

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Aug-2021)

E-mail: engranaabubakar@gmail.com, sameenfatima35@gmail.com, drshafiq@uosahiwal.edu.pk, ranaabubakar@ieee.org

 http://journals.uob.edu.bh

An Efficient Secure Auditing Framework for Big Data Storage

in Cloud Computing Environment

Sameen Fatima1, Dr. Shafiq Hussain2 and Rana Abu Bakar3

1 Department of Computer Science & Engineering, University of Engineering & Technology, Lahore, Pakistan

2Department of Computing Sciences, University of Sahiwal, Sahiwal, Pakistan
3Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Thailand

Received 26 Nov. 2020, Revised 28 Mar. 2021, Accepted 03 Apr. 2021, Published 5 Aug. 2021

Abstract: Cloud storage enables to use and manage remote data efficiently but increase the risk of tampering data. This proposed paper

a public auditing-based framework to develop a novel system for secure data auditing in cloud storage. We build a dynamic index table

with no requirement to transfer elements in the update operation for inserting or deleting. If data is not incorporate in the cloud, the

auditor from a third party can identify the corrupted block. The authorization is implemented between cloud storage and third-party to

prevent dos attack. The proposed model is flexible, efficient, and secure as per detailed analysis and simulation results.

Keywords: Cloud Computing, Big Data, Secure, Indexing, Auditing

1. INTRODUCTION

Cloud computing's progress is a rapidly growing
platform for computing business and has many advantages,
including large volume, less expensive, and high
scalability. Most of users are eager to upload their massive
amount of data for storage and analysis to cloud servers and
delete their data from local servers whenever they want to.
Despite cloud storage ease, storing data on cloud servers
without original content can cause many security issues.
Cloud servers also experience different malicious attacks
and failures of hardware or software [1-3]. The CSP did not
inform the clients about the existence of faults or attacks.
Worse though, to save maintenance costs or cloud storage
space, cloud service providers may abandon information
that users do not or do not have access to [4][6]. Cloud
Service Providers must also provide evidence to verify that
data is appropriately stored on the cloud. In the cloud
computing environment most challenging and significant
problems is ensuring data protection on cloud servers. Data
auditing methods may allow users to check the quality of
the data they store without accessing it on remote cloud
servers. The data audit method has two parts based on the
position of the verifier:

• Private Auditing

• Public Auditing

Users checked the data integrity in private auditing
methods [7][9] and this increases the overhead to
consumers they can’t afford to pay. Since public audit
methods enable the audit process to be performed by any
public verifier having a public key for the consumer. It
usually involves an expert third-party auditor (TPA) to
carry out the verification mission. For examining the data
quality in the cloud, several auditing methods are
implemented. Nonetheless, when the data is changed, these
methods cannot verify which block is corrupt. Moreover,
as data needs to be modified regularly, there is no reliable
authenticated data system to achieve accurate auditing.
However, it is important to introduce an effective cloud
public auditing method for dynamic cloud storage. The
following research proposes a novel dynamic-public
auditing framework by implementing a novel data
framework called the Dynamic Index Table (DIT). Without
the adjustments of the elements, our method will attain
dynamic updating via DIT. Our framework can also assess
missing and corrupt block, when data integrity is unable to
achieve. Following describe our contributions:

• We implement a dynamic public auditing process
to verify the corrupt block.

• The Dynamic Index Table (DIT) is a critical
authenticated data structure used to hold the block
properties to assist TPA during data auditing and
modifying without transfer items.

http://dx.doi.org/10.12785/ijcds/100175

mailto:drshafiq@uosahiwal.edu.pk

818 Sameen Fatima et al: An Efficient Secure Auditing Framework for Big Data Storage in Cloud …

http://journals.uob.edu.bh

• The security of the method which is proposed is

proved and verified. The findings indicate that the proposed

method is much more effective than others.

This whole paper is structured according to this.

Section 2 contains the detailed literature. Section 3

elaborates the framework concept, the threat model, and the

method's design objectives. Section 4 is preliminaries. The

proposed method is presented in depth in Section 5. The

Section 6 reveals the security analysis, and section 7

indicates the performance evaluation of the proposed

method. Lastly, this paper is concluded in Section 8.

2. RELATED WORK

To date, several standard public auditing methods are

introduced to check out the data integrity, which is stored

in an un-trusted environment. The first public audit

method [10] implemented the Provable Data Possession in

2007. It enables any public verifier to verify the data

quality devoid of recalling. After all, only the integrity of

static data can be verified by this method. Later, they

suggested another method [11] to inspect the dynamic data

in the cloud servers depending on the PDP symmetric

critical method. This model enables deletion and dynamic

alteration operations, but it does not make it useful during

insertion operations. An authenticated data structure is

often implemented to increase the update performance. In

his DPDP method, Tamassiaet al. [12] implemented a skip

list authentication. Wang et al. [13] later introduced a

complex, Merkle Hash Tree (MHT)-based public audit

method. The device could perform complicated data

operations, but it generates multiple processing and

overhead communications during the process of

verification. Method [14] implemented the Index Hash

Table (IHT) stored in the method on the TPA side to assist

with dynamic verification. It is more efficient compared to

other systems in terms of production and communication

costs. After all, an IHT is a sequential data structure in the

update process and concluded in a decrease in the device's

performance. In 2013, an index table (ITable) was

introduced by Yang and Jia [15] to store the abstract

block's details in each block. It is successful in refraining

from a replay attack. All block tags after deletion or

insertion need to be recalculated in the insert and delete

operations as these block indexes shift. With useful

verifiable, fine-grained updates, Liu et al. [16] put forward

an approved Big Data audit method. In 2017, the author

[17] subsequently implemented a cloud storage audit

method based on Dynamic-Hash-Table. Gan et al. [18]

developed a powerful and robust algebraic signature audit

method for outsourced Big Data in 2018. The authors [19]

have introduced storage for the cloud to look upon the big

shared data. Pan et al. [20] introduced a method for

integrity testing on mobile devices' IoT in 2020. In [41],

Homomorphic message authentication code (MAC) and

homomorphic Signature are combined to form a new

auditing scheme, but assigning a key to the user is a

problem. In [42], Merkle Hash Tree and B* tree are

combined to form a new auditing scheme that includes

complicated data operations. However, during the

integrity testing process, all methods' data structures do

not guarantee a replay attack. It is, therefore, necessary to

establish a more efficient audit method to achieve

complicated services for integrity verification. In Table 1,

different methods are compared with each other:

TABLE 1. CONTRAST BETWEEN DIFFERENT SCHEMES

Method Dynamic

Auditing

Batch

Auditing

Authorized

Auditing

Data

Structure

[11] ✓ × × ×

[12] ✓ × ✓ ×

[13] ✓ ✓ ✓ ×

[14] ✓ ✓ ✓ ×

[15] ✓ ✓ × ×

[16] ✓ × ✓ ✓

[17] ✓ ✓ ✓ ×

Proposed ✓ ✓ ✓ ✓

Several different integrity verification systems have

been placed everywhere now and have caused cloud

computing to boost security. Since the data which is stored

on the cloud for sharing will encounter many different

privacy challenges.

Most studies reported that retain auditing protocols to

avoid leakage of privacy [2],[21]-[28]. Simultaneously,

lightweight methods [29]-[35] are being implemented to

advance the IoT and Smart devices to meet the audit

process's productivity needs. Simultaneously, lightweight

methods [29]-[35] are being implemented with the

advancement of the IoT and smart devices to meet the

productivity needs of the audit process. Over the last few

years, many methods have been proposed on attribute-

based and identity-based encryption to explain data

sharing with other registered clients in the cloud [36]-[42].

3. SYSTEM MODEL, SECURITY

REQUIRENMENT & ARCHITECTURE

As shown in fig.1, we define the system model. In our

model, there are four objects: client (USER), third-party

auditor (TPA) and key generation center (KGC), and cloud

 Int. J. Com. Dig. Sys. 10, No.1, 817-827 (Aug-2021) 819

http://journals.uob.edu.bh

service provider (CSP). The user creates and outsources

vast quantities of information to cloud servers (CS), which

are extremely capable of maintaining a customer's Data.

CSP operates servers in the cloud and provides users with

access everywhere with a connection on the Internet. TPA

is a body approved by the user and has a lot of knowledge

and check data integrity efficiently and accurately.

Figure 1. Illustration of Model

We assume that in our proposed method CSP and

TPA are both in semi-trusted zone. Since he might be

curious about user details, TPA is semi-trusted. The

framework must maintain TPA's outsourced data

protection. CSP is semi-trusted as it can initiate forge

attack or replace TPA attack for economic reasons if any

data is corrupt or lost on cloud servers.

Following are the security requirements:

Auditing in public: Publicly, TPA will check the

credibility of the user's outsourced data.

Auditing authorization: To avoid a replay attack, just the

approved TPA can initiate an auditing challenge.

Privacy of Data: In public auditing procedures, the

content of data stored on cloud servers is not learned by

TPA.

Unforgeability: The block tags for auditing can be

generated only by the user.

Integrity of storage: Only if data blocks are stored

correctly by CSS and the related block tags will integrity

verification is accomplished.

Following properties should be achieved by our method:

Requirement of Security: Data Privacy, Authorization,

and unforgeability could achieve by our method.

Lightweight Operations: The cost of communication and

computations are reduced in our auditing method.

Effectiveness: User’s authorization should effectively

achieve the data auditing process.

4. PRELIMINARIES

The perliminaries of the proposed method is stated below

A. Notations:

 Description of notations used in paper is represented in

Table 2:

TABLE 2. NOTATIONS OF PROPOSED METHOD

Notation Meaning Notation Meaning

𝔾1, 𝔾2 Multiplicative

Group

𝐹 Plaintext of file

𝑒 Bilinear Map 𝑀 Encrypted file

𝐻, ℎ, 𝜋 Secure Hash

functions

𝑚𝑎𝑐𝑖 Encrypted blocks

𝑝 Prime order of

group

𝛿𝑖 Block tag

𝐺𝑝 Generator of

𝔾1

𝑃 Integrity proof

𝑠𝑘 User Secret

Key

𝑈𝑖𝑑 User identity

𝑝𝑘 User Public

Key

𝑠𝑖𝑔𝑃 Authorization

𝑎 TPA Secret

Key

𝐶ℎ𝑎𝑙𝑙𝑇 Challenge

𝑤 TPA Public

Key

𝜃 Group system

B. Bilinear Map:

Let G be a (multiplicative) group and there are G1 → G2

be a group homomorphism, and having same large prime

order 𝑞 and 𝔾 is a generator of 𝔾1. A bilinear map from

G1 × G2 to G1 is a function e which is denoted by

𝑒: 𝔾1 × 𝔾2 → 𝔾1. Following are some properties:

Computability:

∀𝑢, 𝑣 ∈ 𝔾1, an evaluation Algorithm 𝑒𝐴(𝑢, 𝑣).

Binarity:

∀𝑎, 𝑏 ∈ 𝑍𝑞 , ∃𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒𝐴(𝑢, 𝑣)𝑎𝑏

820 Sameen Fatima et al: An Efficient Secure Auditing Framework for Big Data Storage in Cloud …

http://journals.uob.edu.bh

Non-degeneracy value:

𝑒𝐴[𝐺𝑝, 𝐺𝑝] ≠ 1

Security:

The most difficult task is to evaluate Discrete Logarithm

in 𝔾1.

C. Complex Assumptions:

Discrete Logarithms:

Let’s assume that 𝑔 generates 𝔾, a multiplicative cyclic

group having a prime factor of 𝑞. Probabilistic polynomial

time doesn’t exist on inputting𝑦 ∈ 𝔾, that resulted a value

𝑥 ∈ 𝑍𝑞
∗ where𝑔𝑥 = 𝑦.

Computational Diffie-Hellman:

Let’s assume that 𝑔 generates 𝔾, a multiplicative group

having a prime order of𝑞. Probabilistic polynomial time

doesn’t exist on inputting𝑔𝑥𝑔𝑦 ∈ 𝔾, that resulted a value

𝑔𝑥𝑦 ∈ 𝔾 .

5. CONSTRUCTION OF SECURE METHOD

Following are the construction steps of the proposed

method:

A. Dynamic Index Table (DIT):

A data structure DIT, which is abbreviated as Dynamic

Index Table, is implemented to attain efficient public

integrity. DIT is constructed using static linked list to

prevent the movement of element whenever blocks are

inserted/deleted. Dynamic Index Table is an array which

is single dimensional and includes following:

• “Block identity” represented by "𝐵𝑖𝑑𝑖"

• “Hash Value of Block Number” represented by

"𝐻𝑎𝑠ℎ𝑖"

• “Time Stamp” represented by "𝑇𝑖"

• “Version of Block” represented by "𝑉𝑖"

• “Static pointer which points to next block”

represented by "𝑁𝑒𝑥𝑡𝑖"

Before data integration, 𝐻𝑎𝑠ℎ𝑖 is used to check

which block is corrupted. To avoid attacks Time Stamp 𝑇𝑖

and version of block 𝑉𝑖 are used, 𝑁𝑒𝑥𝑡𝑖 points to the next

block for linking different files. For instance,𝑁𝑒𝑥𝑡𝑖 is 3

means the succeeding data block of 𝑚2 is 𝑚3 and when

𝑁𝑒𝑥𝑡𝑛 = 0 that means that 𝑚𝑛 is the last and final block.

The initial information of Dynamic Index Table is

elaborated in Table 3:

TABLE 3. INITIAL INFORMATION OF DYNAMIC INDEX TABLE

Block 𝑩𝒊𝒅𝒊 𝑯𝒂𝒔𝒉𝒊 𝑻𝒊 𝑽𝒊 𝑵𝒆𝒙𝒕𝒊

1 1 𝐻(𝑚𝑎𝑐1) 𝑇1 1 2
2 2 𝐻(𝑚𝑎𝑐2) 𝑇2 1 3
3 3 𝐻(𝑚𝑎𝑐3) ⋯ ⋯ ⋯
4 4 𝐻(𝑚𝑎𝑐4) 𝑇4 1 5

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑖 − 1 𝑖 − 1 𝐻(𝑚𝑎𝑐𝑖−1) 𝑇𝑖−1 1 𝑖

𝑖 𝑖 𝐻(𝑚𝑎𝑐𝑖) 𝑇𝑖 1 𝑖 + 1
𝑖 + 1 𝑖 + 1 𝐻(𝑚𝑎𝑐𝑖+1) 𝑇𝑖+1 1 𝑖 + 2

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑛 + 1 𝑛 + 1 𝐻(𝑚𝑎𝑐𝑛+1) 𝑇𝑛+1 1 𝑛

𝑛 𝑛 𝐻(𝑚𝑛) 𝑇𝑛 1 0

After deletion of block 𝑚𝑖, the value 𝑁𝑒𝑥𝑡 𝑖−1 converted

to 𝑖 + 1 froma𝑖 which indicates that the upcoming block

data is 𝑎𝑚𝑖+1. Furthermore, the value of 𝑁𝑒𝑥𝑡 𝑖 is set to

−1 which indicates that 𝑚𝑖 is deleted and new one stored.

TABLE 4. WHEN 𝑚𝑖 IS DELETED FROM DIT

Block 𝑩𝒊𝒅𝒊 𝑯𝒂𝒔𝒉𝒊 𝑻𝒊 𝑽𝒊 𝑵𝒆𝒙𝒕𝒊

1 1 𝐻(𝑚𝑎𝑐1) 𝑇1 1 2

2 2 𝐻(𝑚𝑎𝑐2) 𝑇2 1 3

⋯ ⋯ ⋯ ⋯ 1 4

4 4 𝐻(𝑚𝑎𝑐4) ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑖 𝑖 𝐻(𝑚𝑎𝑐𝑖) 𝑇𝑖 1 −1

𝑖 + 1 𝑖 𝐻(𝑚𝑎𝑐𝑖+1) 𝑇𝑖+1 1 𝑖 + 2

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑛 + 1 𝑛 + 1 𝐻(𝑚𝑎𝑐𝑛+1) 𝑇𝑛+1 1 𝑛

𝑛 𝑛 𝐻(𝑚𝑎𝑐𝑛) 𝑇𝑛 1 0

After 𝑚𝑎𝑐𝑖+1 a new block 𝑚𝑎𝑐𝑖
′ is inserted into storage,

the value changes from𝑛𝑒𝑥𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖+1 to 𝑖 and old 𝑁𝑒𝑥𝑡𝑖

is changed to 𝑖 + 1. With the updation of corresponding

static pointer, the information about 𝑚𝑖 is added to the last

position.

TABLE 5. WHEN A NEW BLOCK 𝑚𝑖
′ IS INSERTED IN DIT

Block 𝑩𝒊𝒅𝒊 𝑯𝒂𝒔𝒉𝒊 𝑻𝒊 𝑽𝒊 𝑵𝒆𝒙𝒕𝒊

1 1 𝐻(𝑚𝑎𝑐1) 𝑇1 1 2

2 2 𝐻(𝑚𝑎𝑐2) 𝑇2 1 3

3 3 𝐻(𝑚𝑎𝑐3) ⋯ ⋯ ⋯

⋯ ⋯ ⋯ 𝑇4 1 5

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑖 − 1 𝑖 − 1 𝐻(𝑚𝑎𝑐𝑖−1) 𝑇𝑖−1 1 𝑖 + 1

𝑖 𝑖 𝐻(𝑚𝑎𝑐𝑖
′) 𝑇𝑖 1 −1

𝑖 + 1 𝑖 𝐻(𝑚𝑎𝑐𝑖+1) 𝑇𝑖+1 1 𝑖 + 2

 Int. J. Com. Dig. Sys. 10, No.1, 817-827 (Aug-2021) 821

http://journals.uob.edu.bh

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑛 − 1 𝑛 − 1 𝐻(𝑚𝑎𝑐𝑛−1) 𝑇𝑛−1 1 𝑛

𝑛 𝑛 𝐻(𝑚𝑎𝑐𝑛) 𝑇𝑛 1 0

B. Integrity Verification Method in Detail:

There are three phases in auditing method which are as

follow:

• Setup

• Integrity verification

• Dynamic update

a. Setup Phase:

System parameters, keys and TPA in 𝐼𝑛𝑖𝑡𝑖𝑎𝑙

algorithm are generated by KGC in this phase. Big data is

distributed in blocks and then blinds each block using

𝐵𝑙𝑜𝑐𝑘𝐵𝑙𝑖𝑛𝑑 algorithm is done by User. In algorithm 𝑛 ,

𝑇𝑃𝐴 is accountable for tags generation and helps in

deriving DIT in 𝐷𝐼𝑇𝐺𝑒𝑛algorithm. Challenge authority is

computed by user for TPA in 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝐺𝑒𝑛algorithm.

The data flow is described in fig.2:

Figure 2. Setup Phase Data Flow

𝑰𝒏𝒊𝒕𝒊𝒂𝒍(𝝀) → {𝚯, 𝜶, 𝒔𝒌}:

The parameter is given by 𝜆 of system security, a

group equipped with bilinear mapping Θ =

(𝔾1, 𝔾2, 𝑝, 𝑔, 𝑒) is constructed by KGC. User’s private

key 𝑠𝑘 ∈ 𝑍𝑝
∗ is selected by KGC and formed public key as

𝑝𝑘 = 𝑔𝑠𝑘. Then TPA’s private key is selected by KGC as

𝛼 ∈ 𝑍𝑝
∗and computes public key as 𝑤 = 𝑔𝛼

Then secure hash function is chosen by KGC as 𝜋: 𝔾1 →

𝔾1, ℎ: {0,1}∗ → 𝔾1, 𝐻: 𝔾1 → 𝑍𝑝
∗ . Lastly, KGC sends user

secret key 𝑠𝑘 with user identity 𝑈𝑖𝑑 , 𝛼to TPA in a secure

manner and make {𝔾1, 𝔾2, 𝑔, 𝐻, 𝑝, 𝜋, 𝑒, 𝐻, 𝑝𝑘, 𝑤} all these

to be accessible by anyone.

𝑩𝒍𝒐𝒄𝒌𝑩𝒍𝒊𝒏𝒅(𝑭, 𝑺𝑲) → 𝑴: By erasure code algorithm,

the user divides plain text file 𝐹with its own identifier 𝐹𝑖𝑑

into 𝑛 block of data which is named as 𝑚𝑖
′ . Before

outsourcing 𝐹 to CSS, user blind each block to keep the

data private from other users. Randomly,𝑟𝑖 ∈ 𝑍𝑝
∗ , 𝑖 ∈ [1, 𝑛]

selects by user and computes 𝛿𝑖 = 𝑔𝑟𝑖. Then each block is

blinded by user as 𝑚𝑖 = 𝑚𝑖
∗ + 𝜋(𝛿𝑖) and indicates 𝑀 =

{𝑚𝑖}𝑖∈[1,𝑛] . Moreover, each block 𝑚𝑖 is divided into

𝑠 sectors by the user. This means 𝑀 = {𝑚𝑎𝑐𝑖}, 𝑚𝑎𝑐𝑖 =

{𝑚𝑎𝑐𝑖𝑗}, 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑠]. Lastly, a cloud client sends

𝐹𝑖𝑛𝑓𝑜 = {𝑚𝑖𝑗 , 𝑡𝑖 , 𝑣𝑖} to TPA.

𝑻𝒂𝒈𝑮𝒆𝒏(𝑴, 𝜶) → 𝝈𝒊: Selection of 𝑈𝑗 ∈ 𝔾1, 𝑗 ∈ [1, 𝑠] by

TPA and computes 𝛿𝑖with block tags every storage block

𝑚𝑎𝑐𝑖 , 𝑖 ∈ [1, 𝑛] as follows:

𝛿𝑖 = (ℎ(𝑣𝑖 ∥ 𝑡𝑖). ∏𝑗=1
𝑠 𝑈

𝑗

𝑚𝑖𝑗
)𝛼 (1)

Then 𝑊 = (𝐹𝑖𝑑 , 𝑀, 𝛿𝑖) is send to CSP by TPA.

𝑫𝑰𝑻𝑮𝒆𝒏(𝑭𝒊𝒏𝒇𝒐) → 𝑫𝑰𝑻:DIT including

𝐵𝑖𝑑𝑖 , 𝐻𝑎𝑠ℎ𝑖 , 𝑇𝑖 , 𝑉𝑖, 𝑁𝑒𝑥𝑡𝑖are generated by TPA and stored

it for dynamic updates. 𝑚𝑖 is deleted from local server by

TPA to save space.

𝑨𝒖𝒕𝒉𝒐𝒓𝒊𝒕𝒚𝑮𝒆𝒏(𝒔𝒌) → 𝒔𝒊𝒈𝑷: For prevention from

DDoS distributed denial of service) attack on CSP by the

malicious attackers, auditing challenge is launch by an

authorized TPA. The user having identity 𝑈𝑖𝑑 randomly

selects 𝑥 ∈ 𝑍𝑝
∗ and generates 𝑦 = 𝑔𝑥 . Authorization

generated by user for TPA is as follow:

𝑠𝑖𝑔𝑃 = 𝑔𝑠𝑘+𝑥𝐻(𝑈𝑖𝑑) (2)

b. Integrity Verification Phase

First of all, a challenge is generated by TPA in

algorithm 𝐶ℎ𝑎𝑙𝑙𝐺𝑒𝑛 and forward to CSP. After that CSP

calculate the integrity proof and then again send it to the

TPA in algorithm 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛 for verification. The data

flow is given in the fig. 3.

822 Sameen Fatima et al: An Efficient Secure Auditing Framework for Big Data Storage in Cloud …

http://journals.uob.edu.bh

Figure 3. Flow of Data in Integrity Verification Phase

𝑪𝒉𝒂𝒍𝒍𝑮𝒆𝒏 (𝑭𝒊𝒏𝒇𝒐) : When a user gives verification to

TPA, some block is selected by user to form a random

number subset element from set of [1, 𝑛] and random

number is generated 𝑙𝑖 ∈ 𝑍𝑝
∗ , 𝑖 ∈ 𝐶.

Then a challenge 𝐶ℎ𝑎𝑙𝑙𝑇 = {𝑠𝑖𝑔𝑃, (𝑖, 𝑙𝑖), 𝐹𝑖𝑑, 𝑈𝑖𝑑}, 𝑖 ∈ 𝐶

is send to CSP by the TPA.

𝒂𝑷𝒓𝒐𝒐𝒇𝑮𝒆𝒏 (𝒂𝑭, 𝑻, 𝑪𝒉𝒂𝒍𝒍𝑻) : When CSP received a

challenge, equation 𝑠𝑖𝑔𝑃 = 𝑝𝑘. 𝑦𝐻(𝑈𝑖𝑑) is verified. If it

fails to verify then it resulted as 𝑁𝑂 and if it verified then

tag and data proof are computed as follow:

 𝑆 = ∏𝑖∈𝐶𝛿𝑖
𝑙𝑖 (3)

𝐷 = ∏𝑗=1
𝑠 𝑢𝑗

∑𝑖∈𝐶
𝑙𝑖.𝑚𝑖𝑗

 (4)

After that 𝑃 = {𝑆, 𝐷} is send to TPA by CSP.

𝑷𝒓𝒐𝒐𝒇𝑽𝒆𝒓𝒊𝒇𝒚(𝑷, 𝒘) → {𝟏. 𝟎} : TPA verify the proof

after receiving it from CSP as

𝑒𝐴(𝐷. ∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)
𝑙𝑖 , 𝑤) = 𝑒𝐴(𝑆, 𝑔). (5)

If it verifies, the algorithm resulted as 1. If not, the

algorithm then points out which of the block isn’t stored

correctly. Request to verify it out, it is sent by TPA to CSP.

After that CSP generates 𝐿 = {ℎ𝑖
′ = 𝐻(𝑚𝑎𝑐𝑖), 𝑖 ∈ 𝐶, such

that 𝑚𝑖 is a data block which get stored on CSS as well as

𝐿 and is then transferred to the TPA. After that TPA

contrast 𝐿 with Hash 𝐻(𝑚𝑎𝑐𝑖) present in Dynamic Index

Table. If ℎ𝑖
′ ≠ 𝐻(𝑚𝑎𝑐𝑖) ,then TPA informs that ith block is

corrupt and recover it to CSP.

c. Dynamic Update Phase

The data which is outsourced to the cloud can be

updated by the user when required. The user should

perform the block level insertion, block level deletion, and

block level modification operation tasks. 𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝑠𝑒𝑟𝑡 ,

𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑙𝑒𝑡𝑒 , 𝐵𝑙𝑜𝑐𝑘𝑀𝑜𝑑𝑖𝑓𝑦, algorithms are used for

block insertion, block deletion and block modification

respectively.

𝑩𝒍𝒐𝒄𝒌𝑰𝒏𝒔𝒆𝒓𝒕(𝒎𝒊,
′ , 𝒊, 𝑺𝑲): Assume that after block𝑚𝑖 ,

another block 𝑚′ is then inserted. First of all, 𝐵𝑙𝑜𝑐𝑘𝐵𝑙𝑖𝑛𝑑

algorithm by the user as 𝑚∗ = 𝑚′ + 𝜋(𝛿𝑖) . 𝑇𝑎𝑔𝐺𝑒𝑛

Algorithm is called by TPA to evaluate a tag 𝑎𝛿 ′afor𝑎𝑚′

and then transfer 𝑎{𝑚∗, 𝛿 ′} . Then TPA evaluates𝑎𝐻(𝑚𝑖
′).

TPA after evaluation add 𝑎(𝑖 + 1 , 𝐻𝑎𝑠ℎ(𝑚𝑎𝑐′), 𝑡 ′, 𝑣 ′) to

the end location of DIT or where 𝑁𝑒𝑥𝑡𝑖 is at −1.

𝑩𝒍𝒐𝒄𝒌𝑫𝒆𝒍𝒆𝒕𝒆 (𝒎𝒊): Suppose deletion of 𝑚𝑖 block is to

be done. CSP deletes 𝑚𝑖 and 𝛿𝑖 . TPA, on the basis of

block number, finds the location of 𝑚𝑖 and changes 𝑁𝑒𝑥𝑡𝑖

to −1.

𝑩𝒍𝒐𝒄𝒌𝑴𝒐𝒅𝒊𝒇𝒚(𝒎𝒊
′ , 𝜶, 𝒔𝒌): Suppose that the block 𝑚𝑖 is

modified to new state that is 𝑚𝑖
′ . To blind the block, first

of all 𝐵𝑙𝑜𝑐𝑘𝐵𝑙𝑖𝑛𝑑 algorithm is called by the user like

𝑚𝑖
′ = 𝑚𝑖

′ + 𝜋(𝛿𝑖). 𝑇𝑎𝑔𝐺𝑒𝑛 Algorithm is called by TPA

to evaluate a new tag 𝑎𝛿 ′ for 𝑎𝑚′ and then transfer

{𝑚∗, 𝛿 ′} to CSP. Then TPA evaluates 𝐻(𝑚𝑎𝑐𝑖
′) and does

an addition of new (𝑖 , 𝐻(𝑚′), 𝑡 ′, 𝑣 ′) and modify the old

item to new one in DIT. The user appointed the TPA to

check which of the block is updated. The user then deleted

the local data when verification is done.

C. Batch Auditing from multiple users:

This auditing method can simultaneously process

different verification from multiple users. Assume that 𝑈

is a group of multiple users 𝑘 . CSP evaluates two different

proofs, one is tag𝑆𝑖 , 𝑖 ∈ [1, 𝑘], and other is data 𝐷𝑖 , 𝑖 ∈

[1, 𝑘] when 𝑘 challenges are received by multiple 𝑘 users.

According to the following equations the CPU gets 𝑆𝑈 by

assembling with 𝑆𝑖 and 𝐷𝑈 by assembling with 𝐷𝑖 .

𝑆𝑈 = ∏𝑖=1
𝑘 𝑆𝑖 (6)

𝐷𝑈 = ∏𝑖=1
𝑘 𝐷𝑖 (7)

TPA then justify the proof with the equation given below:

𝑒(𝐷𝑈 . ∏𝑖=1
𝑘 (∏𝑗∈𝐶(ℎ(𝑣𝑖,𝑗 ∥ 𝑡𝑖,𝑗))𝑙𝑖,𝑗), 𝑤𝑖) = 𝑒(𝑆𝑈, 𝑔) (8)

If all the files are accurately stored on cloud servers then

the equation outputs YES otherwise NO.

6. SECURITY ANALYSIS

After Correctness, unforgeability and privacy of the

proposed method is analyzed.

Theorem 1:

To verify the file integrity stored in cloud, the authorized

verifier is used in our proposed method.

 Int. J. Com. Dig. Sys. 10, No.1, 817-827 (Aug-2021) 823

http://journals.uob.edu.bh

Proof:

It is proved through eq (5).

𝑒(𝐷. ∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)
𝑙𝑖 , 𝑤)

= 𝑒(∏𝑗=1
𝑠 𝑢

𝑗

∑
𝑖∈𝐶

𝑙𝑖𝑚𝑖𝑗
. ∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)

𝑙𝑖 , 𝑤)

= 𝑒(∏𝑖∈𝐶∏𝑗=1
𝑠 𝑢

𝑗

𝑙𝑖𝑚𝑖𝑗
∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)

𝑙𝑖 , 𝑤)

= 𝑒(∏𝑖∈𝐶∏𝑗=1
𝑠 𝑢

𝑗

𝑙𝑖𝑚𝑖𝑗
∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)

𝑙𝑖 , 𝑔𝛼)

= 𝑒(𝑆, 𝑔)

Theorem 2: To attain verification publicly, if

Computational Diffie Hellman is endure in a bilinear

mapping then it is improbable for CSP to make a proof of

integrity.

Proof: The 𝑃 = {𝑆, 𝐷} is send to TPA after receiving

challenge 𝐶ℎ𝑎𝑙𝑙 = {𝑠𝑖𝑔, (𝑖, 𝑙𝑖), 𝐹𝑖𝑑}, 𝑖 ∈ 𝐶 from CSP.

Assume that a wrong proof is generated to TPA by CSP

𝑃′ = {𝑆, 𝐷′} and 𝐷′ = ∏𝑗=1
𝑠 𝑢

𝑗

𝜆𝑗
′

, 𝜆𝑗
′ = ∑𝑖∈𝐶𝑙𝑖 × 𝑚𝑖𝑗

′ , 𝑗 ∈

[1, 𝑠]. 𝜆𝑗 = ∑𝑖∈𝐶𝑙𝑖 × 𝑚𝑖𝑗
′ , ∆𝜆𝑗 = 𝜆𝑗 − 𝜆𝑗

′ . It is clear that at

least one Δ𝜆𝑗 ≠ 0. If verification is passed with 𝑃′ by CSP,

it will win otherwise fails.

Assume that if CSP the wins the game, it can be inferred

from the following equation:

= 𝑒(∏𝑗=1
𝑠 𝑢

𝑗

𝜆𝑗
′

. ∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)
𝑙𝑖 , 𝑤) = 𝑒(𝑆, 𝑔)

Moreover, the proof 𝑃 = {𝑆, 𝐷} is also an accurate one, it

can be satisfied from following equation:

= 𝑒(∏𝑗=1
𝑠 𝑢

𝑗

𝜆𝑗
. ∏𝑖∈𝐶(ℎ(𝑣𝑖 ∥ 𝑡𝑖)

𝑙𝑖 , 𝑤) = 𝑒(𝑆, 𝑔)

It can be concluded from the equations written above and

from the properties of bilinear map that ∏𝑗=1
𝑠 𝑢

𝑗

𝜆𝑗
′

=

∏𝑗=1
𝑠 𝑢

𝑗

𝜆𝑗
= ∏𝑗=1

𝑠 𝑢
𝑗

Δ𝜆𝑗
⟹ 1. It is because 𝔾1 is a cyclic

group then 𝑏1, 𝑏2 ∈ 𝔾1, ∃𝑥 ∈ 𝑍𝑝 such that 𝑏2 = 𝑏1
𝑥 .

Moreover, 𝑏1, 𝑏2, 𝑢𝑗 can be formed as 𝑢𝑗 = 𝑏1

𝑢𝑗
𝑏2

𝑣𝑗
∈ 𝔾1,

where 𝑢𝑗 , 𝑣𝑗 ∈ 𝑍𝑝 . Then we get following ∏𝑗=1
𝑠 𝑢

𝑗

Δ𝜆𝑗
=

∏𝑗=1
𝑠 (𝑏1

𝑢𝑗
𝑏2

𝑣𝑗
)Δ𝜆𝑗 = 𝑏1

∑𝑗=1
𝑠 𝑢𝑗△𝜆𝑗

. 𝑏2

∑𝑗=1
𝑠 𝑢𝑗△𝜆𝑗

= 1 . An

approach to the problem of DL can be sought. Unless

∆𝜆𝑗 = 0, the 𝑥 value can be obtained as following:

𝑏2 = 𝑏1
𝑥 = 𝑏1

∑𝑗=1
𝑠𝑚𝑎𝑥𝑢𝑗∆𝜆𝑗

∑𝑗=1
𝑠𝑚𝑎𝑥𝑣𝑗∆𝜆𝑗

𝑥 =
∑𝑗=1

𝑠𝑚𝑎𝑥𝑢𝑗∆𝜆𝑗

∑𝑗=1
𝑠𝑚𝑎𝑥𝑣𝑗∆𝜆𝑗

Theorem 3: During the integrity verification, as much as

DL assumptions hold, it is not possible for TPA to attain

any data which is private.

Proof: CSS sends data proof 𝐷 = ∏𝑗=1
𝑠 𝑢𝑗

∑𝑖∈𝐶
𝑙𝑖.𝑚𝑖𝑗

to TPA

after it gets challenge 𝐶ℎ𝑎𝑙𝑙. It is impossible for TPA to

attain any data which is private for user because according

to DL assumption ∑𝑖 ∈ 𝐶𝑙𝑖.𝑚𝑖𝑗 is at the exponential

position of 𝐷.

7. PERFORMANCE TESTING

Performance testing is based on the following

parameters:

A. Communication Cost:

Major cost of communication is formed between the

user to TPA and the TPA to CSS, in our proposed method.

Assume that the size of element of 𝑍𝑝 is |𝑝|. After user

blinds each block with the help of 𝐵𝑙𝑜𝑐𝑘𝐵𝑙𝑖𝑛𝑑 algorithm,

it sends 𝐹𝑖𝑛𝑓𝑜 = {𝑚𝑖𝑗 , 𝑡𝑖 , 𝑣𝑖} to TPA. Hence the

communication costs occur as 𝑛|𝑝| + 𝑛(|𝑡𝑖| + |𝑣𝑖|). TPA

sends 𝑊 = (𝐹𝑖𝑑, 𝑀, 𝛿𝑖) to CSP in 𝑇𝑎𝑔𝐺𝑒𝑛algorithm and

communication costs occur is 2𝑛|𝑝| + 1 . The major

communication cost occurs between TPA and CSS during

integrity verification phase. In algorithm 𝐶ℎ𝑎𝑙𝑙𝐺𝑒𝑛, TPA

sends 𝐶ℎ𝑎𝑙𝑙 = {𝑠𝑖𝑔, (𝑖, 𝑙𝑖), 𝐹𝑖𝑑 , 𝑈𝑖𝑑} to CSP. The cost of

communication occurs in bits like 𝑐(|𝑖| + |𝑝|. CSP then

dispatch 𝑃 = {𝑆, 𝐷} to TPA in 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛 algorithm. The

constant communication cost occurs like 2|𝑝|which can

be neglected. The cost of communication is constant

during updating phase between the user and TPA. This

also occur in between TPA and the CSP. The comparison

is done between different methods as shown in Table 6 and

can be inferred that our method has more efficient

communication cost than others.

TABLE 6. CONTRAST OF COMMUNICATION COSTS OF

DIFFERENT METHODS

Method Setup Verification Updating

[12] 𝑂(𝑛) 𝑂(𝑙𝑜𝑔𝑛) 𝑂(𝑙𝑜𝑔𝑛)

[13] 𝑂(𝑛) 𝑂(𝑙𝑜𝑔𝑛) 𝑂(𝑙𝑜𝑔𝑛)

[14] 𝑂(𝑛) 𝑂(𝑛c) 𝑂(1)

[17] 𝑂(𝑛) 𝑂(𝑛c) 𝑂(1)

Proposed

Method

𝑂(𝑛) 𝑂(𝑛c) 𝑂(1)

824 Sameen Fatima et al: An Efficient Secure Auditing Framework for Big Data Storage in Cloud …

http://journals.uob.edu.bh

B. Storage Cost

There are three phases in our method and storage costs

usually occur in setup phase. Assume that the file named

as 𝐹 and having 𝑛 blocks, size of |𝑝| , is outsourced on

cloud. In 𝐵𝑙𝑜𝑐𝑘𝐵𝑙𝑖𝑛𝑑 algorithm, the user sends 𝐹𝑖𝑛𝑓𝑜 =

{𝑚𝑖𝑗 , 𝑡𝑖 , 𝑣𝑖} to TPA.

TPA generates DIT including

𝐵𝑖𝑑𝑖 , 𝐻𝑎𝑠ℎ𝑖 , 𝑇𝑖 , 𝑉𝑖, 𝑁𝑒𝑥𝑡𝑖 in 𝐷𝐼𝑇𝐺𝑒𝑛 algorithm. TPA

deletes 𝑚𝑖 from the server to save the storage. Hence, the

cost of TPA total storage in set phase be 𝑛𝑙3 and 𝑙3 =

|𝐵𝑖𝑑𝑖| + |𝑡𝑖| + |𝑣𝑖| + |𝐻𝑎𝑠ℎ𝑖| + |𝑁𝑒𝑥𝑡𝑖| . TPA sends

𝑊 = (𝐹𝑖𝑑, 𝑀, 𝛿𝑖) to CSP in 𝑇𝑎𝑔𝐺𝑒𝑛 algorithm and CSP

saves 𝑊 . The cost of storage generated by 𝑀 and 𝛿𝑖 in

setup phase is2𝑛|𝑝|. Index Hash Table (IHT) is utilized in

method [14].

IHT specifies the changes occurring in blocks and

during integrity verification process, value of hash block

is generated. The cost of TPA storage of is 𝑛𝑙1, where 𝑙1 =

|𝐵𝑖| + |𝑉𝑖| + |𝑅𝑖|. In method [17], Dynamic hash table is

used and the cost of TPA storage is 𝑛𝑙2, where 𝑙2 = |𝑣𝑖| +

|𝑡𝑖| + |𝑁𝑒𝑥𝑡𝑖|. The storage costs of different method are

computed in Table 7. The size of 𝑙3 is much greater than

𝑙1 and 𝑙2. Because the hash value employed for each block,

DIT is much secure and efficient as compared to IHT and

DHT.

TABLE 7. CONTRAST OF STORAGE COSTS OF DIFFERENT

METHODS

Method TPA CSP

[12] 0 |𝑝|(2𝑙𝑜𝑔𝑛+1 + 𝑛 − 1|

[13] 0 |𝑝|(2𝑙𝑜𝑔𝑛+1 + 𝑛 − 1|

[14] (𝑛 + 1)𝑙1 2𝑛|𝑝|

[17] (𝑛 + 1)𝑙2 2𝑛|𝑝|

Proposed

Method

𝑛𝑙3 2𝑛|𝑝|

C. Computation Cost

The time of computation of the proposed method is

evaluated with the experiment. It is then compared with

the method [14]. The method's implementation is done on

a Linux system having 1GB Ram, 1.6 GHz processor. For

our simulation, Pairing Based Cryptography having 0.5.13

model is utilized. During these experiments, results

represent the only an average of 20 trails.

i. User computation time in the setup:

In these experiments of multiple blocks, test our

proposed method, computation numbers with a maximum

block size of 1 KB. It can be assumed from Fig. 4 that the

computational time of the user is to the number of blocks,

and our protocol’s computing cost is lower than method

[14].

Figure 4. Contrast of Setup Phase Computation time

ii. Computation Costs in Verification phase:

The relation between block size and computation time

is checked at the same file size of 1 MB during the

verification stage. 20 % of the overall block number

corresponds to the challenged block number during the

simulation. In Fig.5, we can assume that the cost of

verifying our proposed method is declining as the block

size increases. The time of verification in the method [14],

however, is increasing, as the verification equation in the

method [14] relates to each block sector.

Figure 5. Contrast of Verification Time

0

10

20

30

40

0 50 100 150 200 250 300

Computation Time (s)

Proposed Method

Zhu's Method[14]

0

0.2

0.4

0.6

0.8

1

1.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Verfication Time (s)

Proposed Method Zhu's Method[14]

 Int. J. Com. Dig. Sys. 10, No.1, 817-827 (Aug-2021) 825

http://journals.uob.edu.bh

iii. Computation Cost in updating:

It assumes that the size of block is of maximum 1 KB

in the updating phase experiment. The update time is

checked with a file size from 1 MB to 50 MB. Out of Fig.

6 and Fig. 7, we may infer that our method is more

effective in insertion and as well as in deletion operation.

As IHT is a sequence data structure in Zhu 's method and

about half o elements are adjusted and resulting in a

decrease in the efficiency of the update process. In our

method, without moving objects, just the static pointer

have to be modified.

Figure 6. Contrast of Insertion Time

Figure 7. Contrast of Deletion Time

8. CONCLUSION

This research proposes an effective hierarchical

auditing method for cloud servers for data that is

outsourced. In the proposed methodology, a dynamic

index table (DIT) is utilized. There is no need for elements

to be shifted during insertion, deletion, and update

operations in this method and designed to increase data

updates' efficiency. Also, TPA will detect and recuperate

the corrupt block if the cloud file is not incorporated. Also,

a permit is used to avoid denial of service attacks between

users and cloud servers. A secure and efficient integrity

verification can be carried out for big data in the proposed

method. Results indicated that the secure storage

application method costs a minimum, then previous

methods for cloud storage and computation cost.

In the future, we must figure out the possibility to

further improve the security and efficiency of the integrity

verification system since these are the most critical aspects

in ample data cloud storage. To improve the speed of

integrity testing between cloud and user, we can lessen the

communication cost to enhance performance. Besides,

cloud server storage costs are also addressed. Since

privacy is also another crucial aspect in cloud computing,

the privacy of user data is concentrated and main aspects

of our future work are efficiency and security.

REFERENCES

[1] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,

... &Stoica, I. (2009). Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University
of California, Berkeley, Rep. UCB/EECS, 28(13), 2009.

[2] Lu, X., & Cheng, X. (2019). A Secure and Lightweight Data
Sharing Method for Internet of Medical Things. IEEE Access, 8,
5022-5030.

[3] Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., &Alamri, A.

(2015). Health-CPS: Healthcare cyber-physical system assisted by
cloud and big data. IEEE Systems Journal, 11(1), 88-95.

[4] Guan, Z., Lv, Z., Du, X., Wu, L., &Guizani, M. (2019). Achieving

data utility-privacy tradeoff in Internet of medical things: A
machine learning approach. Future Generation Computer Systems,

98, 60-68.

[5] Chang, V. (2017). Towards data analysis for weather cloud
computing. Knowledge-Based Systems, 127, 29-45.

[6] Lewko, A., & Waters, B. (2011, May). Decentralizing attribute-
based encryption. In Annual international conference on the theory

and applications of cryptographic techniques (pp. 568-588).
Springer, Berlin, Heidelberg.

[7] Deswarte, Y., Quisquater, J. J., &Saïdane, A. (2003, November).

Remote integrity checking. In Working conference on integrity and

internal control in information systems (pp. 1-11). Springer,
Boston, MA.

[8] Juels, A., &Kaliski Jr, B. S. (2007, October). PORs: Proofs of
retrievability for large files. In Proceedings of the 14th ACM

conference on Computer and communications security (pp. 584-
597).

[9] Yamamoto, G., Oda, S., & Aoki, K. (2007, June). Fast integrity for

large data. In Proc. ECRYPT Workshop Software Performance
Enhancement for Encryption and Decryption (pp. 21-32).

0.00

0.05

0.10

0.15

0.20

10 15 20 25 30 35 40

Insertion Operation Time (s)

Proposed Method Zhu's Method[14]

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35

Deletion Operation Time (s)

Proposed Method Zhu's Method[14]

826 Sameen Fatima et al: An Efficient Secure Auditing Framework for Big Data Storage in Cloud …

http://journals.uob.edu.bh

[10] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,

Peterson, Z., & Song, D. (2007, October). Provable data possession

at untrusted stores. In Proceedings of the 14th ACM conference on
Computer and communications security (pp. 598-609).

[11] Ateniese, G., Di Pietro, R., Mancini, L. V., &Tsudik, G. (2008,

September). Scalable and efficient provable data possession. In
Proceedings of the 4th international conference on Security and
privacy in communication netowrks (pp. 1-10).

[12] Erway, C. C., Küpçü, A., Papamanthou, C., &Tamassia, R. (2015).

Dynamic provable data possession. ACM Transactions on
Information and System Security (TISSEC), 17(4), 1-29.

[13] Wang, Q., Wang, C., Ren, K., Lou, W., & Li, J. (2010). Enabling

public auditability and data dynamics for storage security in cloud
computing. IEEE transactions on parallel and distributed systems,

22(5), 847-859.

[14] Zhu, Y., Ahn, G. J., Hu, H., Yau, S. S., An, H. G., & Hu, C. J.
(2011). Dynamic audit services for outsourced storages in clouds.
IEEE Transactions on Services Computing, 6(2), 227-238.

[15] Yang, K., & Jia, X. (2012). An efficient and secure dynamic

auditing protocol for data storage in cloud computing. IEEE
transactions on parallel and distributed systems, 24(9), 1717-1726.

[16] Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R.,

&Kotagiri, R. (2013). Authorized public auditing of dynamic big

data storage on cloud with efficient verifiable fine-grained updates.
IEEE Transactions on Parallel and Distributed Systems, 25(9),
2234-2244.

[17] Luo, H. S., Jiang, R., & Pei, B. (2017, December). Cryptanalysis

and Countermeasures on Dynamic-Hash-Table Based Public

Auditing for Secure Cloud Storage. In 2017 10th International

Symposium on Computational Intelligence and Design (ISCID)
(Vol. 1, pp. 33-36). IEEE.

[18] Gan, Q., Wang, X., & Fang, X. (2018). Efficient and secure
auditing method for outsourced big data with dynamicity in cloud.
Science China Information Sciences, 61(12), 122104.

[19] Zhang, Y., Yu, J., Hao, R., Wang, C., & Ren, K. (2018). Enabling

efficient user revocation in identity-based cloud storage auditing for

shared big data. IEEE Transactions on Dependable and Secure
computing.

[20] Lu, X., Pan, Z., & Xian, H. (2020). An integrity verification method
of cloud storage for internet-of-things mobile terminal devices.
Computers & Security, 92, 101686.

[21] Zhang, Q., Yang, L. T., & Chen, Z. (2015). Privacy preserving deep
computation model on cloud for big data feature learning. IEEE
Transactions on Computers, 65(5), 1351-1362.

[22] Ming, Y., & Zhang, T. (2018). Efficient privacy-preserving access

control method in electronic health records system. Sensors,
18(10), 3520.

[23] Wang, C., Chow, S. S., Wang, Q., Ren, K., & Lou, W. (2011).

Privacy-preserving public auditing for secure cloud storage. IEEE
transactions on computers, 62(2), 362-375.

[24] Wang, B., Li, B., & Li, H. (2014). Oruta: Privacy-preserving public

auditing for shared data in the cloud. IEEE transactions on cloud
computing, 2(1), 43-56.

[25] Yu, J., & Hao, R. (2019). Comments on" SEPDP: Secure and

Efficient Privacy Preserving Provable Data Possession in Cloud
Storage". IEEE Transactions on Services Computing.

[26] Zhou, Q., Tian, C., Zhang, H., Yu, J., & Li, F. (2020). How to
securely outsource the extended euclidean algorithm for large-scale
polynomials over finite fields. Information Sciences, 512, 641-660.

[27] Halperin, D., Heydt-Benjamin, T. S., Fu, K., Kohno, T., & Maisel,
W. H. (2008). Security and privacy for implantable medical
devices. IEEE pervasive computing, 7(1), 30-39.

[28] Li, Y., Xia, H., Zhang, R., Hu, B., & Cheng, X. (2020). A Novel

Community Detection Algorithm Based on Paring, Splitting and

Aggregating in Internet of Things. IEEE Access, 8, 123938-
123951.

[29] Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Da Xu, L., ...

& Zheng, L. R. (2014). A health-IoT platform based on the
integration of intelligent packaging, unobtrusive bio-sensor, and

intelligent medicine box. IEEE transactions on industrial
informatics, 10(4), 2180-2191.

[30] Zhang, J., Ren, F., Gao, S., Yang, H., & Lin, C. (2014). Dynamic

routing for data integrity and delay differentiated services in
wireless sensor networks. IEEE Transactions on Mobile
Computing, 14(2), 328-343.

[31] Lai, J., Deng, R. H., Guan, C., & Weng, J. (2013). Attribute-based

encryption with verifiable outsourced decryption. IEEE

Transactions on information forensics and security, 8(8), 1343-
1354.

[32] Shacham, H., & Waters, B. (2008, December). Compact proofs of

retrievability. In International conference on the theory and
application of cryptology and information security (pp. 90-107).
Springer, Berlin, Heidelberg.

[33] Cash, D., Küpçü, A., &Wichs, D. (2017). Dynamic proofs of

retrievability via oblivious RAM. Journal of Cryptology, 30(1), 22-
57.

[34] Sun, Y., Liu, Q., Chen, X., & Du, X. (2020). An Adaptive

Authenticated Data Structure With Privacy-Preserving for Big Data

Stream in Cloud. IEEE Transactions on Information Forensics and
Security, 15, 3295-3310.

[35] Cai, H., Xu, B., Jiang, L., &Vasilakos, A. V. (2016). IoT-based big

data storage systems in cloud computing: perspectives and
challenges. IEEE Internet of Things Journal, 4(1), 75-87.

[36] Hu, C., Li, W., Cheng, X., Yu, J., Wang, S., &Bie, R. (2017). A
secure and verifiable access control method for big data storage in
clouds. IEEE Transactions on Big data, 4(3), 341-355.

[37] Zhao, J., Xu, C., Li, F., & Zhang, W. (2013). Identity-based public

verification with privacy-preserving for data storage security in

cloud computing. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 96(12),
2709-2716.

[38] Zhang, Y., Zheng, D., & Deng, R. H. (2018). Security and privacy

in smart health: Efficient policy-hiding attribute-based access
control. IEEE Internet of Things Journal, 5(3), 2130-2145.

[39] Liu, X., Ma, J., Xiong, J., Zhang, T., & Li, Q. (2013, October).

Personal health records integrity verification using attribute-based

proxy signature in cloud computing. In International Conference on

Internet and Distributed Computing Systems (pp. 238-251).
Springer, Berlin, Heidelberg.

[40] Jin, H., Zhou, K., Jiang, H., Lei, D., Wei, R., & Li, C. (2018). Full

integrity and freshness for cloud data. Future Generation Computer
Systems, 80, 640-652.

[41] Bilin Shao, Yanyan Ji .(2021) . Efficient TPA-based auditing
scheme for secure cloud storage. Cluster Computing.

[42] Luo, W., Ma, W. & Gao, J. MHB*T based dynamic data integrity

auditing in cloud storage. Cluster Computing (2021).
https://doi.org/10.1007/s10586-021-03248-w

https://doi.org/10.1007/s10586-021-03248-w

 Int. J. Com. Dig. Sys. 10, No.1, 817-827 (Aug-2021) 827

http://journals.uob.edu.bh

Sameen Fatima received the

Master degree from the renowned

institution University of

Engineering and Technology,

Lahore, Pakistan. Her current

research interests are mainly focus

on Cloud Computing, Big Data,

Cyber Security and IoT security

Dr. Shafiq Hussain received his

M.Sc degree in Computer Science

from Bahauddin

Zakariya University, Multan,

Pakistan and the PhD degree

in Computer Science from the

University of Sunderland, the UK in

2015. He is currently working as

Associate Professor of Computer

Science in Department of Computer

Science, University of Sahiwal,

Pakistan. He is also founder and Chairman, Department of

Computer Science at the University of Sahiwal. He has

completed the HEC funded project as Project Director. He is also

working Director IT and Project Director of the Higher

Education Commission (HEC) of The University of Sahiwal. He

has supervised more than 30 postgraduates research students and

published many research papers in academic journals.

Rana Abu Bakar received a

master degree in Computer Science

(Network Security) from the Virtual

University of Pakistan. Currently

pursuing a PhD in Computer

Engineering from Chulalongkorn

University (Bangkok, Thailand). His

research interests include networks,

vehicular networks, mobile ad-hoc

networks, secure UAV drones,

cryptography, cryptography threat

modeling, IoT security, wireless

communications and networking, big data security, next-

generation mobile computing and cloud computing security.

