

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Oct.-2021)

E-mail: allae.erraissi-etu@etu.univh2c.ma, mouad.banane-etu@etu.univh2c.ma

 http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/100185

Word Sense Disambiguation in Hindi Language Using Score

Based Modified Lesk Algorithm

Praffullit Tripathi
1
, Prasenjit Mukherjee

2
, Manik Hendre

3
, Manish Godse

4
, Baisakhi Chakraborty

5

1,5Department of Computer Science and Engineering, NIT, Durgapur, India

2 ,3,4Department of Analytics and IT, PIBM, Pune, India

Received 12 Mar. 2020, Revised 13 Mar. 2021, Accepted 10 Aug. 2021, Published 28 Oct. 2021

Abstract: Hindi is the widely used spoken language in the Indian subcontinent, and is used by more than 260 million Indians
citizens. Indian governments has many digital initiatives to serve Indian citizen better, hence Hindi language becomes one of the

important languages to serve Indian citizen. The Government initiatives are like smart city, Hospital Services, Common Service
Centers, Digital Payment Ecosystem, Pensioners Scheme, Digital Locker and many more. These all initiative are served using mobile
and web based applications, which citizens can access easily instead of visiting various government departments. To serve the large
Hindi speaking population, it is necessary to handle the ambiguous words which have multiple connotations in any natural language
processing task. In this paper, word sense disambiguation for Hindi language is proposed. Proposed method makes use of Lesk
algorithm to disambiguate the Hindi words. Novel scoring method is used to assign a sense score to each token of the Hindi sentence.
The sense score is calculated based on the gloss, hypernym, hyponym and synonym of the combinations of different sense of tokens.
Hindi WordNet database created by CFILT, IIT Bombay is used in the proposed system. The proposed algorithm takes a natural
language (NL) sentence in Hindi (Devanagari script) and process the sentence according to the score based approach modeled on the

basic Lesk algorithm with the help of Hindi WordNet designed by CFILT IIT Bombay. The solution provided in this paper can be
used vividly in various web based applications like Query-Response Systems, Question-Answer Systems, Sentiment analysis,
Recommendation systems etc.

Keywords: NLP, Lesk Algorithm, Word Sense Disambiguation, Multi Word WSD, Hindi WordNet.

1. Introduction

Hindi is a Devanagari scripting language. Most of the

citizens in the India and its subcontinent uses Hindi

language for communication. After Digital India

initiative, demand of regional language based web

applications are increasing exponentially. Citizens are

using application in Healthcare, Transportation,

Education, Tourism, Financial and Pension Applications

which are in regional languages. Citizens are flexible

with their native language and Hindi is the most

acceptable language in India and its subcontinent. Native

speaker of Hindi is almost 260 million people according

to Ethnologue as in [1]. Many Hindi based applications

have been developed that are related to the Query-

Response Systems, Question-Answer Systems, Sentiment

analysis systems, etc. These systems are natural language

processing (NLP) based systems, hence has the problem

of Word Sense Disambiguation. Understanding of a sense

in a Sentence or Word by the NLP based systems is an

open research problem. Human languages contain many

ambiguous words that create problems at the time of

processing sentences. Human languages contain

vocabulary that is comprised of words. All the languages

are full of words that have multiple meanings associated

with it. The meaning of a context is dissected depending

on the words used in the sentence. Sometimes same word

can have multiple senses [2]. These words are called

polysemous words. A sentence with one or more

polysemous words in it is said to be ambiguous. Human

neural networks (human brain) are way too efficient in

disambiguating the correct sense of a word used in a

sentence. However, computer systems are not too

proficient in it. Human languages are too complex for

machines to interpret and understand. It is preferred not

to have such ambiguities in computer related

applications. Identification of polysemous words and

assigning their correct sense is classical problem in NLP.

Process of assigning senses to the polysemous words is

known as word-sense disambiguation problem.

940 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

Word sense disambiguation is one of the major area of

interest for NLP researchers. Computer programs do not

have the human experience in languages, so

automatically correct sense detection of a polysemous

word is a difficult task. This is the problem that Word

Sense Disambiguation (WSD) tries to solve. WSD is a

core research problem in NLP which tries to identify the

sense of a word which is used in a given context as in [3]

[4]. Most of the WSD algorithms [5] [6] are divided as

supervised, unsupervised, and knowledge-based

techniques and that can be utilized to improve many NLP

based applications like Information Retrieval [7] [8],

Sentiment Analysis [9] [10], Machine Translation [11]

[12] or Text Summarization [13] [14]. Supervised

learning [15] requires large volumes of human tagged

data in order to find set of rules to disambiguate future

queries. There are two drawbacks to this approach. First,

human interaction is required. Second, no set of rules can

always dissect correct meaning of the word. On the other

hand, unsupervised learning [16] uses classical sources

like dictionary based WordNet [17] etc. to disambiguate

senses. Lesk algorithm falls under the category of

knowledge base based algorithm. Classical Lesk

algorithm offers a score based approach to find overlap

between different senses of target word and words nearby

to it. The Lesk algorithm is one of the most well-known

algorithm for word sense disambiguation which is

introduced by Michael E. Lesk [2] in 1986. A simplified

version of the Lesk algorithm is to compare the

dictionary definition of an ambiguous word with the

words contained in its neighborhood. Versions have been

adapted to use WordNet. The proposed work presents an

adaptation of Lesk algorithm that includes dictionary to

disambiguate ambiguous Hindi words from a Hindi

sentence. Rather than using a standard dictionary, this

algorithm employs a different kind of dictionary called as

WordNet. Traditional dictionary arranges words

alphabetically while WordNet organize the words

semantically. Glosses refer to the definitive meaning of

the word. Overlapping between the glosses of the

neighbouring words plays a key role in Lesk’s approach

[2]. The gloss of a word provides us the following

information.

1. List of different senses of the word in WordNet. Each

sense belongs to a different synset.
2. Information about the context in which word appears.

A scoring method is provided with the algorithm in

order to give sense score to each set of combination.

This scoring method is carried out by considering all

pairwise matching such that each element of the pair

belong to the same detail of separated words. For a

given query having ‘n’ tokens each having ‘k’ senses,

there will be total ‘n
k
’ different combinations. Proposed

scoring method is applied to all these different

combinations to give sense scoring and choose

appropriate sense. Before applying word sense-count

firstly, we have to trim the query so as to reduce the

useless words (stop words) for unnecessary

computation. Further, we develop the query by

searching stemmed words for validity. If there is no

such validity in WordNet, we reject the word just like

stops words. After a data set generation, we implement

the Lesk algorithm for further processing of sentences.

Word sense disambiguation is an open problem in

computational linguistic where it detects correct sense

of a word that is used in a sentence. In the Simplified

Lesk algorithm, the meaning of a word is calculated by

finding the overlaps between the context and the

dictionary meanings of the word. The meaning for

which maximum overlap takes place is taken as the

word sense. The word sense of each word is found

individually. Internet is emerging as a major source of

communication in India. It is expected to have large

data analysis requirement in regional local languages

with the availability of internet services is rural areas.

Hindi language contains many ambiguous words

handling which is difficult for NLP systems because

meaning of a same word is different in different

sentences with different contexts.

In this paper, we have proposed to modify the Lesk

Algorithm to disambiguate ambiguous Hindi words

efficiently. The score and combination based approach

have been applied on Lesk algorithm. NLP based steps

like tokenization, lemmatization, POS tagging are used to

process the Hindi sentences. The Hindi WordNet is used

to extract the correct sense of an ambiguous Hindi word.

The International Phonetic Alphabet (IPA) notation [1]

for Hindi words is used in this research work. The

proposed algorithm takes Hindi sentences as an input.

The output will be generated as correct sense of the Hindi
word. Many WSD systems have been discussed briefly in

Related Works Section (Section 2). The Architecture of

this WSD system has been elaborated in Section 3. The

Time Complexity of Proposed system has been

calculated in Section 4 where Methodology has been

given in Section 5. Applications of the system have been

stated in Section 6. Finally, the Future Work and

Conclusion has been drawn in Section 7 and Section 8

respectively.

Related Works
Word sense disambiguation is one of the key problems in

the NLP domain. A large volume of research is going on

for the selection of an efficient WSD algorithm. Majority

of the unsupervised learning solutions use Lesk

Algorithm as their underlying algorithm. Basic Lesk

 Int. J. Com. Dig. Sys. 10, No.1, 939-954 (Oct.-2021) 941

http://journals.uob.edu.bh

algorithm is implemented for the English corpus. Some

of the languages does not have rich corpus like English.

Such languages require some variations in classical Lesk

algorithm in order to disambiguate senses efficiently.

Rajat Pandit proposed dependency tree based lesk variant

to perform WSD for low resource language like Bengali

[18]. Shancheng Tang proposed a solution using deep

Chinese word sense disambiguation method which is

based on sequence to sequence that improved

performance by 11.48% [19]. Evaluation of different

WSD algorithm is a major sub problem in the NLP

domain. Alessandro Raganato designed a unified

evaluation system and measure the performance of

various word sense disambiguation algorithms. This

paper offers two main contributions. The first

contribution is (1) standardizing the WSD datasets and

training corpora into a structured format, (2) semi-

automatically annotation conversion from any dataset to

WordNet 3.0, and (3) pre-processing the datasets by

consistently using the same pipeline. Second, the

evaluation framework has been used to perform a fair

quantitative and qualitative empirical comparison of the

main techniques that is discussed in the WSD literature,

including the latest advances based on neural networks

[20]. Quang-Phuoc Nguyen designed a lexical semantic

network for Korean language which is useful for Korean

morphological and word sense disambiguation [21]. The

Lexical semantic network [21] uses largest Korean LSN

that consist of Lexical networks of nouns, predicates, and

adverbs. Each node is connected with other node using

six types semantic relation that are hyponymy,

synonymy, similarity, antonym, part-whole, and

association relations. To represent a certain sense of a

word, each node is consisted with a word and its sense

code. Korean morphological analysis is difficult because

different types of morphems and parts of speech are

encoded into the same eojeol. The meaning of a

morphem can be changed because of different parts of

speech tagging with the morphems. The morphological

analysis refers to discover the correct set of sense in a

given context. In Korean morphological analysis, the

conventional methods are a) Segment the input eojeol

into morphemes and b) tag POS to each morpheme as in

[21]. The application of WSD is not limited to any

particular domain. Saeed Seifollahi, Mehdi Shajari use

WSD to analyze the sentiments of news headlines in

order to predict their impact on the stock prices. Some of

the applications require heavy computations. To make

the application time efficient, several heuristics can be

utilized to improve the performance. Genetic algorithms

are used widely to address various hard optimization

problems. Zankhana B. Vaishnav applied Knowledge-

Based Approach to disambiguate polysemous words

Using Genetic Algorithm. Genetic approach proposed

used Indo-Aryan WordNet for Gujarati language as

lexical database as in [23]. S. N. Mohan Raj propose

method to eliminate ambiguity due to homonymy using

cluster and deep learning approach. Homonymy

ambiguity is a problem in Malayalam language. This

problem is attempted by the Authors in [24]. The system

uses POS tagging lemmatization and sense annotation.

The neural network has been used in deep learning

method and this method is using the corpus to

disambiguate the homonymous words in Malayalam as in

[24]. Jagbir Singh proposed a word Sense disambiguation

system that is based on Punjabi language. The enhanced

Lesk approach has been utilized to extract correct sense

of ambiguous Punjabi words. The methodology of this

system is supervised learning and Indo WordNet has

been used for disambiguating Punjabi words as in [25].

Lekshmi R Pillai proposed a question answering system

to predict an answer for an input question. This model is

based on a combined approach using word sense

disambiguation (WSD) and semantic role labelling

(SRL). The proposed system is a factoid sense based

question generation system. The Lesk tool has been used

for WSD where the senna tool has been used for SRL.

They used Lesk tool for WSD and senna tool for SRL

which are based on the sense affiliated with the sentence

system generates questions that are semantically solvable

as in [26]. Word sense disambiguation can be solved

using three kinds of approaches, knowledge based,

corpus based and hybrid approach. Himdweep Walia

proposed a Naïve Bayes based WSD approach that has

shown higher accuracy than other implementations as in

[27]. Training data is an issue to disambiguate ambiguous

words in Persian language that has been faced by the

Author [28]. The Machine Learning (ML) algorithm with

minimum supervision has been considered to solve this

problem. Various news articles have been used as main

source of the reference corpus. This method uses some

predefined features of target words to disambiguate

senses of the word as in [28]. G. Sajini designs a user

interface where user manually enters a sentence in Hindi

with polysemy word. This system [29] identifies the

polysemous words and list one or more meanings that are

associated with that word. Using machine learning

techniques, this system identifies the correct meaning of

the polysemy word which is based on the given context

as in [29]. Author [30] proposed a WSD system which is

based on Naive Bayes classifier (ML technique). Sense

corpus and Ambiguous corpus have been used by this
WSD system.

942 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

TABLE I. COMPARATIVE STUDY AMONG SIMILAR TYPE WSD SYSTEMS WITH THE PROPOSED WSD SYSTEMS

Sl. No. Authors WSD based Systems Technique(s) used in similar type WSD

System

Technique(s) used in proposed

WSD System

1 Rajat Pandit et al.

[18]

Word Sense

Disambiguation by

Improvised Lesk

Algorithm [18]

The LESK algorithm has been improved for

Word sense disambiguation (WSD) on

Bengali language. The dependency tree

based Lesk has been used to perform the

WSD.

The classical Lesk algorithm has

been modified for the WSD in

Hindi language. The proposed

algorithm uses score based

approach.

2 Shancheng Tang et

al. [19]

Deep Chinese Word

Sense Disambiguation

Method [19]

Chinese WSD method has been used in this

system. The Deep learning method has

been used for feature extraction of Chinese

text.

The Hindi sentence is used to

process according to the score

which is modeled on basic

Lesk algorithm. The score is

assigned on each combination of

sense. The largest sense score is

the output of this system.

3 Alessandro

Raganato et al. [20]

A Unified Evaluation

Framework on Word

Sense Disambiguation

[20]

An evaluation framework has been

designed, that is based on various WSD.

The first step of evaluation is standardizing

the WSD datasets and training corpora into

a unified format, The second step is

Converting annotation from any dataset to

WordNet and third step is pre-processing of

dataset using same pipeline. The proposed

frame work performs a comparison which

based on quantitative and qualitative.

The proposed system is using

supervised method of Lesk

algorithm. The Hindi WordNet of

CFILT, IIT, Bombay has been

used to implement this system.

This system is able disambiguate

ambiguous Hindi words easily.

4 Quang-Phuoc

Nguyen et al.[21]

Korean-Vietnamese

Neural Machine

Translation System [21]

Korean is a morphologically rich language

where Vietnamese is an analytical language.

Korean language contains word ambiguities

which is a problem for Neural MT. The

Korean knowledge base has been prepared

for the lexical semantic network which is

used for morphological analysis and WSD

in Korean language.

Another large Korean-Vietnamese corpus

has been prepared for the Vietnamese word

segmentation method.

Hindi is an Indo-Aryan language.

Hindi is used by most of the

people in India and Indian

subcontinent.

Understanding a Hindi Sentence

is a real issue because Hindi

sentence contains many

ambiguous Hindi words. This

problem has been solved by the

Lesk algorithm using Hindi

WordNet.The Classical Lesk

algorithm has been modified.

5 Saeed Seifollahi et

al. [22]

Word Sense

Disambiguation in

Sentiment Analysis [22]

A sentiment analysis has been done on the

News headlines. The WSD has been used on

sentiment analysis to predict the impact of

the stock price. They have used the news

headlines as input of the proposed system.

The Score based approach has

been applied on Lesk algorithm to

disambiguate the ambiguous

words. A sense score has been

assigned to each possible

combination of senses where

largest sense score is the output of

this proposed system.

6 Zankhana B.

Vaishnav et al. [23]

Word Sense

Disambiguation in

Gujarati Language [23]

A genetic algorithm has been used to

Disambiguate polysemous words. The

proposed system is based on the Gujarati

language. It uses Indo-Aryan WordNet

database for the Gujarati as lexical database.

A score based modified Lesk

algorithm has been used to

disambiguate the ambiguous

words. The proposed system is

based on Hindi language.

7 S. N. Mohan Raj et

al. [24]

Word Sense

Disambiguation of

Malayalam Nouns [24]

This system uses WSD on Malayalam

language. The proposed work concerned

about the homonymy ambiguity. To

resolve the homonymy ambiguity, two

approaches have been given- Clustering and

Deep learning. Clustering is supervised

method where POS tagging, lemmatization

and sense annotation have been used. The

Deep learning approach is based on neural

network that uses corpus for disambiguating

homonymous words.

The proposed system uses Hindi

words for disambiguation. The

Hindi language is Devanagari

Script and this script is containing

many ambiguous words. To

extract the correct sense, The

Lesk algorithm has been applied

after modification. Stop words

elimination, Stemming, POS

tagging, Sense generation are

most popular steps have been

applied on this proposed system.

 Int. J. Com. Dig. Sys. 10, No.1, 939-954 (Oct.-2021) 943

http://journals.uob.edu.bh

8 Jagbir Singh et al.

[25]

Word Sense

Disambiguation in

Punjabi [25]

This work is analyzing the correct

meaning of the ambiguous words in

Punjabi language. An enhanced Lesk

approach have been utilized to extract the

correct sense of the ambiguous words. The

supervised learning methodology and Indo

WordNet have been utilized to develop this

system.

The proposed system is able to

extract correct sense of the

ambiguous Hindi word. Modified

Lesk has been used. Cltk library

has been used for Hindi Stop

Words detection. Indicnlp library

has been used for the Stemming

and POS tagging of Hindi words.

The combinations of senses have

been generated by the proposed

algorithm to assign score. The

largest score of a sense

combination detected as output.

9 Lekshmi R Pillai et

al. [26]

Word Sense

Disambiguation for

Question-Answering

System [26]

This is a factoid sense based question-

answering system. The WSD and

Semantic Role Labelling (SRL)

approaches have been applied on this

system. The Lesk is used for WSD and

Senna is used for SRL.

This is modified Lesk algorithm

based Hindi WSD system. Score

approach has been modeled on

Lesk algorithm and sense

combination has been generated

to assign score. Output is

dependent on to the score.

10 Himdweep Walia et

al. [27]

Gurmukhi Word Sense

Disambiguation [27]

Three kind of approaches is used in WSD.

The first approach is knowledge base, the

second approach is corpus based, and third

approach is hybrid based. The Naïve Bayes

classification algorithm is used on WSD to

disambiguate Gurumukhi words.

The Punjabi corpus have been used for

Gurumukhi words.

Dataset generation is a one of the

important part of this proposed

WSD system. The Hindi

WordNet has been used to filter

out various Hindi word senses.

Extracted information from the

WordNet has been assigned as

value. The dataset has been

represented from this extracted

information. This dataset has

been utilized to evaluate sense

score.

11 Mohamadreza

Mahmood et al.

[28]

Persian word sense

disambiguation [28]

Persian language based WSD problem has

been solved by the Machine Learning (ML)

algorithm where minimal supervision

has been considered. The corpus has been

represented from various news articles. The

proposed system uses some predefined

features of targeted words and collaborative

learning method.

Hindi language based WSD

problem has been solved by the

modified Lesk algorithm which is

score based. Combinations of

senses are generated to assign the

score for determination of correct

sense of a Hindi word. The most

popular Hindi WordNet has been

utilized which is Developed by

the CFILT, IIT, Bombay.

12 Saiba Nazah et al.

[32]

Word Sense

Disambiguation of

Bangla sentences [32]

This WSD system is based on Bengali

words. Naïve Bayes classifier and

artificial neural network (ANN) have been

used to disambiguate the Bengali Words.

The Naïve Bayes classifier has been use in

training phase and ANN has been used to

detect the correct sense of the word.

The Score and Combination

based approach have been used to

modify Lesk algorithm. The

algorithm is flexible to handle

Hindi ambiguous words. The

natural language processing steps

have been utilized.

The dataset has been generated

using the Hindi WordNet.

944 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

The Sense corpus contains synsets, synonyms and antonyms

where Ambiguous corpus contains all possible ambiguous

words. The experimental result of this system is promising

to disambiguate the ambiguous words as in [30].

Unsupervised approach is a most popular approach in

Machine Learning. A WSD system has been described by

the Author [30] which is unsupervised approach and

supervised approach has been bypassed by this system

using simulation of the semantic inference process that is

performed by human language users as in [31]. Another

Bengali WSD system has been proposed by the Author

[32] that uses Naïve Bayes classifier and Artificial Neural

Network (ANN) to disambiguate the ambiguous Bengali

words in Bengali Language. Naïve Bayes classifier has

been used for the training phase and ANN has been

utilized to predict and detect the correct sense of an

ambiguous Bengali word as in [32]. Adapted Lesk

method has been used by the Author [33] in their WSD

system. The WordNet has been utilized instead of a

standard dictionary. The WordNet contains a hierarchy of

a semantic relation. The proposed system takes a single

target word and its surrounding words as Input. The

output is generated as sense of the target word. The

comparison has been done on glosses of involved words

and related words like hypernym, hyponym, holonym,

meronym, troponym, and attribute that are available in

WordNet. The sample data from SENSEVAL-2 has been

utilized for method evaluation and this system has

achieved 32% overall accuracy as in [33]. A comparative

study has been done on similar type WSD system and

proposed WSD system. The comparative study has been

given in Table 1.

2. ARCHITECTURE OF THE PROPOSED SYSTEM

Proposed System architecture (Figure-1) takes a natural

language sentence in Hindi as input. It first removes Stop

Words from the sentence. Stemming and POS tagging is

major step for any natural language application. After

eliminating the stop words from the input sentence,

refined query is stemmed word by word. Further, refined

query is POS tagged and only tokens with multiple

senses are left. Each of these tokens are queries in the

WordNet semantic database and all the information

usable in future is separated in a distinct variable named

as dataset. Different possible sense combinations are

generated one by one. Each of the combination is

assigned a value evaluated using proposed scoring

method. The sense combination with maximum sense

score is output of the algorithm. Output is returned to the

client in the form of word sense pairs.

The proposed algorithm is modularized into following 6

steps. Each of these modules are explained in details in

subsequent sections.

1. Post NL Sentence in Hindi

2. Stop Word Elimination

3. Stemming and POS Tagging

4. Dataset Generation

5. Modified Lesk Algorithm Implementation

a. Sense Combination Generation
b. Sense Score Assignment

6. Output (Word Sense Pair)

Figure 1. Architecture of the Proposed WSD System

 Int. J. Com. Dig. Sys. 10, No.2, 939.-954.. (Aug-2021) 945

http://journals.uob.edu.bh

3.1. Algorithm

Basic Algorithmic Steps of this Proposed WSD System

has been described here.

i. Post NL Sentence in Hindi

The proposed WSD system will read natural language

sentence in Hindi. It will check for sentence validation.

If sentence is not validated then system will prompt to

user. Otherwise the sentence will go for next step.

ii. Stop Words Elimination

Each language has a variety of stop words which is of

no use while processing them for natural language
processing applications. So it would be better to
eliminate these stop words prior to advance of further

processing.

Few example of Stop Words used in Hindi language are

listed here. These are in Devanagari script.

['हें'(ɦeɦɦ̃), 'है'(ɦɦɦ), 'हैं'(ɦɦɦɦ̃), 'हह'(ɦɦ[6]),

'ही'(ɦiɦ[6]), 'हो'(ɦoɦ), 'हे'(ɦeɦ), 'से'(seɦ),

'अत'(ə[5]t[2]), 'के'(keɦ), 'रहे'(rɦ eɦ), 'का'(kaɦ),

'की'(kiɦ[6]), 'हक'(kɦ[6]), 'तो'(t[2]oɦ), 'ने'(neɦ),

'एक'(eɦk), 'नहीी ी '(nɦiɦ[6]), 'पे'(peɦ), 'में'(meɦɦ̃),

'वाले'(ɦ[4]aɦl eɦ), 'सकत'े(skt[2]eɦ), 'वह'(ɦ[4]ɦ),

'वे'(ɦ[4]eɦ), 'कई'(kiɦ[6]), 'होत '(ɦoɦt[2]iɦ[6]),

'आप'(aɦp), 'यह'(jɦ), 'और'(ɦɦr), 'एव '(eɦɦ[4]ɦ̃),

'को'(koɦ), 'मे'(meɦ), 'दो'(d[2]oɦ),

'थे'(tɦ[2]eɦ),'यहद'(jd[2]ɦ[6]), 'उनके'(ɦ[6]nkeɦ),

'थ '(tɦ[2]iɦ[6]), 'पर'(pr), 'इस'(ɦ[6]s),

'साथ'(saɦtɦ[2]), 'हलए'(lɦ[6]eɦ), 'जो'(dɦ oɦ),

'होता'(ɦoɦt[2]aɦ), 'या'(jaɦ), 'हलये'(lɦ[6]jeɦ),

'द्वारा'(d[2]aɦr aɦ), 'हुई'(ɦiɦ[6]), 'जब'(dɦb),

'होत'े(ɦoɦt[2]eɦ), 'व'(ɦ[4]), 'न'(n),

'उनकी'(ɦ[6]nkiɦ[6]), 'आहद'(aɦd[2]ɦ[6]),

'सकता'(skt[2]aɦeɦ), 'उनका'(ckaɦ),

'इतना'(ɦ[6]t[2]naɦ), 'इतयाहद'(ɦ[6]t[2]jaɦd[2]ɦ[6]),

'हजस'(dɦɦ[6]s), 'उस'(ɦ[6]s), 'कै 'से(kɦɦseɦ),

'ह ूँ'(ɦuɦ[6]ɦ̃), 'ना'(naɦ), 'कहह'(kɦɦ[6]), 'सम'(sm),

'र'्(r), 'कह ूँ'(kɦɦ̃), 'बस'(bs), 'अपना'(ə[5]pnaɦ),

'यही'(jɦiɦ[6]), 'कहीी ी '(kɦiɦ[6]ɦ̃), 'हाी ीूँ'(ɦaɦɦ̃),

'मैंने'(mɦɦneɦ), 'जह ूँ'(dɦɦɦ̃), 'सब'(sb), 'यह'(jɦ),

'था'(tɦ[2]aɦ), 'तुम'(t[2]uɦm), 'ये'(jeɦ), 'जे'(dɦ eɦ),

'भ '(bɦiɦ[6]), 'हम'(ɦm), 'अब'(ə[5]b), 'ऐसे'(eɦseɦ),

'वहाी ीूँ'(bɦaɦɦ̃), 'क्या'(kjaɦ), 'ओर'(ɦɦoɦr),

'इस '(ɦ[6]siɦ[6]), 'सके'(skeɦ), 'कभ '(kbɦiɦ[6]),

'हर'(ɦr), 'मेरी'(meɦriɦ[6]), 'कम'(k m), 'सा'(saɦ),

'उन्हें'(ɦ[6]nɦeɦɦ̃), 'मेरे'(meɦreɦ), 'उन'(ɦ[6]n), 'कु

'छ(kɦ[6]tɦɦ), 'इन'(ɦ[6] n), 'ऐसा'(eɦsaɦ),

'जहा'(dɦɦ aɦ), 'त न'(t[2] iɦ[6] n)]

Above is the exclusive list of all stop words in Hindi

language. Python Cltk library (https://pypi.org/project/

cltk/) has been used for the stop words. In code, these

stop words are represented by STOPS_LIST list

variable. This list contains many Hindi words that are

related to the Determiner, Pronoun and Adverb,

Preposition, Wh word of English.

Examples:

a) Determiner: 'नही '(nɦiɦ[6]) (No),'कुछ'(kɦ[6]tɦɦ)

(Few), 'हर'(ɦr) (Each), etc.

b) Pronoun: 'उनकी'(ɦ[6]nkiɦ[6]) (him/her),

'हम'(ɦm)(I), 'अपना'(ə[5]pnaɦ)(My),

'तुम'(t[2]ɦ[6]m)(You), 'मेरी'(meɦriɦ[6]) (My),

'वह'(ɦ[4]ɦ) (He/She) etc.

c) Adverb: 'यही' (jɦ iɦ[6]) (here), 'अब' (ə[5] ɦ[4])

(Now), etc.

d) Preposition: 'द्वारा' (d[2]aɦr aɦ) (By),'जब' (dɦb) (If),

etc.

e) Wh Words: 'कैसे' (kɦɦseɦ) (How), 'कहूँ' (kɦɦ̃)

(Where), 'क्या', 'कक' (kjaɦ) (kɦ[6]) (What), 'जहा'
(dɦɦaɦ) (Where), etc.

These words are Stop words which are not very important

for the Hindi sentence processing. In this step, Stop words

are eliminated from the natural language sentence.
Example sentence has been given here in Figure 2 and 3.

Natural language Sentence: मतकेआधारपरफैसलाहुआ।
(mt[2] keɦ aɦdɦ[2]aɦr pr pɦɦɦslaɦ ɦɦ[6]aɦ) (The

decision was made according to the openion.)

मत के आधार पर फैसला हुआ।

 Stop Words
Figure 2. Example sentence with Stop Words

946 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

 ‘के’ and ‘पर’ are filtered out as both of them are stop

words. Refined query is -

मत आधार फैसला हुआ

Figure 3. Example sentence after Stop Words Elimination

Pseudo code of Stop Words Elimination step has been

given here.

Pseudo Code: Stop Words Elimination

install morfessor library
import itertools
import math
from pyiwn import pyiwn
iwn = pyiwn.IndoWordNet('hindi')

initialize indicnlp library
from indicnlp import common

place the directory of indic_nlp_resources
common.set_resources_path(r"C:\Users\Praffullit
Tripathi\.spyder-py3\Proj\indic_nlp_resources")
from indicnlp import loader
loader.load()
from indicnlp.morph import unsupervised_morph
analyzer=unsupervised_morph.UnsupervisedMorphAnalyzer('m
r')

include STOPS_LIST using cltk library
from cltk.stop.classical_hindi.stops import STOPS_LIST
from cltk.tokenize.sentence import TokenizeSentence

matra = ["ीूँ","ी ","ी ","ी ","ीा","िी","ी ","ी"ु,"ी ","ी ","ी ","ी ",

"ी"े,"ीै","ी ","ीो","ी ","ी्"]

karak = ["न"े,"को","से","के","द्वारा","ललए","में","पर", "का","की",

"के","रा","रे","री"]

print(STOPS_LIST)

STOPS_LIST.append(karak)

def tokenizer(string):
this tokenize sentence only
tokenizer = TokenizeSentence('hindi')
 hindi_text_tokenize = tokenizer.tokenize(string)
 filtered_token_list = []
for word in hindi_text_tokenize:
if word not in STOPS_LIST:
 filtered_token_list.append(word)
 hindi_text_no_stop_word = ""
for it in filtered_token_list:
 hindi_text_no_stop_word=hindi_text_no_stop_word+it+" "
return hindi_text_no_stop_word

iii. Stemming and POS tagging

Filtered query sentence (query without stop words) is

again parsed word by word in order to stem the root word
from each filtered token. Indicnlp library

(https://pypi.org/project/indicnlp/) provides support to

stem words using morphological analysis of their

WordNet resource. While stemming, we further

improvise query by searching stemmed word into

WordNet for any valid sense. We search this stem word

as either noun, adverb, adjective or verb as all other part

of speech is of no use. If stem word have no valid senses

as above stated part of speech then we simply reject the

word.

After stemming we get tokens as below:

[“मत” (mt[2]) (Opinion), ”आधार” (aɦdɦ[2]aɦr)

(according),”फै सला”(pɦɦɦslaɦ) (Decision)]

The Pseudo Code of Stemming and POS Tagging has
been given here.

Pseudo Code: Stemming and POS Tagging

def tokenizer_and_stemmer(string):
 hindi_text_no_stop_word=tokenizer(string)
 hindi_text_morphe=""
tokenize as well as morphological splitting of words
for word in hindi_text_no_stop_word.split():
 if len(iwn.synsets(word, pos=pyiwn.NOUN))>0 or
len(iwn.synsets(word, pos=pyiwn.VERB))>0 or
len(iwn.synsets(word, pos=pyiwn.ADJECTIVE))>0 or

len(iwn.synsets(word, pos=pyiwn.ADVERB))>0:
 hindi_text_morphe = hindi_text_morphe+ word +" "

elif len(iwn.synsets(word+"ना", pos=pyiwn.VERB))>0:

 hindi_text_morphe = hindi_text_morphe + word +"ना"

else:
 morphed_text_temp =
analyzer.morph_analyze_document(word.split(' '))
 temp_str = ""
if morphed_text_temp != word:
for word_iter in morphed_text_temp:

if word_iter in matra:
 word_iter = temp_str + word_iter
 if len(iwn.synsets(word_iter, pos=pyiwn.NOUN))>0 or
len(iwn.synsets(word_iter, pos=pyiwn.VERB))>0 or
len(iwn.synsets(word_iter, pos=pyiwn.ADJECTIVE))>0 or
len(iwn.synsets(word_iter, pos=pyiwn.ADVERB))>0:
 hindi_text_morphe = hindi_text_morphe+ word_iter+" "

elif len(iwn.synsets(word_iter+"ना" ,pos=pyiwn.VERB))>0:

 hindi_text_morphe = hindi_text_morphe+ word_iter+"ना"

 temp_str = word_iter

 final_token_list=[]

for word in hindi_text_morphe.split():
 final_token_list.append(word)

 Int. J. Com. Dig. Sys. 10, No.2, 939.-954.. (Aug-2021) 947

http://journals.uob.edu.bh

for word_it in final_token_list:
print(word_it),

return final_token_list

iv. Dataset Generation

After filtering and stemming the query sentence, we’re

querying wordnet to filter out various senses of the

tokens. A dictionary of tokens acts as the key and all the
extracted information from the wordnet are assigned as

the value to the tokens or the key. This algorithm requires

hypernym, gloss, hyponym and synset values in further

steps to evaluate sense scores.

Structure of the Dataset: DATASET[‘word’][in1]

Dataset is a dictionary, each token of the query sentence

acts as key. Dataset is formed in a nested structure. Each

sense of the token is further classified according to their

part of speech. in1 iterator uses to iterate through highest

level of depth which access the meaning in the following
order

“मत”(m t[2]), “आधार”(aɦdɦ[2]aɦr) and

“फैसला”(pɦɦɦslaɦ) have 5,14 and 2 possible senses. All

these senses are encapsulated in variable name dataset.

TABLE II. SIGNIFICANCE OF INDICES USED IN DATASET

Pseudo Code: Dataset Generation
def dataset_generation(token_list):

 reject_words = {'','न'े}

dataset = {}
for iter in token_list:
if iter in reject_words:
continue
else:
dataset[iter] = []

iterate for each word 4 times once as noun ,verb, adj and verb

respectively
for pos_iter in range(0,5):
if pos_iter == 0:
syns = iwn.synsets(iter, pos=pyiwn.NOUN)
elif pos_iter == 1:

syns = iwn.synsets(iter+"ना", pos=pyiwn.VERB)

elif pos_iter == 2:
syns = iwn.synsets(iter, pos=pyiwn.VERB)
elif pos_iter == 3:

syns = iwn.synsets(iter, pos=pyiwn.ADJECTIVE)
elif pos_iter == 4:

syns = iwn.synsets(iter, pos=pyiwn.ADVERB)
if len(syns)>0:

Set Flag 1 To Remove Stop_Words While Formation Of
Dataset

flag=1
for i in range(0,len(syns)):
temp = []
if flag == 1:
 gloss_main = tokenizer(syns[i].gloss())
temp.append(gloss_main)
else:
temp.append(syns[i].gloss())

if pos_iter<=2:
hypernym = syns[i].hypernymy()
else:
hypernym = []
 hypernym_str =""
for k1 in range(0,len(hypernym)):
if flag == 1:
 gloss_hyper = tokenizer(hypernym[k1].gloss())

 hypernym_str = hypernym_str + gloss_hyper +" || "
else:
 hypernym_str = hypernym_str +
hypernym[k1].gloss() +" || "
temp.append(hypernym_str)
if pos_iter<=0:
hyponym = syns[i].hyponymy()
else:
hyponym = []

 hyponym_str =""
for k2 in range(0,len(hyponym)):
if flag == 1:
 gloss_hypo = tokenizer(hyponym[k2].gloss())
 hyponym_str = hyponym_str + gloss_hypo +" || "
else:
 hyponym_str = hyponym_str + hyponym[k2].gloss() +" || "

temp.append(hyponym_str)
 syn_words = ""
for j in syns[i].lemmas():
 syn_words = syn_words+ j.name() +" || "
temp.append(syn_words)
temp.append(syns[0].pos())
dataset[iter].append(temp)
return dataset

v. Modified Lesk Algorithm implementation

1. Sense Combination Generation

This algorithm generates all the different combinations of

sense of the tokens as depicted in the Figure 4 and uses

scoring method explained in the next segment of this

section to give a sense score to each of the combination.

A query with n tokens and each token having k senses

have (nk) different combinations to check.

If a query has 3 tokens (A, B and C) and these tokens

have 3, 2 and 4 senses respectively. Then there are total
3x2x4 = 24 possible combinations of sense to check for.

Index Value Represented property

0 Gloss of the word itself

1 Gloss of the hypernym of the word

2 Gloss of hyponym of the word

3 Word synonymous to the word

4 Part of speech of the in1 th sense

948 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

Figure 4. Various Possible Sense Combinations for 3 Token query

According to the Figure 5, A2B2C4 is one such

combination where 2nd sense of word A, 2nd sense of word

B and 4th sense of word C is used.

Figure 5. List of all possible sense combinations

For the example query, possible combinations of senses
are depicted in the Table 3.

TABLE III. POSSIBLE COMBINATIONS FOR EXAMPLE QUERY

मत

(Opinion)

आधार
(According)

फैसला
(Decision)

Sense Score

A1 B1 C1 S1

A1 B1 C2 S2

::: ::: ::: :::

A2 B1 C1 S29

::: ::: ::: :::

A5 B14 C2 S140

Where Ai, Bj, Ck epresent the ith, jth, and kth sense of the

word मत (m t[2]) , आधार (aɦdɦ[2]aɦr) , फैसला
(pɦɦɦslaɦ) respectively and Sx is the sense score

assigned to xth combination.

2. Sense Score Assignment

In order to evaluate sense score for a given sense token

combination, we follow the procedure depicted in the

Figure-6. This algorithm considers all the pairwise

matchings such that each element of a pair (a, b) belong to

sense details of separate words. For every sense of each

word gloss, hypernym, hyponym and synonym are

considered to calculate a sense score for that pair.

For each pair (a, b) where a and b are both strings. We use

the procedure elaborated below to assign scores.

For pair with a!=syn and b!=syn:
Common substring of length = len within a and b

Score = Score + (len * (len + 1)) / 2

Otherwise

 Common substring of length = len within a and b

Score = Score + 2x len3

Figure 6. All possible pair of relations used to score a 2 token long

query sentence.

The algorithm provides additional score in case the gloss

of the one element of pair matches with the synonym

directly, as it increases the probability of referred sense as

the correct sense.

Pseudo Code 1: Sense Score Assignment
def scoring_method(string_a,string_b,factor):
score = 0
count = 0
 start_index = 0
 max_count = 0

 stri = ""
 string_a_list = string_a.split()
 string_b_list = string_b.split()
 iter1 = 0
 iter2 = 0
while iter1<len(string_a_list):
 iter2 = 0
 max_count = 0

 stri = ""

 common_words = ["||",",","कोई","ककस ","वस्तु","हुआ","

ककया","िजसमें","जहाूँ","ककया","करते","-

","जाता","िजसे","िजसके","करना","करन"े,"िजसका","उसका","जा
ता","ऐस ","उसके","प्रकार"," लान"े,"

वाला","बहुत","हुए","होन"े,"जान"े,"वाली","िजससे"]

 start_index = iter1
while iter2<len(string_b_list):
if iter1>=len(string_a_list):
break

 Int. J. Com. Dig. Sys. 10, No.2, 939.-954.. (Aug-2021) 949

http://journals.uob.edu.bh

if string_a_list[iter1] == string_b_list[iter2] and
(string_a_list[iter1] not in common_words) and
len(string_a_list[iter1])>0:

stri = stri + string_a_list[iter1] + " "
count = count+1
 iter1 = iter1+1
else:
if count>0:
 iter2 = iter2 - 1
 iter1 = start_index
count = 0

 stri = ""
if count>max_count:
 max_count = count
 iter2 = iter2 + 1
if factor == 1:
score = score + math.pow(max_count,3)
else:
score = score + math.pow(max_count,2)

count = 0
 iter1 = start_index + 1
if factor == 1:
score = score + math.pow(count,3)
else:
score = score + math.pow(count,2)
return score

Pseudo Code 2:
def lesk_algorithm(dataset):
 f = open("out.txt", "w")
 dataset_comb = []
 temp_list = []
for keys1 in dataset.keys():
 temp_list.append(keys1)
 dataset_comb.append(list(range(0,len(dataset[keys1]))))

print(dataset_comb)
print(len(list(itertools.product(*dataset_comb))))
 sense_comb = list(range(0,4*len(dataset.keys())))
 max_sense_score = 0
factor =0
for list_iter in list(itertools.product(*dataset_comb)):
 sense_score = 0
for first_sense_iter in sense_comb:

 first_word_index = int(first_sense_iter/4)
 first_sense_index = first_sense_iter%4
 second_sense_iter = int(first_sense_iter/4)*4+4
while second_sense_iter<len(sense_comb):
if second_sense_iter >= len(sense_comb):
break
 second_word_index = int(second_sense_iter/4)
 second_sense_index = second_sense_iter%4

if second_sense_index == 3 or first_sense_index == 3:
factor = 1
 sense_score = sense_score +
scoring_method(dataset[temp_list[first_word_index]][list_iter[
first_word_index]][first_sense_index],dataset[temp_list[second
_word_index]][list_iter[second_word_index]][second_sense_i
ndex],factor)
if sense_score > max_sense_score:
 max_sense_score = sense_score

 sense_result = list_iter

 f.write(str(list_iter)+" "+str(first_sense_iter)+" "+
str(second_sense_iter)+" "+str(sense_score)+"\n")
 second_sense_iter = second_sense_iter + 1

print (sense_result)
print("max_score="+str(max_sense_score))
 i = 0
for it in sense_result:
print(temp_list[i]+"----->"+dataset[temp_list[i]][it][0])
 i=i+1

vi. Output (Word Sense Pair)

Dataset generated is parsed with the help of scoring

criterion and each of the possible outcomes of the word

sense combinations is evaluated. The one combination

that yields best score (maximum score) is termed as the

desired output of the query. Output for the algorithm is

displayed in the form of word-sense pairs where each

word is matched with their corresponding sense. Words

and their senses with respect to combination associated

with maximum sense score are displayed as output. For
the example sentence output of the algorithm is depicted

in Figure 7.

Output = Sense (max(s1,s2,s3…,s140))

Figure 7. Output of the Example Sentence

3.2. Hindi WordNet Database

Typical dictionary has words associated with their

meanings. Humans can dissect the sense of a sentence by

simply looking into the meaning of its component words

in the dictionary. Human brain is way more proficient in

disambiguating a sentence while computer system cannot

rely on such a dictionary. Thus computer system requires

a way more advanced form of the dictionary in order to

find relation between words and their different senses.

One of such advanced structure is called WordNet which

comprises of words and different kind of relations
between them. That are synsets, gloss, synonym,

hyponym, ontology sets etc. This system uses a Python

based API to access Indian language WordNets that will

help us accessing various wordnet related data like

hypernym, hyponym, semantic relations between synsets,

ontology nodes for 18 Indian languages, etc. “Pyiwn”

python library is based on the

हहन्दीशब्दत त्र(ɦɦ[6]nd[2]iɦ[6]ɦbd[2]t[2]ɦ̃t[2]r) (Hindi

WordNet) designed by CFILT IIT Bombay.

हहन्दीशब्दत त्र(ɦɦ[6]nd[2]iɦ[6]

950 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

ɦbd[2]t[2]ɦ̃t[2]r) (Hindi WordNet) is a resource that

binds various lexical and semantic relationships between

the Hindi words.

हहन्दीशब्दत त्र(ɦɦ[6]nd[2]iɦ[6]

ɦbd[2]t[2]ɦ̃t[2]r) (Hindi WordNet) is a dictionary with

a large number of common Hindi words. It has the words

stored in sets which are known as synsets. The synsets are

a set of the words which can be identified by the same

definition. For example,

The word मनषु्य(mnʊ[6]ʂj)(Manushya (Hindi), Human

(English)) is present in a synset which has other words

like:

मानव(maɦn ɦ[4]), आदम (aːd[2]miː[6]),

इ सान(ɪ[6]◌̃saɦn), इन्सान(ɪ[6]nsaɦn),

इनसान(ɪ[6]nsaɦn), मनषु्य(mnʊ[6]ʂj),

मानषु(maɦnʊ[6]ʂ), मानसु(maɦnʊ[6]s),

मनजु(mnʊ[6]dʒ), मनषु(mnʊ[6] ʂ), ननदद्र,ु

मर्तयय(mrt[2j]), मदुयम(mrd[2]ʊ[6] m)

All these words mean the same thing and can be identified

by the definition:

“वहद्ववपदप्राण जोअपनेबवुिबलकेकारणसबप्राणणयोंमेंशे्रष्ठहै
औरिजसकेअ तर्यतहम, आपऔरसबलोर्हैं”(ɦ[4]ɦ

d[2]ɦ[6]p d[2] paɦniː[6] dʒoɦ ə[5]pneɦ

ɦ[4]ɦ[6]d[2]dɦ[2]ɦ[6]bl keɦ kaɦrn sb

paɦniː[6]joː◌̃ moː◌̃ ʃeɦrɦɦɦ[2] ɦɦɦ ɦɦr dʒ

ɦ[6]s keɦ ə[5] ◌̃t[2]rɡt[2] ɦm, aːp ɦɦr sb loɦɡ
ɦɛ◌̃)

The word मनषु्य(mnʊ[6]ʂj) is a noun in Hindi, hence

all the words in this synset are noun themselves. Similarly

for any given word we can have different synsets for the

different parts of speech that it can be used such as verbs,

adjective or adverb.

For example the word खले (Khel (Hindi), Play (English))

has 7 senses as a noun and 10 senses as verb and thus has

different synsets for each of these senses in the WordNet,

thus 17 in total.
We also have hypernyms and hyponyms for each word.

Hyponymy shows the relationship between a generic term

(hypernym) and a specific instance of it (hyponym). A

hyponym is a word or phrase whose semantic field is

more specific than its hypernym.

For the word खेल, its hypernym synset is:

खेलक द(kʰeɦlkuː[6]d[2]), खेल-क द(kʰeɦl-

kuː[6]d[2]), खेलक द(kʰeɦlkuː[6]d[2]), म ज-

मस्त (mɦɦdʒ-mst[2]ɦ[6]), म जमस्त (mɦɦdʒ

mst[2]ɦ[6]), म जमस्त (mɦɦdʒmst[2]ɦ[6]), खेल(kʰeɦl),

क्रीडा(krɪɦ[6]ɦaɦ), णखलवाड(kʰɦ[6]ɦ[4]aɦɦ),

खेलवाड(kʰeɦɦ[4]aɦɦ), आक्रीडन(aːkrɪɦ[6]ɦ[2]n)

which is identified by the definition:
मनबहलानेयाव्यायामकेललएउछल-क द, द ड-
ध पयाऔरकोईमनोर जकक र्तय(mn bɦlaɦneɦ jaɦ
ɦ[4]jaɦjaɦm keɦ lɦ[6]jɦɦ ɦ[6]tɦɦl- kuː[6]d[2]
d[2]ɔːɽ-dʱ[2]uː[6]p jaɦ ɦɦr koɦiɦ[6] mnoɦrɦ̃dʒk
krɪt[2]j)
The hyponyms of the wordखेलwould be:
बबललयर्डयस(bɦ[6]lɦ[6]jrɦ[2]s),
अ ताक्षरी(ə[5]◌̃t[2]aɦɦiɦ[6]), कबर्डड (kbɦ[2] ɦ[2]
iɦ[6])and so on.

We define gloss as the definition for each synset. From

now on, gloss will be used to refer to any definition for a

synset.

Some other notations:

1. Synset(word): Represents the set of all words present

in the synset of the given word.

2. Synset(hypernym(word)): Represents the synset of

the hyponym of a given word.

3. Gloss(synset(word)): Represents the gloss(definition)
of the synset to which the word is associated.

In addition we’re using indicnlp python library in order to

perform stemming of the query sentence.i.e. Seperation of

various forms of verbs into its root sentence for further

processing

[“बोलत”े(boɦlt[2]eɦ),”बोलना”(boɦlnaɦ),”बोले”(boɦleɦ

),”बोलोरे्”boɦloɦɡeɦ] all four words mapped to a single

verb बोल(boɦl) [to speak].

4. TIME COMPLEXITY OF PROPOSED SYSTEM

Let, query sentence is ‘l’ words long and it contains ‘ ’

Stop words and ‘ ’ word with no useful senses (words

with no sense as noun, verb, adverb or adjective).

Tokens after the filtering and stemming step = l - - =
l’

Assume, each of the l’ tokens having , ….
Senses associated with them.

Let,

Number of Total possible sense combination = x

x…..x = C
It is required to calculate sense score for n token long

query.

Then total number of sense details pair =n x 4 x (n-1) x 4

operations= O (n2)

 Int. J. Com. Dig. Sys. 10, No.2, 939.-954.. (Aug-2021) 951

http://journals.uob.edu.bh

Let, each sense detail pair is L lengths long. Time

complexity require to compare a sense detail pair = O (L2

)

This complexity can be further improved by using any

efficient string matching algorithm like KMP algorithm
or Robin Karp algorithm etc.

Overall complexity of the algorithm = O (C x L2 x n2)

5. METHODOLOGY

Each of the sub steps explained in the architecture is

elaborated here with an example sentence in Hindi.

Input Hindi Sentence: “आर् में मेरा घर जल र्या”

(aːɡ meː◌̃ meːraː ɡʱr dʒl ɡjaː)

आर्(aːɡ) (Aag), में(meː◌̃) (me), मेरा, (meːraː) (mera),

घर(ɡʱr) (ghar), जल(dʒl) (jol), र्या(ɡjaː) (gayaa)

English Sentence: “My house got burnt in the fire”.

Figure 8 shows the Stop word in the given example

sentence. Sentence consists of ‘में’which is a stop word.

0 1 2 3 4 5

आर् में मेरा घर जल र्या

 Stop Word
Figure 8. Removing Stop Words from the Hindi Sentence

i) Filtered query after stop words elimination has been

given in Figure 9.

0 1 2 3 4 5

आर् - मेरा घर जल र्या
Figure 9. After Stop Word Elimination

ii) Stemming find the root word associated.

Example: For word ‘जल’(dʒl) (Jal), root word is

‘जलाना’ (dʒlaːnaː) (Jalanaa).

Now, the Stemmed sentence has been given in Figure 10.

0 1 2 3 4 5

आर् - मेरा घर जल,जलाना र्या
Figure 10. Stemmed Sentence

iii) POS tagging identifies the part of speech associate

with each token in the filtered sentence. If there is no

noun, adjective, verb, adverb sense associated with the
token then algorithm simply reject that token as all the

words belong to remaining part of speech is unisemous

that does not need any disambiguation i.e. preposition,

conjunction etc. Figure 11 and Figure 12 shows the

rejection of unisemous word.

0 1 2 3 4 5

आर् - मेरा घर जल,जलाना र्या
Noun Pronoun Noun Verb,noun Noun,ver

b

 Unisemous word
Figure 11. Unisemous word

0 1 2 3 4 5

आर् - - घर जलाना र्या

Figure 12. Stemmed Sentence

iv) Dataset generation step form a dataset that include all

possible sense of the token left in the filtered

sentence. A component of generated dataset is

depicted in the Figure 13.

Figure 13. Dataset Format

v) Dataset is used to generate different sense

combinations, each of which is evaluated using the
designed algorithm.

Token आर् घर जल,जला
ना

र्या

No. of senses 3 10 11 3
Figure 14. Dataset Format

According to Figure 15, Total no. of sense combinations

possible are = 3 x 10 x 11 x 3 = 990 combinations.

vi) Each of the 990 combinations are evaluated and one

with the maximum score assigned as the output of the

algorithm.

952 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

Python has been used to implement this algorithm.

Python is an open source software tool and it is

available in Web with its all modules and supporting

libraries. The detailed software tools and libraries of this

proposed system have been listed below.
i. Python 3.6: Basic environment for the application
ii. NLTK python library: Natural language

processing library comprise of basic NLP

methods
iii. CLTK python library: In order to inherit the stop

word list for Hindi language
iv. Itertools python library: To successfully generate

various sense combination in order to evaluate them
for score.

v. Indicnlp python library: For the morphological
processing of data to support stemming.

6. APPLICATIONS OF THE PROPOSED SYSTEM

The proposed algorithm is useful in systems, which
includes analysis of a query to recommend related queries.
In case user is not able to exactly describe the desired
query, related results are suggested to user by this system.
This system has many applications like in Pension
Systems, where senior citizen can use words with which
they are comfortable. Sentiment analysis of news
headlines in order to predict the stock prices is another
possible business application of the proposed algorithm.
Positive and negative news have vast impact on the
present trend for a stock. An automated system predicting
the effect of a news on a stock price can use our proposed
algorithm. The dissected sense can be used to various text
summarization problems. Text summarization can use
word sense disambiguation as one of their sub problems.
Proposed algorithm can enhance the performance of text
summarization algorithm and improve the efficiency of a
search engine by understanding what the user is actually
looking for after dissecting the input query.

7. FUTURE WORK

Proposed algorithm finds many combinations for sense

tokens. It is not possible always to evaluate each of the

combinations to get the correct sense as an output.

Because even after numerous combinations that generate

several senses, the correct or desired sense may not be

derived as the output. Thus, we may incorporate some

heuristic that can approximate our output to a near

optimal result. Though, it is observed that such kind of

queries does not occur too often in the natural language

domain. Future work lies on identifying one or two

heuristic methods based on genetic algorithm that may be

used to provide a near optimal solution. Even deep

learning based algorithm may be used in future to

identify the correct sense of an ambiguous word in Hindi

sentences. Hypernym, hyponym, gloss of each sense

consist of various stop words and words with no

available senses. Incorporating these words affect the

performance of the algorithm. One possible solution to

eliminate these words is to process them again by

performing morphological analysis. But re-processing

will increase the time complexity of the algorithm. As

discussed earlier, this algorithm depends hugely on the

semantic collection of words and their meanings

provided by the WordNet. So the performance of the

algorithm depends hugely on the WordNet. Dataset

generation is a major step in the proposed algorithm. As

it segregates only a portion of the data from WordNet,

Due to which the database needs to be queried again and

again. So an efficient execution of querying operation of

WordNet can further enhance the performance of the

proposed algorithm. The proposed system can be

enhanced using machine learning algorithm or deep

learning algorithms.

8. CONCLUSION

The proposed algorithm provides a word sense

disambiguation solution for the Hindi language. The

Proposed method rightly, gives pair of words and their

evaluated senses as an outcome of the system. Novel
scoring method used with Lesk alogorithm gives

improved performance in disambiguating the ambiguous

words for the Hindi language. Hindi WordNet database

designed by CFILT IIT Bombay is very useful in solving

Hindi word sense disambiguation problem. To improve

the performance of Lesk algorithm, we have used the

scoring method which assigns scores to the sense of the

tokens depending on the combinations of sense tokens.

Word gloss, hypernym, hyponym and synonym are very

useful for calculating the sense score. The time

complexity of the proposed algorithm is O(n
2
) where n is

the number of tokens. Though algorithm imposes

restriction on the length of the query sentence, it yields a

good performance over constrained input data. Despite

unavailability of large amount of ambiguous data

involving polysemous words in Hindi language for

testing, the proposed algorithm successfully dissects the

sense for most of the test queries provided.

ACKNOWLEDGMENT

This research work is done at the Research Project Lab

under Dept. of Computer Science and Engineering of

National Institute of Technology (NIT), Durgapur. The

authors would like to thank Dept. of Computer Science

and Engineering, NIT, Durgapur, India for academically

supporting this research work.

 Int. J. Com. Dig. Sys. 10, No.2, 939.-954.. (Aug-2021) 953

http://journals.uob.edu.bh

REFERENCES

[1] S. Malviya, R. Mishray, U. S. Tiwary, “Structural Analysis of

Hindi Phonetics and A Method for Extraction of Phonetically
Rich Sentences from a Very Large Hindi Text Corpus”, 2016
Conference of The Oriental Chapter of International Committee
for Coordination and Standardization of Speech Databases and
Assessment Technique (O-COCOSDA), Bali, Indonesia, 2016,
pp. 1-6.

[2] M.E. Lesk, “Automatic Sense Disambiguation Using Machine
Readable Dictionaries: How to Tell a Pine Cone from an Ice
Cream Cone”, Proc. SIGDOC Conference, Toronto, Ontario,
June, 1986, pp. 24-26.

[3] A.M. Butnaru and R. T. Ionescu, “ShotgunWSD 2.0: An
Improved Algorithm for Global Word Sense Disambiguation,” in
IEEE Access, vol. 7, 2019, pp. 120961-120975.

[4] Preeti Dubey, “Word Sense Disambiguation in Natural Language
Processing”, JK Research Journal in Mathematics and Computer
Sciences, vol. 1(1), 2018, pp.114-120.

[5] M. Y. Kang, T. H. Min and J. S. Lee, “Sense Space for Word
Sense Disambiguation”, 2018 IEEE International Conference on
Big Data and Smart Computing (BigComp), Shanghai, 2018, pp.
669-672.

[6] R. Navigli, “Word sense disambiguation: A survey”, ACM
Comput. Surv., vol. 41, no. 2, Art. no. 10, 2009.

[7] A.G. Chifu and R. T. Ionescu, “Word sense disambiguation to
improve precision for ambiguous queries”, Central Eur. J.
Comput. Sci., vol. 2, no. 4, 2012, pp. 398-411.

[8] M. N. Asim, M. Wasim, M. U. Ghani Khan, N. Mahmood and W.
Mahmood, “The Use of Ontology in Retrieval: A Study on
Textual, Multilingual, and Multimedia Retrieval”, in IEEE
Access, vol. 7, 2019, pp. 21662-21686.

[9] A.Sumanth and D. Inkpen, “How much does word sense
disambiguation help in sentiment analysis of micropost data?”, in
Proc.WASSA, 2015, pp. 115-121.

[10] G. Xu, Z. Yu, H. Yao, F. Li, Y. Meng and X. Wu, “Chinese Text
Sentiment Analysis Based on Extended Sentiment Dictionary”,
IEEE Access, vol. 7, 2019, pp. 43749-43762.

[11] M. Carpuat and D. Wu, “Improving statistical machine translation
using word sense disambiguation”, in Proc. EMNLP, 2007, pp.
61-72.

[12] X. Pu, N. Pappas, J. Henderson, and A. Popescu-Belis,
“Integrating weakly supervised word sense disambiguation into
neural machine translation”, Trans. Assoc. Comput. Linguistics,
vol. 6, 2018, pp. 635-649.

[13] J. N. Madhuri and R. Ganesh Kumar, “Extractive Text
Summarization Using Sentence Ranking”, International
Conference on Data Science and Communication (IconDSC),
Bangalore, India, 2019, pp. 1-3.

[14] L. Plaza, A. J. Jimeno-Yepes, A. Díaz, and A. R. Aronson,
“Studying the correlation between different word sense
disambiguation methods and summarization effectiveness in
biomedical texts”, BMC Bioinf., vol. 12, Art. no. 355, 2011.

[15] A.Taherkhani, A. Belatreche, Y. Li and L. P. Maguire, “A
Supervised Learning Algorithm for Learning Precise Timing of
Multiple Spikes in Multilayer Spiking Neural Networks”, IEEE
Transactions on Neural Networks and Learning Systems, vol. 29,
no. 11, 2018, pp. 5394-5407.

[16] M. Usama et al., “Unsupervised Machine Learning for
Networking: Techniques, Applications and Research Challenges”,
IEEE Access, vol. 7, 2019, pp. 65579-65615.

[17] L. Stanchev, “Semantic Document Clustering Using Information
from WordNet and DBPedia”, 2018 IEEE 12th International
Conference on Semantic Computing (ICSC), Laguna Hills, CA,
2018, pp. 100-107.

[18] R. Pandit, S. Sengupta, S. K. Naskar and M. M. Sardar,
“Improving Lesk by Incorporating Priority for Word Sense
Disambiguation”, Fifth International Conference on Emerging
Applications of Information Technology (EAIT), Kolkata, 2018,
pp. 1-4.

[19] S. Tang , F. Ma, X. Chen , P. Zhang, “Deep Chinese Word Sense
Disambiguation Method Based on Sequence to Sequence”,
International Conference on Sensor Networks and Signal
Processing (SNSP), 2018, pp. 498-503.

[20] A.Raganato, J. Camacho-Collados, R. Navigli, “Word Sense
Disambiguation: A Unified Evaluation Framework and Empirical
Comparison”, 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, 2017, pp.
99-110.

[21] Q. P. Nguyen, A. D. Vo, J. C. Shin, P. Tran, C. Y. Ock, “Korean-
Vietnamese Neural Machine Translation System With Korean
Morphological Analysis and Word Sense Disambiguation”, IEEE
Access, vol. 7, 2019, pp. 32602-32616.

[22] S. Seifollahi, M. Shajari, “Word sense disambiguation application
in sentiment analysis of news headlines: an applied approach to
FOREX market prediction”, Journal of Intelligent Information
Systems, vol. 52(1), 2019, pp 57–83.

[23] Z. Vaishnav, P. S. Sajja “Knowledge-Based Approach for Word
Sense Disambiguation Using Genetic Algorithm for Gujarati”,
ICTIS, vol. 1, 2018, pp. 485-494.

[24] S. N. Mohan Raj, S. S. Kumar, S. Rajendran, K. P. Soman, “Word
Sense Disambiguation of Malayalam Nouns”, Recent Advances in
Computational Intelligence, Springer, 2019, pp 291-314.

[25] J. Singh, I. Singh, “Word Sense Disambiguation: Enhanced Lesk
Approach in Punjabi Language”, International Journal of
Computer Applications, vol. 129(6), 2015, pp. 23-27.

[26] L. R. Pillai, V. Gangadharan, D. Gupta “A Combined Approach
Using Semantic Role Labelling and Word Sense Disambiguation
for Question Generation and Answer Extraction”, Second
International Conference on Advances in Electronics, Computers
and Communications (ICAECC), Bangalore, 2018, pp. 1-6.

[27] H. Walia, A. Rana, V. Kansal, “A Naïve Bayes Approach for
working on Gurmukhi Word Sense Disambiguation”, 6th
International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions) (ICRITO), 2017,
Noida, pp. 432-435.

[28] M. Mahmood, M. Hourali “Semi-supervised approach for Persian
word sense disambiguation”, 7th International Conference on
Computer and Knowledge Engineering (ICCKE), 2017, pp. 104-
110.

[29] G. Sajini , Jagadish S. Kallimani, “Recognition and
disambiguation of polysemy words in entered hindi documents”,
International Conference on Electrical, Electronics,
Communication, Computer, and Optimization Techniques
(ICEECCOT), 2017, pp. 1-8.

[30] S. Gopal , R. P. Haroon, “Malayalam word sense disambiguation
using Naïve Bayes classifier”, International Conference on
Advances in Human Machine Interaction (HMI), Doddaballapur,
2016, pp. 1-4.

[31] X. Wang , X. Tang , W. Qu , M. Gu, “Word sense disambiguation
by semantic inference”, International Conference on Behavioral,
Economic, Socio-cultural Computing (BESC), Krakow, 2017, pp.
1-6.

954 Praffullit Tripathi: WSD in Hindi Language Using Score Based Modified LESK Algorithm

http://journals.uob.edu.bh

[32] S. Nazah, M. M. Hoque, Md. R. Hossain, “Word sense
disambiguation of Bangla sentences using statistical approach”,
3rd International Conference on Electrical Information and
Communication Technology (EICT), 2017, pp. 1-6.

[33] S. Banerjee, T. Pedersen, “An adapted lesk algorithm for word
sense disambiguation using wordnet”, Computational Linguistics
and Intelligent Text Processing, Springer, 2002, pp 136-145.

AUTHORS

Praffullit Tripathi is a Software
Engineer in Qualcomm Company. He
has completed his B.Tech-IT degree
from National Institute of Technology,

Durgapur, India. He has sucessfully
completed his summer internship at
Qualcomm Company. He has a good
interest in Implementation of Natural
Language Processing based Applications

like Word Sense Disambiguation, Query-Response Model,
Question Answering System, Sentiment Analysis, etc.

Prasenjit Mukherjee has 12 years of
experience in academics and industry. He
was a fulltime Ph.D. Research Scholar in
Computer Science and Engineering in the
area of Natural Language Processing from
National Institute of Technology (NIT),
Durgapur, India under the Visvesvaraya
PhD Scheme from 2015 to 2019.

Presently, He is working as a Data
Scientist under Analytics and IT Department,RamanByte, Pune
Institute of Business Management, Pune, Maharashtra, India.

Manik Hendre has 5 years of
experience in academics and industry.
He is a Ph.D. research scholar at the

University of Pune. He is currently
working as a Data Scientist in
RamanByte Pune. His research areas
include Biometrics Image Processing,
Machine learning and Data Analytics.

Dr. Manish Godse has 25 years of
experience in academics and industry. He
holds Ph.D. from Indian Institute of
Technology, Bombay (IITB). He is
currently working as an Industry

Professor and IT Director in the PIBM,
Pune in the area of Artificial Intelligence
and Analytics. His research areas of
interest include automation, machine

learning, natural language processing and business analytics. He
has multiple research papers indexed at IEEE, ELSEVIER,
INDERSCIENCE, etc.

Dr. Baisakhi Chakraborty received the
PhD. degree in 2011 from National
Institute of Technology, Durgapur, India
in Computer Science and Engineering.
Her research interest includes knowledge
systems, knowledge engineering and
management, database systems, data
mining, natural language processing and

software engineering. She has several
research scholars under her guidance. She has more than 60
international publications. She has a decade of industrial and 14
years of academic experience.

