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Abstract: The milling machine’s cutting tool is a vital asset; its breakdown results in unplanned downtime, which reduces industrial 
efficiency.Tool-Wear Monitoring(TWM) is one of the primary goals of the manufacturing industry due to the manifold benefits it  
provides, such as optimizing production efficiency, improving performance, and increasing the life of the tool. Most of the work carried 
out in this domain involves statistical-based techniques, which require expert domain knowledge in formulating degradation models of  
the tools. Data-driven machine learning and deep learning models have recently been used to analyze tool wear data and make efficient 
predictions about its remaining useful life. This paper presents a comparative approach to tool wear monitoring using the clustering 
machine learning technique of K-Nearest Neighbour (k-NN) and deep learning technique of Convolutional Neural Network (CNN) and 
hybrid Autoencoder-LSTM (AE-LSTM) models. The CNN and AE-LSTM techniques out-perform k-NN by achieving a higher degree  
of separability of around 93% and 87%, respectively, as per the ROC-AUC values. The techniques provide improved outcomes in terms 
of precision, recall, and f1-score, indicating that the models are more accurate at detecting false positives. 
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1. I NTRODUCTION AND OVERVIEW

The basic function of a milling machine is to generate
flat surfaces in any acclimatization and surfaces with varied 
configurations such as radial or contoured surfaces. Such 
functions are carried out by slowly inserting the workpiece 
into the rotating edged circular cutter at moderately high 
speed, as indicated in Figure 1. 

Rapid progress in the manufacturing domain and espe- 
cially in the milling process has seen an up-trend in using 
high-end tools that exhibit extensive processing range and 
large production efficiency. However, inadequate toughness 
of these tools leads to tools being brittle, ultimately resulting 
in tool breakage or tool wear [1]. Premature tool failures  
are often expensive to repair and eventually lead to damage 
to the workpiece and probable harm to the machine and the 
personnel operating it [2]. Figure 2 shows an example of 
tool wear during the milling process.The abrasive motion  
of apertures and debris from a built-up edge, among other 
things, causes flank wear. This wear mainly occurs at low 
speed. Abrasion and metal diffusion at the tool face trigger 
crater wear when machining ductile materials and mostly 
occurs at high speed. It occurs at the corner of the tool and 
occurs due to flank wear and crater wear. 

There is a dire need for a research-based solution that 
detects early tool wear with a lesser incidence of missed 
failure alerts. Approximately 40percent of production costs 
can be saved in case of timely detection of tool failure [3]. 
Less scientific experiments have been conducted on tool  
wear in the milling process since it is one of the most 
complex processes owing to the near-surface interaction be- 
tween the tool and the workpiece. Figure 3 depicts the var- 
ious approaches used in tool wear monitoring- knowledge- 
based model approach, data-driven based model approach, 
and physics-based model approach. Data-driven approaches 
are preferred over the other two due to the higher prediction 
accuracy despite moderate domain expertise [4]. 

This paper shows a comparative study of the prediction 
of tool wear between using the machine learning algorithm 
using of the k-Nearest Neighbour(k-NN) and the extensive 
deep learning algorithms of Convolutional Neural Network 
(CNN) and Autoencoder-LSTM(AE-LSTM). The remain- 
der of the paper is structured in the following manner. 
Section II describes some of the recent work carried out in 
this domain. Section III explains in detail the methodology 
and models used in this study. Section IV describes the 
findings and discussions of the implemented algorithms, 
followed by conclusion and potential future scope. 
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Figure 1. Schematic diagram of conventional milling operation 

Figure 2. Tool  wear and its  types 

2. RECENT WORK
Manufacturers have a common goal of improving pro- 

duction at a reduced cost. Replacing a dull tool at proper  
intervals ensured continued production at optimal main- 
tenance of tool-cutting machining processes. Hence the 
demand for tool wear monitoring (TWM) has increased 
manifold, and effective tool wear predictive techniques have 
been hugely popular. Some of the objectives of TWM are  
as follows: 

• Early detection of tool wear

Regular monitoring of machining accuracy for en- 
abling corrective actions

• Prevention of brittle tool breakage

Due to the benefitsit offers, Tool wear monitoring ap- 
proaches have undergone revolutionary changes in the past 
few years, starting from physical model-driven  monitor- 
ing to recent machine learning and deep learning-based 
data-driven monitoring. Progress in Tool Wear Monitoring 
(TWM) is depicted in Figure 4. Physical model-based tool 
wear monitoring representation of machine degradation in 
the form of mathematical models. However, this technique 
requires expert knowledge and a precise understanding of 
the degradation process, which is often challenging. Data- 
driven tool wear monitoring involves smart monitoring of 
the tool using sensors and effective decision-making using 
machine learning and deep learning techniques. Machine 
learning techniques are slightly tedious over deep learning 
models as extensive dimensionality reduction, and feature 
extraction processes are required. 

•
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Figure 3. Tool  wear monitoring  approaches 
 
 
 
 

Figure 4. Progress in tool wear monitoring framework over recent years 
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Anomaly detection in  the  milling  process  has  a  lot  
of potential benefits. One of the most common causes of 
failures in milling is tool wear, wherein without accurate set 
thresholds, it can lead to usage of worn tools resulting in  
the poor surface quality of the end product and wastage of 
resources and time. In such a scenario, an effective anomaly 
detection technique can alert in advance about carrying out 
maintenance of the tool or even replacement of the worn 
tool. The most critical task here is identifying the tool’s 
wear threshold from a permissible to a non-permissible limit 
[5]. Many researchers have approached this problem in the 
past using various sensing modalities such as vibration [6], 
force [7], data fusion [8], acoustics [9], and motor current 
[10]. Recent work involves using acoustic emission sensors 
in monitoring tool wear as the frequency range of acoustic 
sensors is higher than the vibration and background noise 
[11]. Tool wear monitoring can be categorized as sensor- 
based and sensor-less systems [12]. Usually, tool life was 
predicted using Taylor’s standard tool life equation. Some 
manual techniques, such as using the tool maker’s micro- 
scope, are often used to assess tool wear [13]. The sensor- 
based approach is divided into direct and indirect methods 
[14]. The data collected using the sensor-based approach 
need to be analyzed using machine learning or deep learning 
approaches due to the volume of the data; hence analysis 
using statistical techniques would be difficult. Machine 
learning algorithms have been popular for fault data pattern 
recognition in tool wear monitoring in the past. They 
include algorithms such as Support Vector Machine (SVM) 
[15], Artificial Neural Network (ANN) [16], Bayesian 
networks [17], hidden Markov models [18], decision tree 
networks [19], and k-Nearest Neighbor (k-NN) technique 
[20]. However, most of these data-driven techniques lack 
the ability to process unstructured data and hence cannot be 
easily generalized. Further, the large amount of multivariate 
data generated in manufacturing processes combined with 
the high correlation and high dimensional characteristics 
often require automatic feature extraction and representation 
capabilities [21,22]. Deep learning algorithms that take into 
account the temporal correlations of manufacturing data can 
achieve these capabilities.In Milling cutting, Speed, Feed, 
and Depth of cut are the major three input parameters. 
Many researchers had studied the effect of these parameters 
by measuring the cutting forces, tool wear, and surface 
roughness using traditional approaches. Few researchers 
have also worked on the indirect method and found several 
experimental limits in correlating the data collected with 
tool wear by using different computational algorithms [23]. 
Ren et al. [24] used a Fuzzy approach for cutting force data 
in Tool condition monitoring. But found  the  model  was 
not effective in hesitating approximation errors. Artificial 
neural networks were used to predict the tool wear using  
the images of the tool [25]. Chungchoo and Saini [26] used 
a fuzzy neural network (FNN) algorithm to estimate the 
average flank and crater wear using the acoustic emission 
and cutting forces. All the  data  collected  using  sensors 
are majorly time series data in which anomaly detection     
is one of the major concerns. Detection of anomalies in 

time series data is not a new issue [27]. Kamat, P & 
Sugandhi, R point out the advantages of having an effective 
anomaly detection technique in place has many advantages 
such as reduction in unplanned downtimes of the machine, 
optimum utilization of resources for carrying out predictive 
maintenance, saving of financial expenditure on unplanned 
scheduling of maintenance activities, etc. [28]. Hu et al. 
proposed a fault detection model in industrial equipment 
using the hybrid Boltzmann machine algorithm with a 
multi-grained scanning forest technique [29]. Madhusudana 
et al. implemented the J48 decision tree  algorithm  for  
fault classification of healthy and faulty conditions of face 
milling tools and achieved an accuracy of around 81% [30]. 

Table 1 describes some of the majorly used AI al- 
gorithms in recent papers for tool wear monitoring with   
the input parameters provided to the algorithms, features 
captured, sensors used, output parameters monitored during 
the manufacturing processes. Most of the work highlight 
the use of sound,force and vibration sensor  to  monitor  
tool wear. Data captured was in the form of vibration,  
audio files and images of wear. Neural Networks such as 
Convolutional Nueral Networks and Autoencoders exhibited 
good performance. 

3. METHODOLOGY 
Figure 5 depicts the methodology used in this paper.     

In milling operation, tools have many cutting edges, and  
it’s  very difficult to measure the flank wear of the tool.  
The dataset used in this paper is based on the machining 
experiments which were carried on the wax material (Size: 
2”x 2”x1.5”) at the University of  Michigan  smart  lab  
[35]. Certain pre-processing techniques were applied to the 
dataset. Further, the processed data was trained on three 
separate techniques Convolutional Neural Network(CNN), 
Autoencoder-Long Short Term Memory(AE-LSTM), and k- 
Nearest Neighbor (k-NN). The hyperparameters and thresh- 
olds were tuned to improve the accuracy of the models. In 
the end, a comparative analysis of all the three techniques 
wrt accuracy, precision, recall, and f1-score were made. 

A. Data Acquisition & Preprocessing: 
Figure 6 shows the data distribution histogram of the 

experiments.In total, 18 experiments were carried out, 8 
with unworn tools and 10 with worn tools. The S-shape 
shown in Figure 7 was produced on the wax for every 
experiment. There are 47 features in the dataset. The major 
parameters are coordinates, speed, and acceleration in x,y,z 
coordinates, power, and current input and output parameters 
of each motor. The values of each experiment were stored 
in comma-separated values, CSV files, separately. The data 
pre-processing is mainly involved in data reduction, where 
all the data from the normal experiments is used, butthe 
faulty data available is about 30% (total worn data is 
13311). The distribution for training data can be seen in 
Figure  8,  where  normal  (÷75%)  and  faulty  (÷25%) data 
used is in the ratio of 3:1, respectively. The data is thenap- 
pendedintoCSV files in the said ratio and then normalized 
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Figure 5. System  Methodology 

 
 
 
 
 

 

Figure 6. Data Distribution graph of wornunworn experiments 
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TABLE I. MAJOR AI TECHNIQUES USED IN TOOL WEAR MONITORING 
 
 

AlgorithmInput Parameters Features cap- 
tured 

Sensors Used Output 
Parameters 

Application 
/Machinery/ 

Process 
tion/Limitation 
paper 

Contribu- 
of the 

 

ANN 
[31] 

depth-of-cut,feed 
speed 

Images (flank 
wear) 

Force/torque 
sensors 

Flank wear Drilling- 
Aerospace 
assembly 

Fractal and time-domain 
analysis improved the 
robustness of the ANN 
model by providing an 
overall RMSE(root mean 
squared error value) equal 
to 0.00032 and an average 
RMSE equal to 0.00113. A 
condition-based monitoring 
strategy instead of a time- 
based can improve the 
accuracy further. 

CNN 
[32] 

depth-of-cut, 
feed, speed 

Audio(sound) Microphone Tool wear Milling (vertical 
milling center) 

CNN was able to decode 
and classify audio signals 
effectively with an accuracy 
as high as 99.5%. The ac- 
curacy of the  model  can  
be further probed on data 
collected in noisy environ- 
ments. 

Autoen 
coder[33]

depth-of-cut, 
speed 

Spindle 
current 
signals 

LT 108-S7 
closed-loop 
Hall current 
sensor 

Tool wear CNC milling ma- 
chine 

The         stacked        sparse 
autoencoder algorithm 
achieved 98.79% accuracy. 
Multi-parameter      fusion 
of variable speed was not 
considered during this study 

SVM 
[34] 

depth of cut, 
feed, speed 

Vibrations 
and sound 

Piezotronics 
PCB 
accelerometer 

minor flank 
face images 

Micro milling The technique achieved 
97.54%   accuracy    with 
the help of the Recursive 
Feature Elimination (RFE) 
technique. However, the 
approach was a supervised 
one. 

 
using a Scalar function which helps scale down the values 
to reduce computation with large values enabling us to 
reduce computation and training time. All three algorithms 
are flexible and robust; hence no further pre-processing 
techniques were required. 

B. Model Construct: 
1) Conventional Neural Network (CNN) 

Convolutional Neural Networks came as a new and inno- 
vative method to draw higher and deeper features from the 
data. Figure 9 depicts the architecture of a one-dimensional 
CNN technique. CNN was developed for classifying 2D 
data where it accepts pixels of an image to learn the 
features. CNN works the same way irrespective of the 
dimension. The distinguishable factors are the structure of 
the data fed to the network and how the filters or kernels  
move across the data to extract and learn the characteristics 

of the data. So 1D CNN extracts features from the sequence 
data and maps the internal features of the sequence. They 
have proved to be effective for drawing out attributes from 
fixed-length sequences or time-series data regardless of the 
feature’s location to be extracted from the entire data [36]. 
The filters slide vertically and horizontally over the grid to 
consider every pixel for convolution to draw out features. 
The resulting matrix is the summation of the product of 
each filter-tile pair which gives the output matrix. Here the 
2D network uses small filter sizes to extract features. On the 
other hand, the 1D network allows large filter sizes like 7  
or 9. But the difference is that in a 3x3 filter for 2D CNN, 
the number of feature vectors is 9, whereas in 1D CNN,      
a window size of 3 will contain only 3 feature vectors. 
Hence it is easy to afford large kernel sizes. For down- 
sampling, the convolved features to save processing time, 
like 2D CNN even 1D CNN, use pooling layers that help 
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Figure 7. S-Shaped Wax  Artifact 
 

Figure 8. Training Data  Distribution 

 
reduce the dimensions of the feature map while retaining 
the most crucial feature details. Generally, max pooling is 
used for this purpose. When it comes to 1D CNN, they 
require simple array operations where 1D array replaces   
2D matrix (for 2D networks) both kernels and feature maps, 
making the computational complexity low compared to 2D 
CNN. They have relatively less intricate architecture than 
2D CNN, which allows them to derive valid and germane 
features from 1D data. Hence with a less condensed model 
architecture, the computational time is less, and there is     
no additional hardware required for training 1D networks. 
Considering two signals f and g with n denoting the index, 
the 1D spatial convolution the formula is given by equation 
(1): 

 

( f ∗ g)[n] = 
. 

=− ∞ f [m] ∗ g[n − m](1) 
 

 

model, gives a probability value of 0 to 1. Both element 
extraction and categorization are melded into one proce- 
dure that can be streamlined to increase the classification 
rate. This gives asignificant edge to 1D CNNs, which can 
bring low computational intricacy. The main activity with a 
critical expense is an order of 1D convolutions, which are 
direct weighted aggregates of two 1D arrays [37]. In this 
study, ‘Sequential (),’ a Functional API, is used for building 
the 1D CNN model layer-by-layer. Since it is simple to 
describe models where layers are linked to more than just 
previous and next layers, the functional API allows for far 
more scalable models to be created.Linking layers to any 
other layer can be done with ease. It also helps to construct 
complex networks. 

2) k-Nearest Neighbors algorithm (k-NN) 
The k-nearest neighbor algorithm is a simple supervised 

machine learning algorithm. It is computationally  cheap 
and takes very little time to train compared to CNNs. It 

The fully connected layers process raw data and ’learn to 
extract’ characteristics used for categorization. These layers 
have all nodes from the preceding layer connected to all the 
nodes in the next layer. They are responsible for defining 
the characteristics extracted through the convolutions. The 
final fully connected layer consists of an activation function, 
which, for each classification mark to be expected by the 

is widely used for classification problems, but it can also  
be used in predictive regression problems. The ‘k’s in the k- 
NN algorithm represent the number of neighbors taken into 
consideration to take a vote. The value of k influences the 
performance of the algorithm and the accuracy as it helps 
make boundaries to differentiate between classes. Usually, 
the algorithm is run several times with varying values of 
k.  Then  the  value  of  k,  which  has  the  least  number  of 

m
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Figure 9. A General 1D CNN Architecture 

 
wrong classifications, is chosen. The right K must be able 
to predict the data that it has not seen before. Typically, the 
prediction is unstable when the value of k is 1. As the value 
increases, the prediction becomes stable, but after a certain 
value, it again starts destabilizing. At this point, the value 
of k is pushed too far.  For a tie-breaking vote for labels,  
the value of K chosen is an odd integer. The value of k 
considered in this study is 5. k-NN relies on labelled data 
and works on the assumption that similar things exist in 
close proximity. It keeps track of all the cases and catego- 
rizes new ones using the similarity metric. It is also called 
case-based reasoning, example-based reasoning; instance- 
based learning; memory-based learning; lazy learning. It 
functions to predict classification labels for fresh incoming 
unlabelled observations by memorizing observations within 
a classified data set. It makes predictions based on how 
similar training observations are to the test set. The more 
similar the values, the better are the classification accuracy. 
The distance calculated between two points is usually the 
Euclidean distance. It assigns the point to the class among 
its k nearest neighbors. Considering two points p and q,   
the formula for calculating the distance in n dimensions is 
given by equation (2): 

 
d(p, q) = d(q, p) =  

,
[(q  − p  )]2  + [(q  − p  )]2  + (q  − p  )]2 

observations. Also, with more number features, it becomes 
hard for the algorithm to classify correctly. Hence the most 
relevant features are to be preserved, which must have 
distinguishable subgroups. Also, k-NN is usually used to 
train small data sets as the computation time increases 
drastically with larger data sets. For this study the model   
is built by instantiating k nearest neighbour objects. This 
model is used for training and classification on the training 
and test set, respectively. The weight parameter of the model 
used was uniform, where all points in each neighborhood 
are equally weighted. The metric used was ‘Minkowski,’ 
which was equivalent to the standard Euclidean metric. 

3) Autoencoder-LSTM Model 
A typical Autoencoder-LSTM framework  is  depicted 

in Figure 11. An autoencoder is an unsupervised neural 
network that uses the encoding-decoding mechanism to 
learn from compressed representations of the input and 
reconstruct the input at the output layer side. The recon-  
struction of the input occurs at the midpoint. The model 
trains itself automatically on the features  learned  during 
the encoding process; hence it is also an automatic feature 
extraction model. LSTM-Autoencoder model is a hybrid 
variant of the basic recurrent neural network setup for 
prediction over sequential data. For a given sequential data, 
the encoder-decoder LSTM is modeled to read the input 

1 1 2 2 

 
 

n         n sequence, encode the sequence, decode it and reconstruct  
it. The reconstruction loss is calculated at every step, and 
loss above a certain threshold can predict outliers in the 

= n [(qi − pi)]2) ................ (2) 

Figure 10 depicts the generic flowchart of the K-nearest 
neighbor algorithm. The algorithm starts with the initial- 
ization of the “k” number of clusters. Next, the distance 
between the test sample and training samples is computed, 
and the distances are sorted.A new k is initialized based on 
minimum distance, and outliers in data are observed. One 
of the major drawbacks of the k-NN algorithm is that each 
K neighbor is equally essential. Naturally, the closer the 
unknown point is to the neighbor, the greater the probability 
that it will belong to that category. [38]. k-NN needs the data 
to be noise-free or with significantly less noise. The data has 
to be labelled for it memorizes the feature to classify new 

sequences. This makes the Autoencoder-LSTM model an 
effective technique for detecting anomalies such as the pre- 
diction of tool wear. Equation (3) depicts the mathematical 
formulae to calculate the anomaly score in autoencoders. 
For input X, the objective function is to find weight vectors 
for the encoder and decoder to minimize the reconstruction 
error. 

ϕ : X → h 

φ : h → X′ 

h = σ(Wx + b) 

ϕ, φ = argmin ∥ X − (φ◦ϕ)X ∥2
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Figure 10. Steps for KNN Implementation 

 

Anomalyscore =  f (X′–X) ............................... (3) 

where 
h= latent variable/representation 

σ = activation f unctionsuchassigmoid/RELU 

W=Weight matrix, b= bias vector 

 
4. RESULTS AND DISCUSSION 

The training graphs of CNN and AE-LSTM are depicted 
in Figure 12. A good fit is described as a training and 
validation loss that gradually decreases to a stable point 
with a small difference between the two final loss values. 
The graphs indicate that both the models fit well on the 

training and the testing data. 

To  validate the efficiency of all three models, a test    
set is utilized, which has 2995 normal cases and 1000  
faulty cases. The confusion matrix is computed to define  
the output of the models on the test data. The true values   
of this test data are known to determine the performance of 
the algorithm. Most output metrics like accuracy, precision, 
etc., are calculated from the confusion matrix. From the 
matrix, we get: 

True Positive (TP): observation is classified as normal 
when it indeed is normal 

False Negative (FN): observation is classified as 
faulty when it indeed is normal 

• 

• 
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Figure 11. Autoencoder-LSTM  framework 
 
 

(a) CNN (a) CNN 
 
 

 

(b) AE-LSTM 

Figure 12. Training and Validation Loss of Deep Learning Tech- 
niques 

 
 

True Negative (TN): observation is classified as faulty 
when it indeed is faulty 

False Positive (FP):observation is classified as normal 
when it indeed is faulty 

The accuracy can be calculated by adding the number  
of true positives and negatives and dividing this sum by   
the total samples in the test set. Hence the accuracy values 
can be computed for CNN, AE-LSTM, and k-NN  from 
their confusion matrices shown in Figure13 (a), (b),and(c), 
respectively. CNN achieved good performance by identify- 
ing the correct values of true positives and true negatives 
and achieving an accuracy of 93%. The AE-LSTM model 
had a slightly lower accuracy of 87% compared to CNN, 
and lastly, the k-NN model achieved an accuracy of 74%. 
AE-LSTM had the least number of false positives (FP) 
compared to k-NN and CNN because of the LSTM layer, 
capable of learning long-term dependencies and retaining 
better characteristics. But CNN had the least number of 
false negatives (FN) among the three techniques used in 
this study. Accessing the models on the accuracy values 

(b) LSTM-AE 
 

 
(c) k-NN 

 
Figure 13. Confusion Matrixfor (a) CNN, (b)AE-LSTM and (c) k- 
NN techniques 

 
 

alone doesn’t yield hard facts to base a strong conclusion. 
Therefore further analysis was carried out. 

For further evaluation of the performance of the models, 
classification reports are generated for each algorithm. In 
certain cases of imbalance dataset, some extra parameters 
such as precision, recall, and f1-score are used to analyze 
the performance of a model. Precision can be defined as  
the relevant predictions among all the classified values. 
Precision is important when getting the prediction wrong   
is costlier than the cost of getting the right prediction. The 
following formula can give precision: 

• 

• 
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(a) Precision score comparison 
 

(b) Recall score comparison 
 

 
 

(c) F1-score comparison 

 
Figure 14. Performance comparison over normal and faulty data of 
(a) CNN, (b)AE-LSTM and (c)k-NN techniques techniques 

 
 

Precision = 
TruePositives 

(3)
 

TruePositives + FalsePositives 
Next is Recall, which can be defined as the ratio of the 
model’s predicted correctly to the true labels. The recall    
is crucial if we do not want to miss any prediction at the 
cost of a wrong prediction. Recall can be formulated as 
follows: 

Recall =
   TruePositives  
TruePositives + TruePositives + FalseNegatives 

(4) 
Finally, F1- score is the harmonic average of Precision and 

(a) CNN 
 
 

 
(b)LSTM-AE 

 

 
 

(c) k-NN 

 
Figure 15. ROC-AUC curves for (a) CNN, (b)AE-LSTM and (c) k-
NN techniques 

 
 

Figure 14(a) validates that the precision values for Normal 
and fault samples are highest for CNN. In Figure 14(b),   
the recall measures for fault are compared where CNN and 
AE-LSTM out-perform the k-NN by a significant margin  
as k-NN is easily susceptible to noise and insensitive to 
small changes. Since the F1 scores are a weighted average 
of precision and recall, CNN has a better score than k-     
NN and AE-LSTM and intuitively helps access the models 
better. Figure 14(c) shows the comparison of F1 scores. 

To visualize the performance of the classification, the 
Area Under the Curve (AUC) – Receiver Operating Char- 
acteristic (ROC) curve is used. It tells us the capability of 

Recall.  
F1score = 

2X(PrecisionXRecall) 
(5)

 
Precision + Recall 

the model to distinguish between the classes. Figure 15 
depicts the ROC curve for all three techniques.The ROC 
curve is obtained by plotting the TP rate or the sensitivity 

Tables 2,3, and 4 show the precision, recall, and  F1  
scores of the techniques used. Also,Figure 14 presents a 
performance evaluation and a comparative visualization in 
terms of classification scores of all the three models in the 
case of normal (unworn tool) and fault (worn tool) data. If 
the precision is high, then the model was able to predict 
more true positives. This relates to a low false positive rate. 

as a function of the FP rate. It shows the competence of the 
model at different classification thresholds.An AUC value 
close to one signifies that it is a good model and is capable 
enough to classify the observations. So higher the AUC 
better is the model performance. As shown in Figure 15(a), 
the CNN techniquehas a good AUC value of 0.935. The AE- 
LSTM AUC curve shown in Figure 15(b) is more gradual 
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TABLE  II. CLASSIFICATION SCORES FOR CNN 
 
 

CNN Precision Recall F1-Score Support 
 

Normal (0) 0.99 0.90 0.94 2995 
Fault (1) 0.77 0.97 0.86 1000 
Macro Average 0.88 0.94 0.90 3995 
Weighted 
Average 

0.93 0.92 0.92 3995 

 
TABLE III. CLASSIFICATION SCORES FOR AE-LSTM 

 
 

AE-LSTM Precision Recall F1-Score Support 
 

Normal (0) 0.82 0.97 0.89 2395 
Fault (1) 0.70 0.24 0.35 664 
Macro Average 0.76 0.60 0.62 3059 
Weighted 
Average 

0.79 0.81 0.77 3059 

 
TABLE IV. CLASSIFICATION SCORES FOR K-NN 

 
 

k-NN Precision Recall F1-Score Support 
 

Normal (0) 0.86 0.96 0.91 2995 
Fault (1) 0.81 0.53 0.64 1000 
Macro Average 0.83 0.74 0.77 3995 
Weighted 
Average 

0.85 0.85 0.84 3995 

 
than CNN but attains a good cure compared to k-NN in 
Figure 15(c). The curves signify that the CNN model has a 
better True positive rate and can distinguish samples better 
than the other models used in this study.  Considering all  
the proofs, CNN has proved to have a high tolerance for 
noise, draw out better characteristics, and better overall 
execution in this research. The required internal structure 
can be discovered and extracted to automatically produce 
deep data characteristics using convolution and pooling 
operations [39]. 

5.C ONCLUSION 
The authors carried performance analysis of the CNN, 

AE-LSTM, and k-NN techniques on the Smart Michigan 
Lab milling dataset. CNN and AE-LSTM are deep learning 
techniques as they contain more than one hidden layer. k- 
NN is a machine learning technique with shallow structure. 
The evaluation was done based onthe confusion matrix, and 
accuracy was calculated. For further comparison, precision, 
recall, and f1-score of all the three techniques on healthy 
and faulty data were also  calculated.  ROC-AUC  curves  
for all three techniques were also plotted. The following  
conclusions can be derived: 

 
1) The accuracy of the CNN model was the highest at 

93%, followed by AE-LSTM at 87% and k-NN at 
74%. 

2) AE-LSTM had the least number of false positives 

(69) compared to the other two techniques. However, 
CNN had the least number of false negatives (34). 

3) The classification measures of precision, recall, and f1-
score on normal and faulty data proved  that  CNN 
performed better than AE-LSTM and k-NN 
techniques. 

This paper presents tool wear monitoring in milling using 
the basic variant of CNN and AE-LSTM techniques. CNN 
model proved to have better accuracy in identifying true 
positives, and the AE-LSTM model works well with se- 
quential time-series data. The authors conclude from this 
study that deep learning approaches have better capabilities 
of fault classification over time series data due to their 
automatic feature extraction capabilities. Also, the nodes   
in the hidden layers of deep learning techniques can auto- 
adjust their weights for better prediction accuracy depend- 
ing on the feature importance. Therefore,  in  the  future, 
the authors propose applying the ensemble Convolutional 
Autoencoder-LSTM approach to improve the model’s ac- 
curacy further and predict the life expectancy of the tool   
as ensemble models mostly produce better predictions to    
a single model. Also, the models can be reused as part       
of transfer learning for monitoring tool wear in case  of 
other manufacturing processes such as drilling and turning. 
Using some pre-trained models and fine-tuning them for  
the problem at hand, Transfer Learning (TL) algorithms can 
help boost model efficiency.This eliminates the need to train 
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the machine learning algorithm from the ground up, saves 
massive computations, and reduces the amount of training 
data needed. 
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