Sunwoo, M. H. Novel shared multiplier
scheduling scheme for area-efficient FFT/IFFT processors. IEEE
Trans. Very Large Scale Integr. Syst. 23, 1689–1699 (2015).

[9] Vygen, J. Slack in static timing analysis. IEEE Trans. Comput.
Des. Integr. Circuits Syst. 25, 1876–1885 (2006).

[10] Gupta, M.D. & Chauhan, R.K. Performance Investigation of
Binary Counter with Different Clock Gating Networks. Journal of
Telecommunication, Electronic and Computer Engineering
(JTEC), 12(2), 59-67 (2020).

[11] Wallace, C. S. A Suggestion for a Fast Multiplier. IEEE Trans.
Electron. Comput. EC-13, 14–17 (1964).

[12] Asif, S. & Kong, Y. Analysis of different architectures of counter
based Wallace multipliers. in Proceedings - 2015 10th
International Conference on Computer Engineering and Systems,
ICCES 2015 139–144 (2016). doi:10.1109/ICCES.2015.7393034

[13] Blankenship, P. E. Comments on “a two’s complement parallel
array multiplication algorithm”. in Computer Arithmetic: Volume I
159 (2015). doi:10.1142/9789814651578

[14] Mehta, M., Parmar, V. & Swartzlander, E. High-speed multiplier
design using multi-input counter and compressor circuits. in
Proceedings - Symposium on Computer Arithmetic 43–50 (1991).

[15] Boppana, N. V. V. K., Kommareddy, J. & Ren, S. Low-Cost and
High-Performance 8 × 8 Booth Multiplier. Circuits, Syst. Signal
Process. 38, 4357–4368 (2019).

[16] Mohanty, B. K. & Choubey, A. Efficient Design for Radix-8
Booth Multiplier and Its Application in Lifting 2-D DWT.
Circuits, Syst. Signal Process. 36, 1129–1149 (2017).

[17] Saha, A., Pal, R., Naik, A. G. & Pal, D. Novel CMOS multi-bit
counter for speed-power optimization in multiplier design. AEU -
Int. J. Electron. Commun. 95, 189–198 (2018).

[18] Fritz, C. & Fam, A. T. Fast Binary Counters Based on Symmetric
Stacking. IEEE Trans. Very Large Scale Integr. Syst. 25, 2971–
2975 (2017).

[19] Bansal, Y., Madhu, C. & Kaur, P. High speed vedic multiplier
designs-A review. in 2014 Recent Advances in Engineering and
Computational Sciences, RAECS 2014 (2014).
doi:10.1109/RAECS.2014.6799502

Rajeev Kumar Chauhan is currently a

Professor & Head in the ECE

Department, MMMUT, Gorakhpur-

273010, U.P, INDIA, and serving the

same institute for the last 26 years. He

has received his Ph.D. in Electronics

Engineering, from IIT-BHU, Varanasi,

INDIA, in 2002, M.E. from MNNIT-

Allahabad in 1993, and B.Tech from

G.B.P.U.A.T – Pantnagar, in 1989. He has also served as a

professor at Addis Ababa University, Addis Ababa under the

UNDP program for two years (2003- 2005). His research area

includes VLSI Technology & Design.

E-mail: rkchauhan27@gmail.com

Mangal Deep Gupta is a Teaching and

Research Fellow, in the ECE Department,

MMMUT, Gorakhpur-273010, U.P.

INDIA. He has received his M.Tech. in

VLSI Design, from C-DAC, Noida,

INDIA, in 2018. His research area

includes: Microelectronics & VLSI

Design.
E-mail: mangaldeepgcet@gmail.com

https://doi.org/10.1049/cdt2.12027
mailto:rkchauhan27@gmail.com
mailto:mangaldeepgcet@gmail.com

	1. Introduction
	2. Column Converter
	3. Design of Variable Length Conditional Counter
	4. Proposed Algorithm for Binary Multiplication
	5. Result and Discussion
	6. Conclusion
	References

