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Abstract: We discuss in this paper the challenge of enhancing the dendritic cell algorithm preprocessing phase. In short, to minimize 

data dimensionality we propose a new dendritic cell algorithm based on Non-negative Matrix Factorization. The aim of this method is 

to extract latent features from lower rank data transformation. The proposed method was divided in two steps. The first step is a 

factorization of the original data. Secondly, the new reduced space should be assigned to its respective signal category. Experimental 

findings show that the preprocessing step of the dendritic cell algorithm is significantly improved with respect to its execution and a 

higher accuracy rate. Our algorithm is also compared to other classification algorithms particularly MLP, SVM, and KNN. The 

comparison shows that the actual rate of current algorithms is outperformed by the proposed algorithm.  
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1. INTRODUCTION 

The natural immune system is one of the exciting 

fields because of its robust characteristics, it is  an artificial 

organ responsible to defend organism from threats [1]. The 

second-generation artificial immune systems have shown 

its effectiveness in various applications and one such 

popular algorithm: the Dendritic Cell Algorithm (DCA) 

[2] that solves anomaly detection problems inspired by the 

natural vertebrate immune system. The DCA is an 

imitation of the natural dendritic cell and based on the 

controversial immune theory, the Danger model [3]. The 

preprocessing phase has shown its effectiveness and 

performance on DCA contrary to manual processing 

which requires the intervention of an expert, the process 

performed in two steps: feature selection and signal 

categorization [4]. 

The first step selects the most significant and essential 

features (applying one of feature selection techniques). In 

contrast, the second step allows categorizing each selected 

feature resulting from the previous step to its specific 

signal category (Pathogen-Associated Molecular Pattern 

(PAMP), Safe Signal (SS), and Danger Signal (DS)). The 

first work [2] requires an expert knowledge intervention to 

select significant and informative features and classify 

them in their appropriate signal according to their 

importance. Other works proposed automating the 

preprocessing phase to improve the DCA [4] without the 

need for expert domain knowledge. 

The main objective of this work is to investigate 

methods for improving preprocessing runtime to keep 

DCA as lightweight as possible. Non-negative matrix 

factorization allowed a considerable improvement by 

reducing dimensionality space. 

The remainder of this paper is organized as follows: 

in section 2, we present an overview of related works 

considering the DCA's automated preprocessing phase. 

Section 3 highlights an overview of the original DCA, and 

in section 4, we present the concept of the NMF. Section 

5 contains a description of the suggested study. The 

Experimental evaluation performed in section 6, this 

section also includes results and discussion—finally, the 

conclusion drawn in the last section. 

2. RELATED WORKS 

The first versions of the DCA process manually and 

require expert domain users to extract knowledge, and the 

process becomes more challenging to manage in large 

dimensions and according to the applied domain. In [4] 

authors applied Principal Component Analysis (PCA) to 

automate the preprocessing phase based on its relevance 

http://dx.doi.org/10.12785/ijcds/100155 
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and significance [5], to maximize the variance of selected 

essential features and thus reduce the noise and 

redundancy in data. This first step is the feature selection 

followed by the categorization of signals (PAMP, SS, DS), 

by ranking the PCA element according to their variability, 

compared with correlation analysis and information gain. 

The PCA allows automation with an acceptable accuracy 

rate [4]. Using PCA has the drawback of projection to the 

lower-dimensional space measurements from the original 

features. 

A newer version of DCA presented in [6] to handle 

the DCA drawbacks and leakage of the PCA, by 

introducing the concept of rough set theory [7] REDUCT 

and CORE and present the RST-DCA [6,8]. The concept 

was applied to select features in the preprocessing phase 

of DCA by keeping the most informative features and 

discarding unnecessary ones using a rough set concept. 

The REDUCT preserves the same classification of the 

original data, and it assigns convenient signals by using 

one feature assigned to both PAMP and SS as they 

represent the most significant signals. The remaining 

features designated as DS (Danger Signals)  

In the same perspective, to select informative features 

[6,9] proposed the RC-DCA and modify the categorization 

process by assigning each feature to its specific signal 

category. It shows in [6] that RST-DCA and RC-DCA 

performed unnecessary calculation and consumed time 

and resources to deal with this leakage, the author showed 

that one-reduct is sufficient to reduce data, as defined in 

original DCA, it supposed to be a lightweight algorithm. 

So QR-DCA dealt with this by implementing the 

Quickreduct algorithm to reduce the time to gain 

considerably and optimizing more resources. 

The cited solutions are performed in terms of 

accuracy and highlight the improvement in DCA. Original 

DCA designed to be a lightweight algorithm. Whereas, 

using the rough or the fuzzy set in the preprocessing phase 

takes a considerable time [11,12] and affects the 

lightweight benefits of this algorithm. On the other hand, 

in real-time, data may be gradually refined, and 

information regarding the problem domain may actively 

add or remove knowledge, and the nature of data changed. 

And selected features may change their influence on data 

through time. 

3. DENDRITIC CELL ALGORITHM 

The dendritic cell algorithm is an abstraction of the 

biological dendritic cell. It is a population-based collection 

of dendritic cells (DC) with their sample memory collected 

randomly from the tissue. The DCA accepts two sorts of 

data, antigens, and signals, where antigens are data 

identifiers to be classified and signals represent data values 

as appeared in equation (1). These signals are categorized 

into three types of signals (PAMP, danger signal, and safe 

signal) and the inflammation signal Inflammation, which 

is denoted by I.  

Figure 1 summarizes how the DCA processes provide 

an anomaly context. The dendritic cell obtains the 

previous signals from the preprocessing phase, which is 

crucial to transform data into one of three signals. It is 

composed of two steps: feature selection and signal 

categorization. In other terms, this phase transforms the 

original data into three signals related to the antigens, 

where the tissue contains these antigens.  

 

 
 

Figure 1. Dendritic cell algorithm phases 

After achieving the preprocessing phase, the detection 

phase is the next step by combining signals with a 

predefined weight matrix, shown in  TABLE 1, to get three 

outputs: Costimulatory signal (Csm), Semi-mature signals 

and mature signals. Every cell randomly samples and 

accumulates the three output values of antigens until the 

Csm value exceeds the migration threshold, and so 

preventing the long lifespan of DC. By comparing semi-

mature and mature output values, we can determine if the 

cell goes under an abnormal state. We find that mature 

output is more significant than semi-mature, and 

otherwise, the DC is in its normal state.  

 

𝐶 = (
(𝑊1 ∗ ∑ 𝑃𝑃𝑖𝑖 ) + (𝑊2 ∗ ∑ 𝑆𝑆𝑖𝑖 ) + (𝑊3 ∗ ∑ 𝐷𝑆𝑖𝑖 )

(𝑊1) + (𝑊2 ∗) + (𝑊3)
) ∗ (1 + 𝐼) (1) 

 

The final step in this algorithm is known as the 

classification phase. It is from the obtained values of 

migrated dendritic cells and calculated using equation (1), 

where it determines the number of matured DCs presented 

in a value called: Mature Context Antigen Value (MCAV). 

It shows the anomaly degree of each antigen, when MCAV 

is close to one means antigen is possibly anomalous that  
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antigen is abnormal, for this reason, we have to calculate 

MCAV for each antigen according to the equation (2) and 

compare it to the anomaly threshold, which is obtained 

automatically [2] from the original data and is equal to the 

abnormal data item divided by the total number of data or 

it is generally user-defined value. The last step is the 

classification phase which defines dangerous antigen if it 

is greater than the anomalous threshold and healthy 

otherwise. 
 TABLE 1.DEFAULT WEIGHT MATRIX [13]. 

 Csm Mature Semi-mature 

PAMP 2 1 2 

DS 0 0 3 

SS 2 1 -1 

4.  NON-NEGATIVE MATRIX FACTORIZATION 

Non-negative matrix factorization (NMF) is a new modern 

feature - extraction algorithm that offers a non - negative 

sparse and partial reproduction of the original data. This 

process aims to uncover latent low - dimensional 

factorizations within a high - dimensional data space [14]. 

The idea behind it is similar to known Lower Upper 

Decomposition [15], such as Principal Component Analysis 

(PCA) [16] and Vector Quantization [17] (VQ). From  

Figure 2, let us take an initial data matrix 𝑉 =
𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝑅𝑛×𝑚. The purpose of NMF is to find two 

non-negative matrices W =  w𝑖𝑘 ℝ
𝑛×𝑟 . h𝑘𝑗 ∈ ℝ𝑟×𝑚  that 

approximate the original matrix 𝑉 . We can model the 

factorization 𝑊𝐻 in terms of vectors as 𝑣 ≈  𝑊ℎ where 𝑣 

and ℎ are the corresponding column vectors of 𝑉 and 𝐻. 

The linear combination of columns of W weighted by the 

components of 𝐻  represents the approximation of the 

corresponding column 𝑣 , seen 𝑊  as containing a basis 

vectors optimized of the linear approximation of 𝑉 [18] 

(Matrix 𝑊 is called basis matrix and encoding matrix 𝐻 

Coefficient matrix).  

 

 
 

Figure 2. NMF Factorization 

The NMF is a relatively new way of reducing 

dimensionality over data into linear combination bases 𝑊 

and weight 𝐻 . The benefit of using NMF instead of 

another low-rank factorization such as Singular Value 

Decomposition (SVD) or Principal Component Analysis 

(PCA) is due to its advantages [19]. Firstly, NMF is easily 

interpretable. According to [18], the constraint of non-

negativity produces an additive part representation, and in 

consequence, the factors 𝑊  𝐻 are in general naturally 

sparse. Secondly, NMF interprets its factors remarkably. 

As a result of the first advantage, compared to other 

factorization techniques, the NMF allows saving more 

storage in terms of dense factors [20]. 

Matrix factorization is not a unique solution. So, it cannot 

be solved analytically in general, the solution is a 

numerical approximation, and it consists of solving a non-

linear optimization problem in equation (3): 

 𝑚𝑖𝑛 ∥ 𝑉(𝑛×𝑚) − 𝑊(𝑛×𝑟)𝐻(𝑟×𝑚) ∥2/𝑉, 𝑊, 𝐻 ≥ 0 (3) 

The rank 𝑟 is defined by user empirically following 

the general rule 𝑟 <
𝑛𝑚

𝑛+𝑚
 [21,22] and the cost function to 

measure the error between the original matrix 𝑉 and its 

factors 𝑊 and 𝐻 as mentioned in equation (4) refers to the 

Frobenius norm (square Euclidean distance between two 

matrices) [23], with a possibility to use other alternative 

cost functions [18,24,25]. 

𝐸𝑅 =∥ 𝑉 − 𝑊𝐻 ∥2= ∑ (𝑥𝑖,𝑗 − ∑ 𝑤𝑖𝑟ℎ𝑟𝑗

𝑟

𝑟=1

)

2

𝑖,𝑗

 (4) 

To find factorization 𝑉 ≈ 𝑊𝐻 we can use one of the 

iterative approaches following rules proposed in [26]. 

Iterations continue until the convergence to the local 

minimum satisfying the cost function (equation (5)). 

𝑊𝑖𝑟 = 𝑊𝑖𝑟

[𝑉𝐻𝑇]𝑖𝑟

[𝑊𝐻𝐻𝑇]𝑖𝑟

 𝐻𝑟𝑗 = 𝐻𝑟𝑗

[𝑊𝑇𝑉]𝑟𝑗

[𝑊𝑇𝑊𝐻]𝑟𝑗

 (5) 

Initially, the NMF can be slow to converge to a global 

minimum [27], for large scale data 𝑉 as 𝑊 and 𝐻 are not 

unique. The minimization problem is non-convex, works 

like [22,28,29] came to overcome drawbacks and better 

improve this method. The NMF was applied successfully 

in domains [30] like hyper-spectral imaging, image 

processing, text mining, and other applications, including 

document clustering, recommendation systems, music 

analysis, computational biology, and environment.  

5. NMF-DCA PROPOSED SOLUTION 

Having reviewed related work, we now present the 

main body of our research. We introduce a model based 

on non-negative matrix factorization to automate the 

DCA's preprocessing phase. For this, the solution includes 

both steps, feature transformation, and signal 

categorization. On top of that, human capabilities show 

their limits when about a significant amount of data occur, 

extensive effort, and research to handle and support 

humans in analyzing and extracting useful and hidden 

information. An automatic mechanism called dimensional 

reduction is evident and necessary for grappling with the 

𝑀𝐶𝐴𝑉 =
𝑚𝑎𝑡𝑢𝑟𝑒𝑑 − 𝑐𝑒𝑙𝑙𝑠

𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 − 𝑐𝑒𝑙𝑙𝑠
 (2) 
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curse of dimensionality and for encouraging people to 

reduce uncertainty. 

The dimensionality reduction process obtains a 

smaller dimension of the original data, which reduces the 

storage of space with less time, increases the classification 

model's performance, and reduces the complexity of data. 

Dimensionality reduction has shown its effectiveness 

in different domains. Two dominant techniques exist in 

dimensionality reduction: feature selection and feature 

extraction. The feature selection is the process of selecting 

a subset for most informative and relevant features from 

the original data. The new reduced space may better 

describe the original one, and this process reduces 

computational costs while keeping the right balance 

between efficiency and classification accuracy, which is 

highly beneficial. 

On the other hand, we use feature reduction methods 

to find the minimum lowly correlated or uncorrelated 

factors and extract hidden properties of data. This 

technique can also better describe original data adding to 

the former method caption of hidden proprieties. The 

feature reduction is the process of transforming original 

data into a new transformed and reduced space composed 

of new value features. While reducing computational 

complexity in terms of time and storage space, 

furthermore to the discovery hidden latent structure in 

data, and so getting the advantage of transformed 

dimensionality reduction. 

Additionally, to the advantages mentioned above, 

NMF avoids overfitting in a prediction context. This 

advantage is essential to reduce false positive/negative, 

which implies that NMF expresses better the scalability 

and sparsity problem improving prediction performance. 

The NMF was mainly used to factorize the data matrix 

under non-negative constraints. Consequently, it can 

automatically extract sparse and easily interpret factors. 

Compared with PCA, NMF does not remove the mean of 

data, which leads to non-negative values. Therefore, it can 

preserve more information than PCA [31]. 

The non-negative matrix factorization allows us to 

overcome runtime limitation. It improves the quality of the 

original data and reduces it without affecting or losing 

parts. Further, NMF does not need any statistical 

assumption on the original data but relies on the non-

negative constraint, which is more convenient to represent 

data [18]. 

A. Data transformation 

In many situations, when trying to model a particular 

phenomenon, negative values are merely insignificant. For 

example, a negative height for people or a negative 

number of visits to a website are just some of the discrete-

continuous or discrete variables that are utterly absurd in 

terms of the final estimate. 

NMF gives better data projection while keeping 

preserved original data structure. After performing data 

preparation comparing with other factorization methods 

because of its non-negative constraints, it decomposes the 

data into the product of two non-negative lower-ranking 

matrices 𝑊 and 𝐻. The basis NMF matrix contained in the 

sub-matrix 𝑊  and matrix 𝐻  contains weights 

(coefficients). The NMF algorithm begins to modify 𝑊 

and 𝐻  until achieving convergence. The algorithm 

guarantees that the two matrices 𝑊  and 𝐻 are non-

negative and approach original data by mapping it to the 

product, considering that outliers can significantly impact 

the factorization. To improve the matrix factorization 

while benefiting from normalization, we need to decrease 

the error tolerance.  

Initially, NMF must start with a seed (i.e., an initial 

value for 𝑊0  and/or 𝐻0 ) indicating the beginning for 

iterations because there is no global minimum and the high 

dimensionality of data, it is crucial to have appropriate 

initialization to obtain meaningful results. We initiate the 

seed randomly so that 𝑊  and 𝐻  take a uniform 

distribution. 

The choice of the low factorization rank 𝑟  is user-

defined empirically, using expert knowledge, or simply 

using the trial and error [22]. We tested 𝑟 chosen from a 

range starting from 2 𝑡𝑜 𝑚𝑖𝑛(𝑚, 𝑛)  where m is the 

number of features and 𝑛  number of samples from the 

data. In each picked value, we calculate the Euclidean 

distance cost function between the original data and 

product of its factors 𝑊 and 𝐻 (equation (3)), we select 

the minimum distance value. 

B. Signal categorization 

The second step is to assign the transformed space 

into three signals to their appropriate signal category. 

After transforming original features using NMF reduction 

in the preprocessing phase, and as highlighted in the 

previous section, where the new data resulted from its 

original into a lower-rank matrix. This process reflects the 

importance of each resulted column to its right signal 

(PAMP, DS or SS), reminding the following vital points 

for existing signals in the DCA algorithm: 

• PAMP signals: Anomalies are likely to exist when 
these signals are present 

• Safe signals: indicate that the system is safe and no 
anomalies are present 

• Danger signals as these signals are less important 
to others. Damaged cells send danger signals, their 
presence increases an anomalous situation but has 
lower potency than PAMP. 

According to the amount of the danger signal DS, it is 

not enough to define a final context for an antigen as 

normal or abnormal because its presence may mean an 

anomaly but with lower probability as it may be classified 

as normal. However, the concentration of two other PAMP 

and SS signals can define a concluding context of antigen, 
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equation (1) translates the importance of each signal if we 

consider the default weight matrix in [2].  TABLE 1 shows 

that weights in the first column (costimulatory output) 

containing high weights are given to Safe and PAMP 

signals while the weight of danger signal is less important. 

That gives PAMP and Safe signal more essential to decide 

if there is an abnormality or not.  

The basis matrix 𝑊  is the reduced space of the 

original data. It represents the essential information 

weighted by the coefficient matrix H, considering that 

matrix as a hidden layer. So, the first column represents a 

high concentration part of the original data. In other words, 

the first vector is the most informative, so we assign this 

vector to both Safe signal and PAMP as they represent 

significant informative signals. 

The algorithm computes the Csm threshold 

automatically to generate concentration for PAMP and SS, 

compared to each item of matrix 𝑊. If its value is less than 

the threshold, we attribute PAMP concentration to the 

corresponding value, and we attribute zero to the safe 

signal. If it is greater than the threshold, the Safe signal 

takes the value one, and PAMP takes the value zero. 

The importance of the other remaining columns in the 

basis matrix is less critical than the first one, and we 

combine the remaining columns of new transformed 

features to form the Danger signal (DS). 

6. EXPERIMENTAL EVALUATION 

The main objective of this work is to show that the 

proposed solution, using matrix factorization in the 

preprocessing phase for the DCA algorithm, can optimize 

and improve the DCA's detection capability within less 

time. The experiment was carried out on binary class 

datasets selected from the WBC dataset [32], and other 

datasets with positive numerical values listed in TABLE 

2. The experiment was performed on Dell Intel(R) 

Xeon(R) CPU E5-2670 v2 @ 2.50GHz GHz, coded in 

Python 3.6/64 bit.  

We kept the experiment environment the same as the 

state-of-art works [4,10]. The experiment performed on a 

population of one hundred cells, and ten DCs sample the 

antigen vector each cycle. The maturation threshold (Csm) 

is generated automatically for each DC every cycle. We 

also used the predefined weights matrix used for signal 

transformation of the DCA same as defined in the state of 

the art (see TABLE 1) 

To show the efficiency of NMF in the DCA 

preprocessing phase, we compared it with one of the 

quickest rough set algorithms: The Quickreduct (QR-DCA 

[10]). Our main objective of this study is to optimize the 

runtime of the preprocessing phase while increasing the 

classification rate of the DCA. To give more meaning to 

this study, we considered it necessary to compare with 

another method of the state of the art which was presented 

in [4]. The processing time using the PCA method is not 

applicable due to this method's nature, which is semi-

automatic. 
TABLE 2. DATASET DESCRIPTION 

Dataset name Ref Instance Attribute 

Breast cancer  

Wisconsin 

(Original) 

Breast 10 699 10 

Breast cancer 

Wisconsin 

(Diagnostic) 

Breast 32 569 32 

SPECTF Heart Spectf 267 44 

Red wine 

quality 
Red wine 1599 12 

Sonar, mines vs. 

Rocks 
Sonar 208 60 

Congressional 

voting 
Vote 435 16 

Statlog (Heart) heart 270 16 

Liver disorders Bupa 345 7 

 

We start preprocessing data. This step needs to 

perform normalization and scaling functions because of 

the non-negative constraints of the NMF algorithm. The 

normalization function starts by calculating the basis 

matrix (new low dimension matrix), then using trial and 

error concept to find low-rank r, the best approximation of 

the distance between the original data and factorized 

product matrix, which is chosen by computing      

𝑚𝑖𝑛 ‖𝑉 − 𝑊𝐻‖2.  

The next step consists in defining for each new feature 

from new data its suitable signal category (PAMP, SS or 

DS). The presence of the signal PAMP or safe signal 

indicates an anomaly in the tissue, and the first column is 

assigned to one of the signals: PAMP or safe signal, and 

the other columns are combined from the danger signal. 

Because of the importance of the first vector of the 

transformed data, it represents mostly the original data, so 

it is obvious to represent PAMP or SS. 

Then, we use obtained new data from the former 

process, and we perform the multiplication process to get 

prepared multiple signals merged with antigen labels to be 

used in the maturation step. Filtering thresholds are 

generated automatically from the original dataset. For 

more accuracy, we average results (Accuracy, sensitivity, 

specificity, and execution time) set on more than ten runs.  

The performance of NMF-DCA is evaluated in terms of 

accuracy, sensitivity, specificity, and execution time: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁),  
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) and  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑁)  
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(TP: true positive, TN: true negative, FP: false positive and 

FN: false negative). 

 

To determine the effectiveness of non-negative matrix 

factorization on the dendritic cell algorithm as a 

preprocessing phase and overcome the limitation of 

runtime in former works. We have made a matrix 

factorization on binary class datasets (class 1, followed by 

class 2). This transformation was based on non-negative 

NMF matrix factorization and used the new reduced data 

as an input signal (Safe signal, PAMP, and danger signal) 

to the DCA. 

For the first dataset, breast10 from results in TABLE 3, 

it shows a high rate of accuracy with more than 98% in 3 

seconds. The sensitivity and specificity are more than 

98%. Matching to QRDCA, the accuracy was about 

79,80% less than the NMF in terms of accuracy, processed 

in 11,62 seconds to complete, remarkably the PCA 

outperformed QRDCA accuracy with more than 89%. The 

accuracy of the breast32 dataset exceeds 98% with 97.68% 

sensitivity and 99% specificity in a total time of 4.15 

seconds, while QRDCA took over 44 seconds with 

90,50% accuracy against 97,28% PCA.  

Vote dataset also gives a consistent result with 

96.06% accuracy and 98.40% sensitivity. At the same 

time, the specificity decreased. We also noticed that it took 

1.46 seconds to achieve the whole process, comparing the 

QR that made it in 3.84 seconds and QRDCA accuracy 

exceeded PCA accuracy with 93,97% vs 89.45%. Unlike 

the Bupa dataset, the QRDCA accuracy outperformed, 

both algorithms (the NMFDCA and PCA), with 99.42%, 

98.62% sensitivity, and 99;01% specificity in 1.20 

seconds, while the NMFDCA accuracy was less than the 

former with 94.73% bypassing the QRDCA in 1.10 

seconds, PCA accuracy was about 68.11%.  

The Redwine dataset's accuracy was about 89.63%, 

92.12% sensitivity, and 87.37% specificity processed in 

2.10 seconds. Moreover, accuracy was about 79.92% for  

 

QRDCA achieved in 22.54 seconds, PCA Accuracy was 

better than QRDCA with 84,35% and specificity with 

99,43% but does not performed in sensitivity with 58,96%.  

Remarkably, the Spectf dataset rates using QRDCA 

overpasses NMFDCA and PCA with an accuracy rate of 

91.98% against 84.81, and 85.04% against 91.64% 

specificity for NFMDCA, and 86,08% accuracy, 63,78% 

sensitivity, and 80% specificity for PCA. However, 

NMFDCA sensitivity was more important with 94.04% 

unlike QRDCA with 69.68%. 

In the first dataset, the excellent accuracy of breast10 

with 98,54% translated by the high quality of factorization, 

where it gives a very close representation of the original 

data, which means that the error is insignificant. Compared 

with the rough set [10], the feature selection process using 

the rough set took more than 11.62 seconds to select 

relevant features with an accuracy rate of 79.80%. In 

comparison, NMF took only 3.06 seconds to achieve the 

whole process. In this case, the process of feature selection 

was not able to categorize selected features to the 

appropriate signal, especially the safe signal and PAMP 

most significant signal and crucial to final results.  

Because QRDCA selects the first feature issued by the QR 

feature selection algorithm as the safe signal and the 

second as PAMP, it does not mean that we cannot affect 

other features to PAMP or safe signal, so, the process of 

feature selection was not enough to categorize selected 

features. Moreover, PCA outperformed QRDCA and got 

better accuracy rate the process using PCA[4] based on 

biplot feature directions to categorize them, this process is 

relatively semi-automatic, so we cannot measure the 

runtime. 

The breast32 took the same way as the first one with a 

reasonable accuracy rate but took more time than one 

second compared with the first one because of the feature 

number. In contrast, it took more than 44.08 seconds to get 

TABLE 3. COMPARATIVE RESULTS 

 

Accuracy Sensitivity Specificity Time (secs) 

NMF QR PCA NMF QR PCA NMF QR PCA NMF QR 

Breast 10 98.92 79.80 89,95 99.50 78.61 98,24 98.88 82.26 85,6 3.06 11.62 

Breast 32 98.85 90.50 97,28 98.96 93.99 94,96 99.00 74.52 98,66 4.15 44.08 

Vote 96.09 93.97 89,45 98.4 98.97 72,16 94.09 89.94 99,71 1.46 3.84 

Bupa 94.73 99.42 68,11 90.97 98.62 81,5 97.26 99.01 49,65 1.10 1.20 

Stat heart 91.08 75.36 58,14 86.31 83.52 11,66 93.49 65.35 95,33 1.27 3.34 

Red wine 89.63 79.92 84,35 92.12 74.72 58,96 87.37 90.75 99,43 2.10 22.54 

Spectf 84.81 91.98 86,08 94.04 69.68 63,78 85.04 91.64 80,4 1.05 6.58 

Sonar 67.31 80.23 85,06 93.67 97.94 61,79 59.12 97.30 98,87 0.69 8.56 
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feature selection over the QR process, which is a 

significant improvement to NMFDCA. This dataset shows  

a significant difference in processing time, considering the 

number of features and also in terms of accuracy with 

lower than the other data, due to the quality of the matrix 

factorization. However, keeping a better result than other 

classifiers. 

98.92% against 90.50%. The NMF factorization gives 

an almost identical image to the original data with reduced 

space so that the categorization process will be affected by 

the quality of factorization. Comparing with PCA, we 

found that the result was very close to NMFDCA with a 

better assignment of attributes to their categories, unlike 

QRDCA, which failed to categorize them properly. 

 As to the red wine with 1599 instances and 12 

features, the accuracy was about 89.63% in 2.10 seconds. 

The number of instances was considerably more 

significant than the previous datasets. Over and above, less 

quality of factorization was observed in results. The reason 

is due to the ill-posed problem. In consequence, the 

factorization error affected the quality of the 

categorization process. It decreased the accuracy rate 

compared to the cancer breast datasets, which are 

considered well-posed problems with a good quality of 

factorization and optimized error.  

Notice that the NMF factorization is not a unique 

solution, and it suffers from being highly ill-posed [22], 

the accuracy can drastically decrease in the case of an ill-

posed problem. To get better accuracy, we have to 

transform it into a well-posed problem and also have to 

minimize ‖𝑉 − 𝑊𝐻‖2. 

However, in terms of execution time, when applying 

the feature selection process using rough set method time 

increased incredibly with more than 22 seconds, which 

slows down the DCA, and derives from its main character 

as a lightweight algorithm. In some cases, the QRDCA can 

give a better accuracy rate comparing to NMFDCA 

according to TABLE 3, it shows that the feature selection 

process applying to Spectf and Sonar datasets using rough 

set can be efficient to categorize selected features to its 

appropriate category, but took a considerable time to 

achieve the selection process. Whereas the NMF 

factorization gave a less accuracy rate to the cited two 

datasets, we observe that preprocessing time was clearly 

in less time. Thus, the use of non-negative matrix 

factorization allows keeping the lightweight character of 

the DCA. We can improve the NMF efficiency to 

preprocess DCA when we properly handle the ill-posed 

problems. When applying PCA to DCA, the accuracy can 

be better than QRDCA in most cases. Still, this method 

suffers from its difficulty as it is based on observation and 

projection of features on the biplot. 

Besides comparison to the QR-DCA, our experiments 

confirm the improvement of running time while keeping a 

reasonable accuracy rate. To give more objectivity to our 

study, we compared our method with three classifiers: 

multi-layer perceptron (MLP), K-nearest neighbors 

(KNN), and support vector machine (SVM). We used 5-

folds cross-validation to test classifiers.  

As shown in Figure 3, the accuracy rate of the breast 10 

using MLP was about 67.14%, 94.28% using KNN, and 

SVM was 95%. Whereas NMF was about 98.92%, this 

result is interpreted by the good factorization quality. The 

weak accuracy of the MLP may result from many points 

like the number of neurons, the number of hidden layers, 

the weight initialization, or the activation function. In 

 
Figure 3. Comparison with SVM, KNN, and MLP classifiers 
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return, KNN and SVM gave an acceptable accuracy rate. 

The results of the breast 32 dataset were approximately the 

same as the first in terms of accuracy rate with the 

observation that the MLP still registers a low accuracy 

rate. 

By testing the classifiers on the vote dataset, we observe 

that MLP wins over SVM and approaches the results of 

KNN. The NMF accuracy rate was about 96% higher than 

other classifiers. The accuracy rate of the Bupa dataset was  

Stat heart dataset with an accuracy rate of 91.08% NMF, 

46.29% MLP, 66.66% KNN, and 86.18% SVM, which is 

reflected by the fact that the factorization error is 

minimized, the good quality of the factorization and 

therefore very close to the original data. Whereas with 

other classifiers, the accuracy rate was lower. 

We are aware that our research may have limitations. 

When the data are an ill-posed problem for factorization, 

the error ‖𝑉 − 𝑊𝐻‖2 increases and gives lowered rates, 

where we observe that the classifiers exceed our method: 

Spectf and Sonar datasets. To remedy this problem, we 

need to handle and regularize the ill-posed data. 

7. CONCLUSION 

The proposed algorithm uses the NMF method to 
convert the original data in space reduction using matrix 
factorization and categorizes the new data into its 
corresponding signal. This process optimizes the 
preprocessing phase and retains the dendritic cell 
algorithm efficiency. The optimized new transformed 
NMF-based data enables us to obtain information which 
will help us achieve a high accuracy. In comparison with 
other state-of-the-art approaches, experimental 
evaluations verify the suggested approach's efficiency 
comparing to QR-DCA and DCA-PCA in terms of runtime 
and accuracy rate. It has been shown that the new approach 
outperforms other classifiers (MLP, SVM, and KNN). In 
perspective, a comparative analysis between the dendritic 
cell algorithm and the perceptron algorithm would 
continue to be studied in depth to understand the learning 
process in both algorithms. 
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