

http://dx.doi.org/10.12785/ijcds/1001120

## **Development of an IoT-based Intensive Aquaculture Monitoring System with Automatic Water Correction**

Lean Karlo S. Tolentino<sup>1,2</sup>, Celline P. De Pedro<sup>1</sup>, Jatt D. Icamina<sup>1</sup>, John Benjamin E. Navarro<sup>1</sup>, Luigi James D. Salvacion<sup>1</sup>, Gian Carlo D. Sobrevilla<sup>1</sup>, Apolo A. Villanueva<sup>1</sup>, Timothy M. Amado<sup>1</sup>, Maria Victoria C. Padilla<sup>1</sup>, Gilfred Allen M. Madrigal<sup>1</sup> and Lejan Alfred C. Enriquez<sup>1,3</sup>

<sup>1</sup>Department of Electronics Engineering, Technological University of the Philippines, Manila, Philippines <sup>2</sup>University Extension Services Office, Technological University of the Philippines, Manila, Philippines <sup>3</sup>Integrated Research and Training Center, Technological University of the Philippines, Manila, Philippines

Received 11 April 2021, Revised 22 July 2021, Accepted 13 November 2021, Published 28 December 2021

**Abstract:** Due to the depleting stocks of fish in the market, there have been an increased interest in aquaculture. However, raising fishes in an intensive aquaculture system results on a low-quality fish or even fish kills as fishes are being cultured in artificial tanks and cage systems, not on their natural habit. This paper presents a water quality monitoring system with automatic correction to monitor and maintain vital water quality parameters essential for fish growth, such as temperature, potential hydrogen (pH) level, oxidation-reduction potential, turbidity, salinity, and dissolved oxygen to achieve optimum yield using Arduino and Raspberry Pi 3B+ through LoRaWAN IoT Protocol. The system uses sensors, microcontrollers, and a web application for acquiring and monitoring data of six different water quality parameters and are maintained in a desired level optimal for fish growth using aquarium heater, motor for sodium bicarbonate distribution, solenoid valve and water pump that serves as correcting devices. The proponents measured the system's efficiency and reliability through monitoring two intensive aquaculture setups – controlled and conventional setup. From the data gathered, the controlled setup greatly increased efficiency, reduced the work of fish farmers, avoided fish kills, and surpassed yield quality of the conventional setup.

Keywords: Aquaculture, Arduino, Raspberry Pi, LoRaWAN, Water Temperature, pH Level, Oxidation-Reduction Potential, Turbidity, Salinity, Dissolved Oxygen

#### 1. INTRODUCTION

Aquaculture is one of the most important and fastest rising industry for animal food production globally and is the principal contributor in human consumption in terms of aquatic animal food [1]. As fish cultured in aquaculture system uses the water in artificial tank to live, feed, grow, and excrete waste, the water quality easily declines that can affect its growth and health. Water quality identifies to an excessive degree the achievement or disappointment of fish farming. Hence, water quality is a significant factor in aquaculture operations guaranteeing the health of any aquaculture system [2]. Maintaining the water quality level in the ideal range enhances fish growth rate and reduces the incidence of fish diseases [3]. Among the essential water parameters to monitor and maintain are temperature, potential hydrogen (pH) level, oxidation-reduction potential, turbidity, salinity, and dissolved oxygen.

Fish growers depend on testing using manual means to monitor the state of several quality parameters of water.

However, testing using manual approach is consumes time and as water quality changes continuously, it gives inaccurate results. Therefore, up-to-date technologies should be used to overcome this problem in aquaculture[4]. Mechanization of aquaculture setups will permit these subsequent advantages: (1) production nearer to market demand, (2) enhance guidelines and directive with regards to the environment, (3) lessen disastrous losses, (4) minimize environmental control, (5) reduce the charge of production, (6) improve the quality of aquatic goods [5]. Furthermore, development in the aquaculture industry provides affordable aquatic animal food and is beneficial to industry economics to balance the losses in international trade [6].

An intensive aquaculture system which monitors and automatically corrects essential water quality parameters for growth rate improvement of the fish is developed in this study. The study specifically aims: (1) to develop an intensive aquaculture system that should monitor the temperature, pH level, oxidation-reduction potential, turbidity, salinity, and dissolved oxygen of the water and automatically turns ON/OFF the correcting devices, (2) to realize an Internet-based structure to access the automated aquaculture system with the help of an online application which displays the status of the aquaculture setup, exhibiting the numerical values of the vital water parameters, and (3) to determine the system's efficiency and reliability and the difference of the growth rate of the fishes between the automated aquaculture system and the conventional setup.

The system focuses on monitoring and automatic correcting of water temperature, pH level, oxidation-reduction potential, turbidity, salinity, and dissolved oxygen. It utilizes sensors, microcontrollers, LoRaWAN (Long Range Wide Area Network), and correcting devices. Pre-programmed in the microcontroller are the threshold values for the six different quality parameters of water. Improvised correcting devices are developed using motor connected to microcontroller, water pump, heater, water bottle and drum. The water correction focuses on water replacement for stabilizing the water quality and adding of sodium bicarbonate solution for pH level. Through this, the water is set to an optimal range ideal for fish growth without exposing the fishes to various chemicals that may affect their health. Moreover, this method is a lot cheaper and easier to use for fish farmers. The data from sensors were acquired only one time per day. The data acquisition is implemented at a definite period in the day while the correction takes place once the data acquired are not on the desired range optimal for fish growth. This study is restricted in culturing one specie namely Nile tilapia (Oreochromis niloticus) in an intensive aquaculture system.

This paper is structured as follows: Related works are discussed critically in Section 2. System architecture for the proposed Internet-based intensive aquaculture monitoring system is illustrated and explained in Section 3. Results were presented and discussed in Section 4. Finally, conclusion and future work are detailed in Section 5.

## 2. Related Works

An aquaculture system of De Belen et al. [7] developed an aquaculture system that uses three parameters namely: pH, temperature, and flow rate. These three parameters' correlation were computed, and experiments showed that "the pH has inversely proportional to temperature, but flow rate has no effect on the pH and temperature." Meanwhile, an IoT-and-LoRaWAN-based modular device was developed that automates the water monitoring and correcting in an extensive aquaculture system [8]. It monitors water parameters such as water level, dissolved oxygen, oxidation reduction potential, total dissolved solids, turbidity, pH, and temperature. It was compared with a conventional device and the readings are within the acceptable values. In the other study, Menger's theorem was used for placement of fault tolerant nodes which are needed for sensing of soil moisture, light, temperature, and humidity [9]. The said method achieved a better transmission and throughput versus the conventional approach. Meanwhile, a different type of algorithm (differential encoding and Huffman techniquebased lossless compression technique) for sensor nodes used in smart agriculture is proposed for environment features' monitoring [10]. Notably, it has the best performance over all the compression techniques.

In Nagayo et al. [11], an aquaponics (a combination of aquaculture and hydroponics) [12], [13], [14], [15] system with water recirculating part, Arduino-based control and monitoring part, GSM shield and NI LabVIEW, solar energy conversion system, and cooling and heating systems was designed for plant and fish growth. Meanwhile in [13], [14], [15], their aquaponics system utilized an Ion-Sensitive Field Effect Transistor (ISFET) as a pH device for optimum growth of plants and fishes. The superiority and efficiency of the ISFET-based pH device compared with the typical glasselectrode pH meter was proven through various experiment and testing its performance for evaluation. An aquaponics system which was proposed in Murad et al. [16] was developed that used temperature sensor, pH sensor, water sensor, servo, peristaltic pump, solar, liquid crystal displays (LCD), and GSM module water monitoring of aquaponics. The data is displayed through LCD and a notification is sent via GSM module. Fish farming and tracking control system of Gao et al. [17], developed a system to control and supervise water quality treatment equipment for fishpond. It also includes a predicting process for managing water quality automatically with the breeding and selling of freshwater fish being tracked. This study uses integrated sensor assembly, GUI, OR code and LoRa wireless transmission technology. In Daud et al. [18], an aquarium setup with pH level monitoring and fish feeding system in android application was developed using analog pH sensor, Arduino MEGA, NodeMCU controllers and Liquid Crystal Display (LCD). To use the smartphone as controller to control the operation of fish feeding, the NodeMCU utilized Wi-Fi mode of communication. The data acquired from the sensor is displayed through LCD.

According to Wu et al. [19], the use of smartphones or mobile devices in IoT applications such as agriculture can reduce energy consumption in terms of data generation, lessen manufacture and deployment cost, and is considered environmentally friendly as it reduces the number of deployed sensors. In Atat et al. [20], facilitating Internet of Things in different applications connects different cyber physical systems (CPS) which are systems that comprises the interrelated physical objects and a computer program or application. This aid implementing their transfer of information. Today's technologies make receiving the data from CPS an easiest duty since low cost smart sensors are available anywhere.

The study of [21] further discussed the efforts done to measure water quality using sensors. It cited [22] where sensors are deployed to monitor underwater environment parameters e.g. pressure, water level, water flow,



and temperature. Citing the study of [23], [24] stated the study's proposed device that determines possible sources of pollution such as agricultural activities by water quality monitoring. [25] stated that information and communication technologies could boost agricultural productivity through knowledge and information extension and dissemination. With these in mind, one of the United Nations Sustainable Development Goals (SDG) which is Sustainable Agriculture (SDG 2) will be achieved.

Most of prior works concerning aquaculture systems and fisheries only considered to monitor water quality parameters limited to only few rudimentary standards. For the study to be further improved, six different water quality parameters which have effects on the fish quality and growth were considered. Also, the incorporation of automatic correction for the parameters suggests for a lesser work and stress not just for the owners but also for the fishes itself which some of the existing aquaculture setups in various studies did not have. Profound studies on the matters regarding fish growth proves stress as one of the biggest factors that affects the growth of the fishes which is why the lack of direct contact with the fishes warrants for a healthier fish.

# 3. The IoT-based Intensive Aquaculture Monitoring System

#### A. System Architecture

This project is mostly focused on maintaining and correcting vital water quality parameters of the aquaculture setup for desired result. The automatic correction initiates once undesired range are not met. In this paper, the vital water quality parameters which were taken into account are temperature, potential hydrogen (pH) level, oxidationreduction potential, turbidity, salinity, and dissolved oxygen.

Figure 1 shows the System Architecture of the study. Two microcontrollers were used. The six water parameter sensors are DFRobot Gravity: Analog Dissolved Oxygen Sensor, Gravity: Analog Turbidity Sensor, Gravity: Analog Electric Conductivity Sensor, Waterproof Temperature Sensor DS18B20, DFRobot Industrial Analog pH Sensor, and DFRobot ORP Analog Meter. The said sensors and automatic water corrector are connected to Arduino Mega. The threshold values for the water quality parameters are pre-programmed in the microcontroller to test whether the data acquired satisfy the desired values. When the range are not met, correcting devices will automatically activate.

For the data transmission, the Arduino Mega reads the analog data and sends it to the Raspberry Pi. The Raspberry Pi sends the data through the LoRaWan IoT protocol to the database. The developed Web Application displays the results.

#### B. Monitoring and Correction System

Figure 2 shows the overall setup of the study with controlled and conventional environment. To determine the status of the aquaculture system, temperature, potential hydrogen (pH) level, oxidation-reduction potential, turbidity,

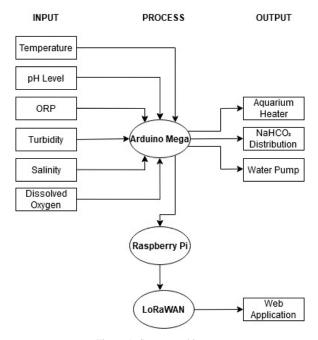



Figure 1. System architecture



Figure 2. Conventional and Controlled Aquaculture System Setups

salinity, and dissolved oxygen sensors are placed in the aquarium. All the sensors are integrated into a small-box small box-like container to provide ease of use to the user making it adaptable to multiple environments given that it can be put properly since only a little part of the sensors can be submerged into the water.

The values which are gathered from the sensors are sent to the Arduino Mega. When oxidation-reduction potential, turbidity, salinity and dissolved oxygen values are not on the ideal range optimal for fish growth, the water pump will be activated to change the water. When pH level is below the threshold value, the motor for sodium bicarbonate solution will be activated to distribute the solution. Both will be switched off when the obtained data falls within the threshold and aquarium heater will be placed inside calibrated to 28 degrees Celsius. The data are then transmitted to Raspberry Pi that will send it to the Web Application for monitoring via LoRaWAN IoT Protocol. An 868-MHz LoRaWAN is used. The data transmission via LoRa modules is suitable for monitoring aquaculture setups as it reduces production cost and supports longer-distance communication.

The system can be applied to any environment as long as electricity is provisioned. For the water source, since Nile tilapia is a type of fish that lives in fresh water and has a high tolerance, tap water can be used to replace the water in the setup given that it is treated with dechlorinate drops and vitamins and is stocked in a container for a minimum of 24 hours to dechlorinate.

#### C. Web Application

Figure 3 shows the TeamLapia web app where the gathered data are all consolidated and the current status of water parameters and fish growth are displayed. It not only exhibits the status of the latest entries but also the numerical values for those said parameters including those for fish growth determination (number of fishes, average length and weight). It is made possible by using JavaScript and PHP codes that transmits data from database to the UI as it keeps storing new data entries. On the contrary, HTML, CSS and JavaScript scripts were used for the app's dynamic design and featured graphs which will make the end users appropriately use the app.

The page is divided into different sections as shown in Figure 4. The first panel shows the header that says "Fish Growth and Water Quality Monitoring System" which is what the study is all about. Upon scrolling along the page, it will show the panel that describes the three main functions of the study each presented with the appropriate icons. The third part of the application is where the status of the sensors can be seen. There are six clickable rectangular panels that represents the six different water parameters of the system. The last panel shows what is inside a parameter panel located in the water parameter sensors section. A brief description of the parameter is included together with the graph of the past values gathered by the sensor. Also, a part where you can see the current level/status of the parameter is included in the pane.

#### 4. **Results and Discussion**

In the controlled system, temperature, potential hydrogen (pH) level, oxidation-reduction potential, turbidity, salinity, and dissolved oxygen were regularly monitored and corrected to provide an environment optimal for fish growth. For the conventional setup, the water is left unchanged and unchecked throughout the week.

Figure 5 shows the pH level for the controlled aquaculture setup. Whenever the reading goes beyond the threshold level, the system automatically corrects the water. The ideal pH level for Nile Tilapia is 6 to 9 (unitless).

Figure 6 shows the graph of turbidity sensor readings for the controlled aquaculture setup. Whenever the reading



(a)

<page-header><section-header>

Year (2000)
2000)
20000)
200000
200000

Year (2000)
Year (2000)
200000
200000
200000

Year (2000)
Year (2000)
Year (2000)
20000
20000
200000

Year (2000)
Year (2000)
Year (2000)
Year (2000)
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
<t

(b)





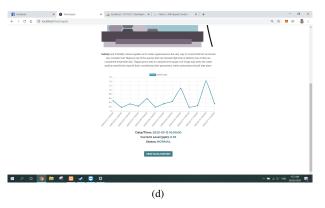



Figure 3. Web Application Interface

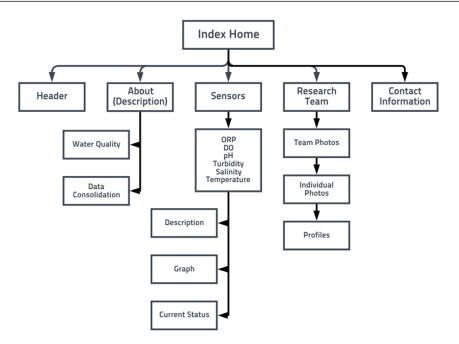



Figure 4. Web Application Structure Diagram

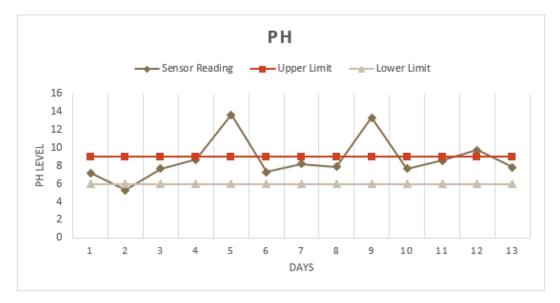



Figure 5. Potential Hydrogen (pH) Sensor Readings with Correction Response

goes beyond the threshold level, the system automatically corrects the water. The threshold limit of turbidity which fishes can tolerate ranges from 0.3 to 5 NTU.

Figure 7 shows the oxidation reduction potential sensor readings for the controlled aquaculture setup. The ideal value of ORP optimal for fish growth ranges from 150 mV to 250 mV.

Figure 8 shows the temperature sensor readings for the controlled aquaculture setup. Ideal water temperature for

Nile Tilapia ranges from 25 to 27 degrees Celsius. A water heater is used to prevent temperature from dropping.

Figure 9 shows the graph of salinity sensor readings for the controlled aquaculture setup. Nile Tilapia has a wide range of saltiness that they can tolerate, and they can perform better at salinities below 5 ppt. It is reflected by the low level of salinity shown in the graph.

Figure 10 shows the graph of DO sensor for the controlled aquaculture setup. The ideal range for Dissolved



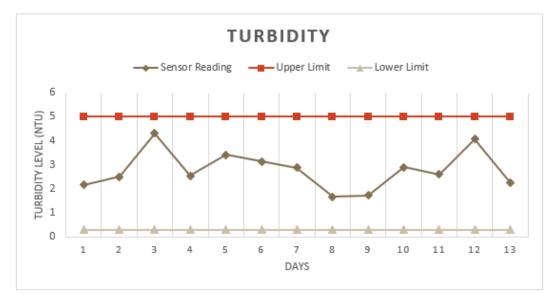



Figure 6. Turbidity Sensor Readings with Correction Response

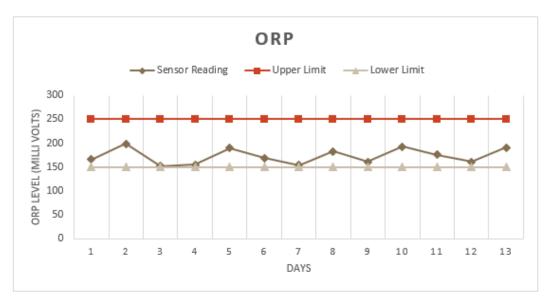



Figure 7. Oxidation Reduction Potential Sensor Readings with Correction Response

Oxygen ranges from 1 to 2.5 mg/L. The oxygen level is being maintained in the system with the help of an aerator.

Figure 11 shows the mean (average) fish weight per week in both controlled and conventional aquaculture setups. Initially, the weights of the fish are the same on the two tanks. Two weeks are devoted for the monitoring of fishes' growth. Referring to Table I, 17g was the highest average fish weight in the controlled system compared to an 11g in the conventional system.

Table I shows that 30.70% is the growth rate using the proposed setup in every week. Unlike in the traditional setup, the rate of fish growth is 20.76% only per week.

| TABLE I. F | ish Growth | in Each | Setup |
|------------|------------|---------|-------|
|------------|------------|---------|-------|

| Days Elapsed | Average Fish Weight (g) |              |  |
|--------------|-------------------------|--------------|--|
|              | Proposed                | Conventional |  |
|              | Aquaculture             | Setup        |  |
|              | Setup                   |              |  |
| 0 (initial)  | 24                      | 24           |  |
| 7 (week 1)   | 33                      | 28           |  |
| 12 (initial) | 41                      | 35           |  |

An improvement in the fish growth of 46.88% is exhibited by using the controlled setup.

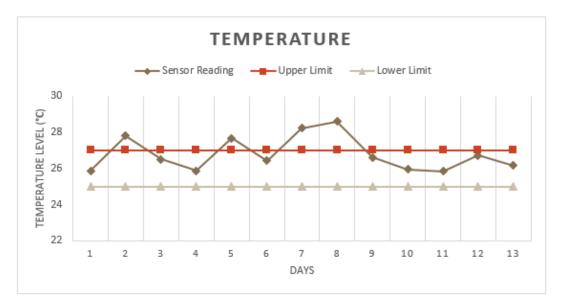



Figure 8. Temperature Sensor Readings with Correction Response

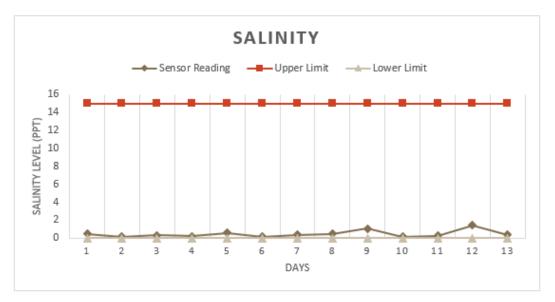



Figure 9. Salinity Sensor Readings with Correction Response

#### 5. CONCLUSION

The aquaculture environment was optimized for fish growth by constructing a monitoring and correction system. The Nile tilapia's growth and survival rate is higher in the controlled aquaculture system compared with the conventional aquaculture setup.

Future work includes providing optimal environment condition essential for growth of species other than the Nile tilapia in diverse aquaculture systems. An automatic feeding system is also advisable to prevent spoiling of water because of left-overs since it releases small amount of feeds at regular intervals instead.

#### APPENDIX

Parts list is shown in Table II.

1361






Figure 10. Dissolved Oxygen Sensor Readings with Correction Response

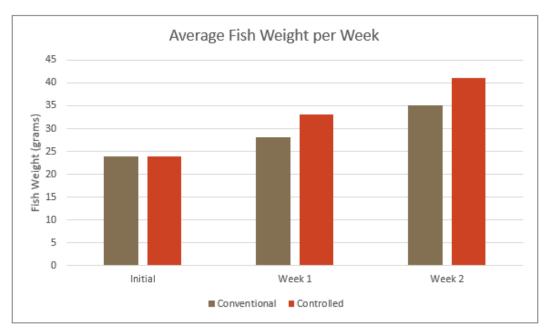



Figure 11. Controlled vs. Conventional Fish Growth measured every week

### ACKNOWLEDGMENT

The University Research and Extension Council and the University Research and Development Services of the Technological University of the Philippines are acknowledged for the funding of this project.

### References

- M. Ottinger, K. Clauss, and C. Kuenzer, "Aquaculture: Relevance, distribution, impacts and spatial assessments – A review," *Ocean & Coastal Management*, vol. 119, pp. 244–266, Jan. 2016.
- [2] B. Jana and D. Sarkar, "Water quality in aquaculture Impact and management: A review," *Indian Journal of Animal Sciences*, vol. 75, pp. 1354–1361, Nov. 2005.
- [3] A. Stigebrandt, J. Aure, A. Ervik, and P. Hansen, "Regulating the local environmental impact of intensive marine fish farming: Iii. A model for estimation of the holding capacity in the modelling-

TABLE II. Parts List

| Parts                                                | Description                          |  |
|------------------------------------------------------|--------------------------------------|--|
| DFRobot Gravity: Analog Dissolved Oxygen Sensor      | Measurement of the                   |  |
|                                                      | amount of Dissolved Oxygen           |  |
|                                                      | (DO) in aqueous substance            |  |
| DFRobot Gravity: Analog Turbidity Sensor             | Measurement of turbidity             |  |
|                                                      | in aqueous substance                 |  |
| DFRobot Gravity: Analog Electric Conductivity Sensor | Measurement of electric              |  |
|                                                      | conductivity (in mS)                 |  |
|                                                      | in aqueous substance                 |  |
| DS18B20                                              | Waterproof Temperature Sensor        |  |
| DFRobot Industrial Analog pH Sensor                  | Measurement of oxidation-reduction   |  |
|                                                      | potential (ORP) in aqueous substance |  |
| Arduino Mega                                         | The analog data are read from the    |  |
|                                                      | sensors through this device.         |  |
|                                                      | The Raspberry Pi receives the        |  |
|                                                      | resulting data from this device.     |  |
| Raspberry Pi                                         | Reads the data processed             |  |
|                                                      | by the Arduino and sent through      |  |
|                                                      | LoRaWAN to the database              |  |
| packetworx packetUSB                                 | 868-MHz LoRaWAN Transceiver          |  |

ongrowing fish farm-monitoring system," Aquaculture, vol. 234, no. 1-4, pp. 239–261, May 2004.

- [4] S. Saha, R. H. Rajib, and S. Kabir, "IoT based automated fish farm aquaculture monitoring system," in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), ser. ICISET '18. Chittagong, Bangladesh: IEEE, Oct. 2018, pp. 201–206.
- [5] P. G. Lee, "A review of automated control systems for aquaculture and design criteria for their implementation," *Aquacultural Engineering*, vol. 14, no. 3, pp. 205–227, Jan. 1995.
- [6] J.-H. Chen, W.-T. Sung, and G.-Y. Lin, "Automated monitoring system for the fish farm aquaculture environment," in 2015 IEEE International Conference on Systems, Man, and Cybernetics, ser. SMC '15. Hong Kong, China: IEEE, Oct. 2015, pp. 1161–1166.
- [7] M. C. De Belen and F. R. G. Cruz, "Water quality parameter correlation in a controlled aquaculture environment," in 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), ser. HNICEM '17. Manila, Philippines: IEEE, Dec. 2017, pp. 1–4.
- [8] L. K. Tolentino, E. J. Chua, J. R. Añover, C. Cabrera, C. A. Hizon, J. G. Mallari, J. Mamenta, J. F. Quijano, G. Virrey, G. A. Madrigal, and E. Fernandez, "IoT-based automated water monitoring and correcting modular device via LoRaWAN for aquaculture," *International Journal of Computing and Digital Systems*, vol. 10, pp. 533–544, Apr. 2021.
- [9] T. C. J. Jeaunita and V. Sarasvathi, "Fault tolerant sensor node placement for IoT based large scale automated greenhouse system," *International Journal of Computing and Digital Systems*, vol. 8, no. 2, pp. 189–197, Mar. 2019.
- [10] A. K. M. Al-Qurabat, "A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart agriculture,"

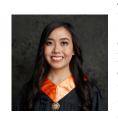
International Journal of Computing and Digital Systems, Jul. 2021.

- [11] A. M. Nagayo, C. Mendoza, E. Vega, R. K. Al Izki, and R. S. Jamisola, "An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman," in 2017 IEEE International Conference on Smart Grid and Smart Cities (ICS-GSC), ser. ICSGSC '17. Singapore: IEEE, Jul. 2017, pp. 42–49.
- [12] L. K. Tolentino, K. T. Lapuz, R. J. Corvera, A. De Guzman, V. J. Española, C. Gambota, and A. Gungon, "AquaDroid: An app for aquaponics control and monitoring," in *6th International Conference on Civil Engineering (6th ICCE 2017)*, ser. ICCE '17. Manila, Philippines: TUP, Aug. 2017, pp. 1–8.
- [13] E. Galido, L. K. Tolentino, B. Fortaleza, R. J. Corvera, A. De Guzman, V. J. Española, C. Gambota, A. Gungon, K. T. Lapuz, N. Arago, and J. Velasco, "Development of a solar-powered smart aquaponics system through internet of things (IoT)," in *Lecture Notes on Research and Innovation in Computer Engineering and Computer Sciences*, ser. RICCES '17. Langkawi, Malaysia: MALTESAS, Aug. 2017, pp. 31–39.
- [14] L. K. S. Tolentino, E. O. Fernandez, R. L. Jorda, S. N. D. Amora, D. K. T. Bartolata, J. R. V. Sarucam, J. C. L. Sobrepeña, and K. Y. P. Sombol, "Development of an IoT-based aquaponics monitoring and correction system with temperature-controlled greenhouse," in 2019 International SoC Design Conference (ISOCC), ser. ISOCC '19. Jeju, Korea: IEEE, Oct. 2019, pp. 261–262.
- [15] L. K. S. Tolentino, E. O. Fernandez, S. N. D. Amora, D. K. T. Bartolata, J. R. V. Sarucam, J. C. L. Sobrepeña, and K. Y. P. Sombol, "Yield evaluation of Brassica rapa, Lactuca sativa, and Brassica integrifolia using image processing in an IoT-based aquaponics with temperature-controlled greenhouse," *Agrivita*, vol. 42, no. 3, pp. 393–410, Sep. 2020.
- [16] S. A. Z. Murad, A. Harun, S. N. Mohyar, R. Sapawi, and S. Y. Ten, "Design of aquaponics water monitoring system using Arduino microcontroller," *AIP Conference Proceedings*, vol. 1885, no. 1, pp.



1-7, 2017.

- [17] G. Gao, K. Xiao, and M. Chen, "An intelligent IoT-based control and traceability system to forecast and maintain water quality in freshwater fish farms," *Computers and Electronics in Agriculture*, vol. 166, pp. 1–10, Nov. 2019.
- [18] A. K. Pasha Mohd Daud, N. A. Sulaiman, Y. W. Mohamad Yusof, and M. Kassim, "An IoT-based smart aquarium monitoring system," in 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE), ser. ISCAIE '20. Malaysia: IEEE, Apr. 2020, pp. 277–282.
- [19] G. Gao, K. Xiao, and M. Chen, "Big data meet green challenges: Greening big data," *IEEE Systems Journal*, vol. 10, no. 3, pp. 873– 887, May 2016.
- [20] R. Atat, L. Liu, H. Chen, J. Wu, H. Li, and Y. Yi, "Enabling cyberphysical communication in 5G cellular networks: Challenges, spatial spectrum sensing, and cyber-security," *IET Cyber-Physical Systems: Theory & Applications*, vol. 2, no. 1, pp. 49–54, Apr. 2017.
- [21] R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, "Big data meet cyber-physical systems: A panoramic survey," *IEEE Access*, vol. 6, pp. 73 603–73 636, Nov. 2018.
- [22] G. Suciu, V. Suciu, C. Dobre, and C. Chilipirea, "Tele-monitoring system for water and underwater environments using cloud and big data systems," in 2015 20th International Conference on Control Systems and Computer Science, ser. CSCS '15. Bucharest, Romania: IEEE, May 2015, pp. 809–813.
- [23] Y. Wang, Y. Wang, M. Ran, Y. Liu, Z. Zhang, L. Guo, Y. Zhao, and P. Wang, "Identifying potential pollution sources in river basin via water quality reasoning based expert system," in 2013 Fourth International Conference on Digital Manufacturing & Automation, ser. ICDMA '13. Shinan, China: IEEE, Jun. 2013, pp. 671–674.
- [24] J. Wu, S. Guo, J. Li, and D. Zeng, "Big data meet green challenges: Big data toward green applications," *IEEE Systems Journal*, vol. 10, no. 3, pp. 888–900, May 2016.
- [25] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, "Information and communications technologies for sustainable development goals: State-of-the-art, needs and perspectives," *IEEE Communications Surveys & Tutorials*, vol. 20, no. 3, pp. 2389–2406, Mar. 2018.




**Lean Karlo S. Tolentino** Lean Karlo S. Tolentino served the Department of Electronics Engineering (2017-2019) at Technological University of the Philippines (TUP) in Manila as its Chair. He was the Director of the Extension Services of TUP (2019-2020). He is currently an Assistant Professor at TUP. He is a graduate of BS Electronics and Communications Engineering at TUP Manila (2010) and MS Electronics Engineer-

ing at Mapua University (2015). Currently, he is studying PhD in Electrical Engineering at National Sun Yat-sen University in Taiwan.



**Celline P. De Pedro** Celline P. De Pedro finished high school at Arellano University - Malabon. She pursued BS in Electronics Engineering (ECE) major in Communication at TUP Manila in 2020. She was a student member of Institute of Electronics and Communications Engineer - Manila Student Chapter (IECEP-MSC).



Jatt D. Icamina Jatt D. Icamina is a graduate of BS in ECE at TUP Manila. She was an elected officer of University Student Government 2015-2016 as the College of Engineering Vice Governor and a Board of Director at IECEP-MSC in 2017. She won 3rd place on Pagsulat ng Sanaysay (NCR Level) at Philippine Association of State Universities and Colleges Literary and Cultural Fest 2014.



John Benjamin E. Navarro John Benjamin E. Navarro is a graduate of BS in ECE at TUP Manila where he was a member of the student chapter of IECEP-MSC. He is a licensed Electronic Technician since 2018. He was an active member of Philippine Taekwondo Contingent during his elementary and high school days.





Luigi James D. Salvacion Luigi James D. Salvacion is a graduate of BS in ECE at TUP Manila and an active member of OE-CES, a university accredited student organization of electronics engineering students. He is also a graduate of Electronics NCII at The BESTech Inc. a TESDA recognized school for Technical Vocational Education and Training.



**Maria Victoria C. Padilla** Maria Victoria C. Padilla is presently a Faculty Member of the ECE Department at TUP. She graduated MS in ECE major in Microelectronics at the Mapua University.



Gian Carlo D.A. Sobrevilla Gian Carlo D.A. Sobrevilla graduated as First Honorable Mention in elementary and pursued high school at Novaliches High School where he became the Cartoonist of the Year. He received his BS in ECE at TUP Manila.



**Gilfred Allen M. Madrigal** Gilfred Allen M. Madrigal is presently a Faculty Member of the ECE Department at TUP Manila. He is presently taking his Master of Engineering at TUP Manila.



**Apolo A. Villanueva** Apolo A. Villanueva is a graduate of BS in ECE at TUP Manila where he was a student member of the IECEP-MSC. During his high school days, he finished 5th place in the Regional Science Investigatory Project - Applied Science Team Category and 1st place during the Division Technolympics - Computer Hardware Servicing Category.



learning.

**Timothy M. Amado** Timothy M. Amado is currently an Assistant Professor in the ECE Department at TUP where he is currently serving as its Department Head. He graduated his MS in ECE major in Microelectronics at the Mapua University last 2015. Currently, he is studying PhD in Electronics Engineering at the Mapua University. His areas of interest include data science, machine learning, deep learning, and reinforcement



vision.

Lejan Alfred C. Enriquez Lejan Alfred C. Enriquez is a faculty member of the Integrated Research and Training Center at Technological University of the Philippines. He's also an alumnus of the abovementioned institution with a degree in BS in ECE. Currently, he is taking up his M.Sc. in Microelectronics at Mapúa University, Manila. His area of interest includes embedded systems, microelectronics design, and computer